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INTRODUCTION

ABSTRACT

One of the foundational building blocks of smart audio sensing systems is to automatically
recognize and classify acoustic scene, represented by Acoustic Scene Classification
(ASC) and Environmental Sound Analysis (ESA) and to facilitate applications of smart
surveillance, context-aware computing, and autonomous environmental monitoring.
Generalization of the traditional machine learning approaches that work on pre-
designed spectral and temporal features has demonstrated moderate success and fail
to generalize in heterogeneous and noisy real world situations. A Hybrid Deep Learning
Framework proposed in this paper combines the use of Convolutional Neural Networks
(CNNs) in extracting spatial features and the use of BiLSTM networks in modeling the
temporal sequence. The model performs sequential queries on log-mel spectrograms
and has an attention based on prioritization of important acoustic patterns and thus
aims to gain discriminative power. Investigations on two benchmark datasets TUT Urban
Acoustic Scenes 2018 and ESC-50 show that the proposed method outperforms CNN
and LSTM baseline architectures in the classification accuracy and obtains the result of
89.6% for ASC and 88.3% for ESA. Further robustness testing using a variety of signal-to-
noise ratios verifies the model cannot be easily and reliably distorted by environmental
noise, although performance is slightly compromised as low SNR environments are
used. These outcomes reflect the functionality of the framework when being applied
to practical deployments requiring superb accuracy and noise resilience. The suggested
solution is scalable and generalizable to the task of acoustic signal understanding, and
in the future may integrate it into multimodal sensing systems and edge Al applications.
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Acoustic signals contain by nature rich contextual
information related to the surrounding environment,
so they are useful in intelligence sensing across many
applications. Advanced optical sensing ASC is the
process of identifying the general scene or area, where
Environmental Sound Analysis (ESA) is the process of
identifying and recognizing specific sound events, such
as car horns, dog barks or rain. These work are becoming
more applicable in the fields of smart cities, security
surveillance, self-driving, and interaction between
human and computer.l'3 The early work in ASC and
ESA mainly used hand-crafted features, such as Mel-
Frequency Cepstral Coefficients (MFCCs) and chroma
vectors, and spectral contrast, combined with shallow
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models, such as Support Vector Machines (SVMs), or
Gaussian Mixture Models (GMMs).™! They are successful
in controlled situations, but in real world scenarios they
frequently do not work in situations where complex
temporal dynamics, and spectral variations are present.
The current years saw a revolution in the field of deep
learning, where Convolutional Neural Networks (CNNs)
proved to be very useful in extracting the spatial features
on the spectrogram representations, while Recurrent
Neural Networks (RNNs), especially those with long
short-term memory (LSTM) are effective in the temporal
dependencies.> ¢ Nevertheless, current models are
based only on CNN or RNN architectures and thus may
be prone to overfitting and poor feature diversity and
cross-dataset generalization.!” ®
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In order to overcome these shortcomings, we devel-
oped a Hybrid Deep Learning Framework that:

1. Combines spatial feature learning based on
CNN with Bidirectional LSTM (BiLSTM) temporal
modeling, to take advantage of mutually
complementary capabilities.

2. Maps an attention mechanism to highlight
acoustic patterns of interest.

3. Applies data augmentation techniques, such as
SpecAugment and mixup, to learn to be robust
to noise and variability of the environment.

The rest of this paper is structured as follows: related
works of ASC and ESA are reviewed in section 2. Section
3 explains the suggested hybrid architecture. The
section 4 provides the description of the experimental
setting and data set. The section 5 and offers results
and discussion. The paper ends in section 6, which has
summarized future research directions.

RELATED WORK
Traditional Machine Learning Approaches

Initial solutions of the Acoustic Scene Classification
(ASC) and Environmental Sound Analysis (ESA) problems
were largely based on handcrafted feature descriptions,
including Mel-Frequency Cepstral Coefficients (MFCCs),
Gammatone Cepstral Coefficients (GTCCs), spectral
contrast and zero-crossing rate.” "% Such characteristics
were often combined with traditional classifiers, such
as Gaussian Mixture Models (GMMs), Support Vector
Machines (SVMs), or Random Forests.l'l Although
they worked well in controlled environments, these
approaches proved exceptionally susceptible to
noise and cross-domain variance and thus had severe
consequences on performance in real-time. Moreover,
manually crafted features found it difficult to represent
complicated temporal spectro-temporal correlations
that exist in acoustic data.

