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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
One of the foundational building blocks of smart audio sensing systems is to automatically 
recognize and classify acoustic scene, represented by Acoustic Scene Classification 
(ASC) and Environmental Sound Analysis (ESA) and to facilitate applications of smart 
surveillance, context-aware computing, and autonomous environmental monitoring. 
Generalization of the traditional machine learning approaches that work on pre-
designed spectral and temporal features has demonstrated moderate success and fail 
to generalize in heterogeneous and noisy real world situations. A Hybrid Deep Learning 
Framework proposed in this paper combines the use of Convolutional Neural Networks 
(CNNs) in extracting spatial features and the use of BiLSTM networks in modeling the 
temporal sequence. The model performs sequential queries on log-mel spectrograms 
and has an attention based on prioritization of important acoustic patterns and thus 
aims to gain discriminative power. Investigations on two benchmark datasets TUT Urban 
Acoustic Scenes 2018 and ESC-50 show that the proposed method outperforms CNN 
and LSTM baseline architectures in the classification accuracy and obtains the result of 
89.6% for ASC and 88.3% for ESA. Further robustness testing using a variety of signal-to-
noise ratios verifies the model cannot be easily and reliably distorted by environmental 
noise, although performance is slightly compromised as low SNR environments are 
used. These outcomes reflect the functionality of the framework when being applied 
to practical deployments requiring superb accuracy and noise resilience. The suggested 
solution is scalable and generalizable to the task of acoustic signal understanding, and 
in the future may integrate it into multimodal sensing systems and edge AI applications.
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Introduction
Acoustic signals contain by nature rich contextual 
information related to the surrounding environment, 
so they are useful in intelligence sensing across many 
applications. Advanced optical sensing ASC is the 
process of identifying the general scene or area, where 
Environmental Sound Analysis (ESA) is the process of 
identifying and recognizing specific sound events, such 
as car horns, dog barks or rain. These work are becoming 
more applicable in the fields of smart cities, security 
surveillance, self-driving, and interaction between 
human and computer.[1-3] The early work in ASC and 
ESA mainly used hand-crafted features, such as Mel-
Frequency Cepstral Coefficients (MFCCs) and chroma 
vectors, and spectral contrast, combined with shallow 
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models, such as Support Vector Machines (SVMs), or 
Gaussian Mixture Models (GMMs).[4] They are successful 
in controlled situations, but in real world scenarios they 
frequently do not work in situations where complex 
temporal dynamics, and spectral variations are present. 
The current years saw a revolution in the field of deep 
learning, where Convolutional Neural Networks (CNNs) 
proved to be very useful in extracting the spatial features 
on the spectrogram representations, while Recurrent 
Neural Networks (RNNs), especially those with long 
short-term memory (LSTM) are effective in the temporal 
dependencies.[5, 6] Nevertheless, current models are 
based only on CNN or RNN architectures and thus may 
be prone to overfitting and poor feature diversity and 
cross-dataset generalization.[7, 8]
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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In order to overcome these shortcomings, we devel-
oped a Hybrid Deep Learning Framework that:

1. Combines spatial feature learning based on 
CNN with Bidirectional LSTM (BiLSTM) temporal 
modeling, to take advantage of mutually 
complementary capabilities.

2. Maps an attention mechanism to highlight 
acoustic patterns of interest.

3. Applies data augmentation techniques, such as 
SpecAugment and mixup, to learn to be robust 
to noise and variability of the environment.

The rest of this paper is structured as follows: related 
works of ASC and ESA are reviewed in section 2. Section 
3 explains the suggested hybrid architecture. The 
section 4 provides the description of the experimental 
setting and data set. The section 5 and offers results 
and discussion. The paper ends in section 6, which has 
summarized future research directions.