Deep Learning Approaches

Deep learning has been an invaluable initiative that
has enhanced better performance of the ASC and ESA.
In particular, Convolutional Neural Networks (CNNs)
have been shown to learn spatial representations of
spectrogram representations effectively and VGGish
[12] and ResNet [13] architectures have been shown to
perform well. In recent years, Recurrent Neural Networks
(RNNs), particularly Long Short-Term Memory (LSTM)
models, have been found quite useful in modeling long-
term temporal dependencies that play a critical role in
detecting sound events occurring across timeframes.!'+ 131

o —

But CNN-only models cannot always explain sequential
dynamics, and RNN-only models can fail to learn some
finer detail in spectral patterns.

Hybrid and Attention-Based Methods

In order to circumvent these shortcomings, two-
tower CNN-RNN architectures have been suggested by
researchers, which take advantage of both spatial and
temporal models.!"s 71 High-order spectral characteristics
are prescribed by the CNN layers, and then are fed into
RNN layers to extract temporal relationships. Recently,
self-attention!' and multi-head attention!('®! have been
integrated, which concentration on the significant area
in time-frequency domain with great flexibility providing
better robustness and interpretability.

Research Gaps

Although such advances have been expressed, a number
of problems are still ongoing:

1. Transfer across domains - Most deep learning
models learn to overfit on a given set of data
and cannot generalize well to new settings.

2. Noise robustness - The system tends to break
down with low signal to noise ratios (SNRs) and
may not be useful in the real world.

3. Model efficiency-The most modern architectures
are also computationally costly, which frustrates
real-time and edge deployment.

Table 1 shows a comparative summary of the traditional,
deep learning, and the hybrid methods, and their
strengths and limitations. This justifies the development
of the proposed Hybrid Deep Learning Framework that
performs simultaneous spatial CNN-based extraction,
temporal BiLSTM-based modeling, and attention-based
mechanism on an efficient pipeline that is noise-robust
and computationally efficient.

PROPOSED METHODOLOGY
Framework Overview

The Hybrid Deep Learning Framework, proposed (Figure 1)
targets simultaneously Acoustic Scene Classification
(ASC) and Environmental Sound Analysis (ESA) using
both temporal and spatial properties of acoustic signals.
There are five fundamental steps of the architecture:

1. Feature Extraction - Unprocessed audio signals
are transformed into log-mel spectrograms,
representing a time frequency representation
that demonstrate compact time and frequency
resolution with the same details needed by
human perception.
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2. CNN Module Stacked convome=convolvel=
convolve5 and two dropout units extract a spa-
tially localized set of frequency patterns and
short-term time variations out of the spectro-
grams.

3. BiLSTM Module - Bidirectional layer of LSTM
focuses on including forwarding and backward
connections these models temporal dependencies
in both forward and backward directions that
empowered the system to grasp contextual
connections between frames.

4. Attention Mechanism: it uses an additional
attention layer which gives greater weights to
acoustically relevant areas of time-frequency
space, enabling the model to give importance to
the more informative parts.

5. Softmax Activation - Fused spatial temporal
features are then fed into fully connected layers
to produce proportional probabilities of classes
for the ASC and ESA tasks.

B ER W

Raw Audio

CNN Layers  BiLSTM Layers Fully c
Attention

dditi Output ompux

HYBRID DEEP LEARNING FRAMEWORK

FOR ACOUSTIC SCENE AND ENVIRONMENTAL SOUND ANALYSIS

Fig. 1: Hybrid Deep Learning Framework for
Acoustic Scene Classification and Environmental
Sound Analysis

A theoretical visual scheme of a hybrid deep learning
architecture depicting the step-by-step operation
of supplementary extracting features (log-mel
spectrograms), convolutional neural network (CNN)
spatial analysis, bi-directional LSTM (BiLSTM) temporal
model, attention-based focus, and fully connected
diagnosis layers in terms of doing both ASC and ESA tasks.

Data Preprocessing

Each preprocessed audio sample represents a standard
preprocessing pipeline to normalize the representation
of features used in order to promote consistent model
performance. The pipeline is the following:

« Sampling rate: All the recordings are resampled
to 44.1 kHz as a uniformity measure.

« Frame size: 40 ms ,hop length 20 ms well suited
to the availability of the temporal resolution.

+ Feature representation: 128-band log-mel spec-
trograms are extracted as feature representation
through which perceptually pertinent frequency
information are captured.
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« Data augmentation: SpecAugment (time masking
/ frequency masking) and mixup augmentation
get used to add variability to the training data,
to improve noise robustness and generalization
capacity.

The entire Audio Data Preprocessing Pipeline for ASC and
ESA is depicted in Figure 2, which can be understood in
terms of how raw waveform data are transformed with
the help of a spectrogram conversion to the augmented
feature representations.

Input audio Data
samples Frame and augmentation
hop length
‘ )) extraction
=
16 kHz I SpecAugment mixup

128-band log-mel
spectrogram

Frequency

Fig. 2: Audio Data Preprocessing Pipeline for
ASC and ESA

A conceptual diagram explaining the preprocessing
pipeline used on raw audio samples in regards to how
they were sampled at a rate of 44.1kHz, the 40ms frame
duration and 20ms hop size was employed as well as
conversion to 128-band log-mel spectrograms and how
SpecAugment and mixup were applied to make feature
extraction robust and highly repeatable for use in sound
classification applications.

CNN Feature Extraction

The CNN module has three convolution blocks all of
which contain the following loops: Conv2D (Batch
Normalization + RelLU activation + MaxPooling). Such
design makes it possible to gradually abstract features
of spectra using harmonics of low levels to acoustic
patterns of high levels. Kernel and max pooling
dimensions are determined to provide efficiency in
terms of cost/performance tradeoff at the local scale of
detail capturing and unnecessary dimensionality in order
to eliminate extraneous variation.

Figure 3 demonstrates the CNN Feature Extraction
Module the Acoustic Scene Classifications and
environmental sound analysis, where the processing of
log-mel spectrogram inputs in sequence occurs: applying
convolution, normalization, activation, and pooling
steps.

61



Moris Mlein and Mrunal Salwadkar : Hybrid Deep Learning Framework for Acoustic Scene Classification and
Environmental Sound Analysis

Conv2D Batch Rel U
Normalization activation

Batch
Normalization

RelLU Batch Max-
activation Normalization Pooling

Fig. 3. CNN Feature Extraction Module for
Acoustic Scene Classification and Environmental
Sound Analysis.

The module was made of three convolutional blocks that
were implemented in the following format: Conv2D ->
Batch Normalization -> RelLU activation -> Max-Pooling
which hierarchically learns spectral features given log-
mel spectrograms as input.

BiLSTM Temporal Modeling

The audio sequence is used to take both future and
past context into consideration, with a number of 256
hidden units in two stacked Bidirectional LSTM (BiLSTM)
layers. This two way processing has the capacity to
model effectively temporal dependencies which is
especially advantageous considering that environmental
sounds with distinguishing characteristics may extend
over many time intervals. Figure 4. BiLSTM, Temporal
Modeling process can be seen in Environmental Sound
Analysis, contextual information on both sides becomes
incorporated in BiLSTM resulting in better classification
accuracy.

future context

256 hidden | FOrward
units LSTM

Backward
LSTM

Layer 1
past context
-

Backward

LSTM Layer 2

256 hidden
units

D — e
256 hidden | FOrWard | gaciward
units LSTM LSTM

3

past context Layer 2

<

Temporal modeling of audio sequences

Fig. 4: BiLSTM Temporal Modeling for
Environmental Sound Analysis

2 —

Figure 1 demonstrating the capture of past and future
temporal context in audio sequences by visualizing two
stacked Bidirectional LSTM layers of 256 hidden units in
audio sequence-recognition tasks.

Attention Mechanism

The intended form of attention is an additive attention
mechanism that computes a weighted sum of the
outputs of the BiLSTM network to enable the network
to concentrate on the time-frequency regions that are
most useful to classification. This method does not only
enhance the performance but also makes the decisions
more interpretable most importantly knowing which
segments of the spectrogram have been put into account
of making that decision. Figure 5 shows the Additive
Attention Mechanism of ASC and ESA, which therein
display how attention weights are used to enforce
attention to those acoustically informative regions of
BiLSTM outputs prior to classification.

Attention
e ﬂ
Weighted

Sum Classification

BiLSTM
Outputs

Fig. 5. Additive Attention Mechanism for
ASC and ESA.

The mechanism finds attention weights across BiLSTM
outputs, producing a weighted sum of the outputs, and
increases the areas in the timefrequency space that
are the most informative, resulting in higher and more
interpretable accuracy in classification.