Related Work
Traditional Machine Learning Approaches

Initial solutions of the Acoustic Scene Classification 
(ASC) and Environmental Sound Analysis (ESA) problems 
were largely based on handcrafted feature descriptions, 
including Mel-Frequency Cepstral Coefficients (MFCCs), 
Gammatone Cepstral Coefficients (GTCCs), spectral 
contrast and zero-crossing rate.[9, 10] Such characteristics 
were often combined with traditional classifiers, such 
as Gaussian Mixture Models (GMMs), Support Vector 
Machines (SVMs), or Random Forests.[11] Although 
they worked well in controlled environments, these 
approaches proved exceptionally susceptible to 
noise and cross-domain variance and thus had severe 
consequences on performance in real-time. Moreover, 
manually crafted features found it difficult to represent 
complicated temporal spectro-temporal correlations 
that exist in acoustic data.

Deep Learning Approaches

Deep learning has been an invaluable initiative that 
has enhanced better performance of the ASC and ESA. 
In particular, Convolutional Neural Networks (CNNs) 
have been shown to learn spatial representations of 
spectrogram representations effectively and VGGish 
[12] and ResNet [13] architectures have been shown to 
perform well. In recent years, Recurrent Neural Networks 
(RNNs), particularly Long Short-Term Memory (LSTM) 
models, have been found quite useful in modeling long-
term temporal dependencies that play a critical role in 
detecting sound events occurring across timeframes.[14, 15]  

But CNN-only models cannot always explain sequential 
dynamics, and RNN-only models can fail to learn some 
finer detail in spectral patterns.

Hybrid and Attention-Based Methods

In order to circumvent these shortcomings, two-
tower CNN-RNN architectures have been suggested by 
researchers, which take advantage of both spatial and 
temporal models.[16, 17] High-order spectral characteristics 
are prescribed by the CNN layers, and then are fed into 
RNN layers to extract temporal relationships. Recently, 
self-attention[10] and multi-head attention[18] have been 
integrated, which concentration on the significant area 
in time-frequency domain with great flexibility providing 
better robustness and interpretability.

Research Gaps

Although such advances have been expressed, a number 
of problems are still ongoing:

1. Transfer across domains - Most deep learning 
models learn to overfit on a given set of data 
and cannot generalize well to new settings.

2. Noise robustness - The system tends to break 
down with low signal to noise ratios (SNRs) and 
may not be useful in the real world.

3. Model efficiency-The most modern architectures 
are also computationally costly, which frustrates 
real-time and edge deployment.

Table 1 shows a comparative summary of the traditional, 
deep learning, and the hybrid methods, and their 
strengths and limitations. This justifies the development 
of the proposed Hybrid Deep Learning Framework that 
performs simultaneous spatial CNN-based extraction, 
temporal BiLSTM-based modeling, and attention-based 
mechanism on an efficient pipeline that is noise-robust 
and computationally efficient.

Proposed Methodology
Framework Overview

The Hybrid Deep Learning Framework, proposed (Figure 1)  
targets simultaneously Acoustic Scene Classification 
(ASC) and Environmental Sound Analysis (ESA) using 
both temporal and spatial properties of acoustic signals. 
There are five fundamental steps of the architecture:

1. Feature Extraction - Unprocessed audio signals 
are transformed into log-mel spectrograms, 
representing a time frequency representation 
that demonstrate compact time and frequency 
resolution with the same details needed by 
human perception.
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signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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2. CNN Module Stacked convome=convolve1= 
convolve5 and two dropout units extract a spa-
tially localized set of frequency patterns and 
short-term time variations out of the spectro-
grams.

3. BiLSTM Module – Bidirectional layer of LSTM 
focuses on including forwarding and backward 
connections these models temporal dependencies 
in both forward and backward directions that 
empowered the system to grasp contextual 
connections between frames.

4. Attention Mechanism: it uses an additional 
attention layer which gives greater weights to 
acoustically relevant areas of time-frequency 
space, enabling the model to give importance to 
the more informative parts.