Classification

The attention-weighted features are concatenated to
a fully connected dense layer with softmax activation
which outputs probability scores across each of the
target classes in ASC and ESA. During the training,
a cross-entropy loss function is involved, and the
optimizer used to optimized the learning rate adaptively
is Adam. The Attention-Guided Classification process
of Environmental Sound Analysis is reflected in Figure
6, where the weighted features are converted to the
probability of the classes to take the final decision.

Graphics illustrating the process of classification in
which the features that are weighted with attention are
passed through a dense layer and activated using softmax
functions in the case of Acoustic Scene Classification
(ASC) and Environmental Sound Analysis (ESA), providing
probabilities in each target class. Adaptive learning in
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Attention Fully Output
Weights Connected Probability
Dense Layer Scores
1 ¢ e
O o)
(‘\‘ C|> O
o ( O
Input Attention- Output
Features Weighted Probability
Features Scores

Fig. 6: Attention-Guided Classification in
Environmental Sound Analysis

a network is trained with cross-entropy loss and Adam
optimizer.

EXPERIMENTAL SETUP
Datasets

The framework is tested using two well accepted
benchmark datasets:

e TUT Urban Acoustic Scenes 2018 (TUT-ASC2018)
- Audio recordings were recorded in 10 urban
scenes such as park, street, airport, shopping
mall and public squares. The recording clips are
10 s long, and sampled at 44.1kHz and recorded
in several cities in order to provide a diversity in
the acoustic environment.?%

o ESC-50: A set of 2,000 labeled audios of
environmental data consisting of 50 classes
and based on five large categories: natural
soundscapes, animals, human non-speech,
interior/domestic sounds, and exterior/urban/
noise. They consist of 5 seconds of clips with a
frequency of 44.1 kHz.[2"

The two datasets are divided into training, validation,
and testing sets according to their official evaluation
guidelines to compare them to the previous studies
fairly. Table 1 presents the lists of specifications of the
datasets, as well as baseline model architectures with
regard to performing the benchmark on them, and
Figure 7 presents a visual overview of the TUT-ASC2018
and ESC-50 datasets to be used for Environmental Sound
Analysis with a representation of their respective class
categories and spectrograms of sample data.

R ol S @

Park Street Airport Shopping Public
mail square
TUT-ASC2018 ESC-50

Class distribution

HHHHH

Park Street Airpo  Shop Public
mall square

Fig. 7: Dataset Overview: TUT-ASC2018 & ESC-50 for
Environmental Sound Analysis

Infographic summarising the main features of the TUT
Urban Acoustic Scenes 2018 (TUT-ASC2018) and ESC-50
datasets, such as class distribution of the dataset, file

Table 1: Dataset Specifications and Baseline Model Architectures

Dataset / Model Description Key Specifications / Architecture

TUT Urban Acoustic Urban environmental audio 10-second stereo recordings; 44.1 kHz sampling rate;
Scenes 2018 (TUT- dataset with 10 scene classes. recorded across multiple cities and locations.

ASC2018)

ESC-50 Environmental sound dataset with | 5-second mono recordings; 44.1 kHz sampling rate; 2,000

50 classes in five categories.

labeled audio clips (40 clips/class).

CNN-only (VGGish-like)

Convolutional model for
spectrogram-based feature
extraction.

4 Conv2D layers (3x3 kernels, ReLU) + BatchNorm +
MaxPooling; Fully Connected layers for classification.

BiLSTM-only

Temporal sequence modeling from
spectrogram input.

2 BiLSTM layers (256 units each), Dropout (0.3), Fully
Connected layers for classification.

CNN + GRU Hybrid

Combines spatial and temporal
modeling.

3 Conv2D layers (3x3 kernels) + GRU (256 units) + Dense
classification layers.
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specifications, categorical icon maps, and examples
of spectrograms as an aid to visualizing the useful
properties of sound classification system in the field of
environmental sound, as a point of comparison between
the proposed environmental sound classification models.

Evaluation Metrics

The evaluation criteria of the models is given in following
metrics:

o Classification Accuracy ( % ) - assesses the
summated portion of many samples classified
accurately.

e F1-Score- This is the harmonic mean of precision
and recall and this offers a fair indicator of the
imbalanced class distributions.

o Confusion Matrix - Gives a breakdown of
predictions map by class, so error analysis can
be studied more closely and give a reason to
point out which classes are most commonly
misclassified.

Table 2 provides the formal definitions, formulas and
significance of these metrics and thus provides clarity
and consistency in performance assessment across
experiments. The evaluation metrics shown in figure 8
have graphical representation of Accuracy, Precision,
Recall and F1-Score as well as an example confusion
matrix to give a clearer idea of what they represent.

Confusion Matrix
@ Predicted | Predicted
Positive | Negative
Actual
© @ i | m

Accuracy Precision JAewat [ e o TN

egative
@ @ F1-Score = 2xPrecisionxRecall
@ . Precision + Recall
Recall

Fig. 8: Evaluation Metrics

Illustration to ASC and ESA, including graphical depictions
of Accuracy, Precision, Recall, F1-Score and sample
Confusion Matrix.

Baseline Models

Results are compared to the following baselines in order
to examine the effectiveness of the proposed method:

1. CNN-only (VGGish-like) download download -
A convolutional that is optimized to extract
spectrogram-based features without temporal
modeling.

2. BiLSTM-only BiLSTM is a recurrent architecture
that takes advantage of time-based features
explicitly derived with regard to the input
spectrograms.

3. CNN + GRU Hybrid - This is a competitive hybrid
baseline CNN using convolutional feature
extractors then a Gated Recurrent Unit (GRU) to
model a time sequence.

Figure 9 is used to draw a visual analogy of these baseline
architectures, and show the structural variations of their
processing pipeline in spectrogram-based ASC and ESA
tasks.

CNN-only

Log-mel
spectrogram
Fully
Connected

BIiLSTM-only

BiLSTM

CNN + GRU Hybrid

Fully
Connected

Log-mel spectrogram

Fully
Connected

g-mel spectrogram Log-mel spectrogram

Fig. 9: Baseline Model Comparison

illustrating flows of conceptual processing of CNN-only,
BiLSTM only and CNN+GRU hybrid architectures along

Table 2: Evaluation Metrics and Their Significance

Metric Formula Description / Significance

Accuracy (%) Accuracy= Measures the proportion of correctly classified samples out of the total samples.
Indicates overall model performance.

Precision Precision= Measures the proportion of correctly predicted positive cases among all predicted
positives. High precision indicates low false positive rate.

Recall Recall= Measures the proportion of correctly predicted positive cases among all actual

(Sensitivity) positives. High recall indicates low false negative rate.

F1-Score F1=2x Harmonic mean of precision and recall, balancing both metrics. Particularly useful for
imbalanced datasets.

Confusion Matrix | N/A A matrix summarizing prediction results by showing the counts of true and false
classifications for each class. Useful for detailed per-class performance analysis.
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with significant structural differences in processing
spectrogram inputs to ASC and ESA.

These baselines were implemented and trained on the
same preprocessing, data augmentation and optimization
parameters as the proposed model in order to promote
a fair comparison.

RESULTS AND DISCUSSION
Performance Comparison

As it will be shown in Table 3, the performance of the
proposed CNN+BiLSTM+Attention model is compared to
three other baseline models: CNN-only, BiLSTM-only,
and CNN+GRU hybrid (also details in Table 1 and in
visual representation in Figure 9). The accuracy of such
classification of both Acoustic Scene Classification (ASC)
and Environmental Sound Analysis (ESA) is summarized in
Table 3 and is also spatially visualized with a bar chart
in Figure 10 - Performance Comparison Bar Chart of ASC
& ESA.

Table 3 - Performance Comparison of Baseline and
Proposed Models

ASC Accuracy
Model (%) ESA Accuracy (%)
CNN-only 84.2 82.7
BiLSTM-only 81.5 80.1
CNN+GRU 86.4 85.0
Proposed 89.6 88.3
CNN+BiLSTM+Attention
100
Il ASC Accuracy 89,6 88,3
80 || ESA Accuracy 86,486,4
?é’ 60 842 827 g5
3
8
< 40
20

CNN-only

BiLSTM-only CNN+GRU Proposed

CNN+BILSTM+Attention
Model

Fig. 10: Performance Comparison Bar Chart for
ASC & ESA

All tasks of the proposed hybrid model have the best
accuracy compared to CNN-only with a higher accuracy
of 5.4% on ASC and 5.6% on ESA. Such an improvement
illustrates the strengths (encompassing the advantages
of one-dimensional CNN and the temporal context
modeling of the (BiLSTM) and attention-driven weighting
of features).

National Journal of Speech and Audio Processing | Apr - June 2025

Interpretation of Results

Three main reasons can be cited as the causes of the great
performance improvements of the proposed method:

1. Complementary Feature Learning - CNN layers
learnspectral featuresthat are localized, whereas
the BiLSTM layers learn long dependencies in
audio samples.

2. Attention Mechanism - The network attends
the acoustically informative parts of a speech:
it highlights important time-frequency areas by
comparing speech segments far apart.

3. Noise-Resilient Learning - Do NLP Data Aug-
mentations help? Experimental results confirm
noise-resilient learning: the model does general-
ize across both datasets with SpecAugment and
mixup data augmentation techniques (see de-
tails of the datasets in Figure 7).

These findings correlate with those of recent work, 34
on sound classification that demonstrates hybrid CNNRNN
with attention architectures perform better than single-
stream models.

Noise Robustness

The proposed model was also assessed under varying
noisy conditions, and Signal-to-Noise Ratios (SNRs) of
20 dB, 10 dB and 0 dB were used. The classification
accuracy of the model was very high, and the reduction
in performance never exceeded 46 6 of accuracy at the
per-maximal SNR value. Such robustness indicates that
the architecture may prove to be applicable in real-
world scenarios like smart surveillance and autonomous
environmental monitoring, whereby it will always be
exposed to background noise. In Table 4 Noise Robustness
(Proposed Model), the formulated model was tested to
determine how each noise level performed in achieving
high accuracy. The accuracy plot comprehensively
showed this performance in Figure 11 - Noise Robustness
Accuracy Plot (SNR vs Accuracy).

Table 4: Noise Robustness (Proposed Model)

SNR (dB) Overall Accuracy (%)
20 87.0
10 84.0
0 80.0

The findings validate previous research on the
effectiveness of hybrid deep learning with attention
in ASC and ESA and confirm its suitability as a method,
not only due to its high level of accuracy but also noise
tolerance, within the intended scope of the designed
model presented and discussed in Sections 3.13 3.6.
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76
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Figure 11 - Noise Robustness Accuracy Plot
(SNR vs Accuracy)

CONCLUSION AND FUTURE WORK

This research paper introduced a Hybrid Deep
Learning scheme of Acoustic Scene Classification (ASC)
and Environmental Sound Analysis (ESA) capable of
synergistical integration of CNN-based spatial feature
extraction, a Bidirectional LSTM net-based time
modelling, and an attention mechanism that selects the
most relevant time-frequency areas. By exploiting the
advantages of convolutional and recurrent architecture,
the framework extended the state-of-the-art to two
well-established benchmark datasets, namely TUT Urban
Acoustic Scenes 2018 and ESC-50, reaching 89.6% and
88.3% accuracy on the corresponding benchmark tasks
(ASC and ESA), outperforming baseline convolutional
neural network (CNN) based models, as well as recurrent
neural network (BiLSTM) based models, as well as their
hybrid variants.

The findings prove three significant contributions of this
work:

1. Architectural Synergy - CNN, BiLSTM, and attention
modules have been handled in a remarkable way
that helps transduce both spectral and temporal
correlations with an improved capability of
discrimination.

2. Noise Robustness a steady performance in terrible
SNRs (020 dB), as well as a minute 46 percent
decline in accuracy, proves its appropriateness in
real-life application.

3. Complete Evaluation - Extensive experimentation
across various dataset and comparison with
solid benchmarks, so methodology is sound and
experimentation can be easily reproduced.

The prospect of the following research directions can be
viewed:

e Transformer-Based Extensions -
transformers or conformer

66 —

Using audio
architecture to

better global context modelling and lessen
the dependence on hand-crafted architectural
fusion.

e Multimodal Learning -lts relevant direction is
that it introduces visual information such as
video data into the audio information processing,
which is called audio-visual scene scene
understanding, which may benefit classification
in see--understanding audio-noise interfering
scenarios.

+ Real-Time Edge Deployment - improving the
framework to be deployed on low-power
embedded systems through compression,
quantization and hardware awareness in neural
architecture search (NAS).

Finally, it must be noted that the presented hybrid
system not only extends the state of the art in ASC and
ESA but due to its flexibility and robustness, offers a
strong and versatile basis towards future generations
of environmental sound recognition systems that are
capable of functioning even in real-world environments
in a variety of ways.
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