5. Softmax Activation – Fused spatial temporal 
features are then fed into fully connected layers 
to produce proportional probabilities of classes 
for the ASC and ESA tasks.

Fig. 1: Hybrid Deep Learning Framework for  
Acoustic Scene Classification and Environmental 

Sound Analysis

A theoretical visual scheme of a hybrid deep learning 
architecture depicting the step-by-step operation 
of supplementary extracting features (log-mel 
spectrograms), convolutional neural network (CNN) 
spatial analysis, bi-directional LSTM (BiLSTM) temporal 
model, attention-based focus, and fully connected 
diagnosis layers in terms of doing both ASC and ESA tasks.

Data Preprocessing

Each preprocessed audio sample represents a standard 
preprocessing pipeline to normalize the representation 
of features used in order to promote consistent model 
performance. The pipeline is the following:

• Sampling rate: All the recordings are resampled 
to 44.1 kHz as a uniformity measure.

• Frame size: 40 ms ,hop length 20 ms well suited 
to the availability of the temporal resolution.

• Feature representation: 128-band log-mel spec-
trograms are extracted as feature representation 
through which perceptually pertinent frequency 
information are captured.

• Data augmentation: SpecAugment (time masking 
/ frequency masking) and mixup augmentation 
get used to add variability to the training data, 
to improve noise robustness and generalization 
capacity.

The entire Audio Data Preprocessing Pipeline for ASC and 
ESA is depicted in Figure 2, which can be understood in 
terms of how raw waveform data are transformed with 
the help of a spectrogram conversion to the augmented 
feature representations.

Fig. 2: Audio Data Preprocessing Pipeline for  
ASC and ESA

A conceptual diagram explaining the preprocessing 
pipeline used on raw audio samples in regards to how 
they were sampled at a rate of 44.1kHz, the 40ms frame 
duration and 20ms hop size was employed as well as 
conversion to 128-band log-mel spectrograms and how 
SpecAugment and mixup were applied to make feature 
extraction robust and highly repeatable for use in sound 
classification applications.

CNN Feature Extraction

The CNN module has three convolution blocks all of 
which contain the following loops: Conv2D (Batch 
Normalization + ReLU activation + MaxPooling). Such 
design makes it possible to gradually abstract features 
of spectra using harmonics of low levels to acoustic 
patterns of high levels. Kernel and max pooling 
dimensions are determined to provide efficiency in 
terms of cost/performance tradeoff at the local scale of 
detail capturing and unnecessary dimensionality in order 
to eliminate extraneous variation.

Figure 3 demonstrates the CNN Feature Extraction 
Module the Acoustic Scene Classifications and 
environmental sound analysis, where the processing of 
log-mel spectrogram inputs in sequence occurs: applying 
convolution, normalization, activation, and pooling 
steps.
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• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Fig. 3. CNN Feature Extraction Module for  
Acoustic Scene Classification and Environmental 

Sound Analysis.

The module was made of three convolutional blocks that 
were implemented in the following format: Conv2D -> 
Batch Normalization -> ReLU activation -> Max-Pooling 
which hierarchically learns spectral features given log-
mel spectrograms as input.

BiLSTM Temporal Modeling

The audio sequence is used to take both future and 
past context into consideration, with a number of 256 
hidden units in two stacked Bidirectional LSTM (BiLSTM) 
layers. This two way processing has the capacity to 
model effectively temporal dependencies which is 
especially advantageous considering that environmental 
sounds with distinguishing characteristics may extend 
over many time intervals. Figure 4. BiLSTM, Temporal 
Modeling process can be seen in Environmental Sound 
Analysis, contextual information on both sides becomes 
incorporated in BiLSTM resulting in better classification 
accuracy.

Fig. 4: BiLSTM Temporal Modeling for  
Environmental Sound Analysis

Figure 1 demonstrating the capture of past and future 
temporal context in audio sequences by visualizing two 
stacked Bidirectional LSTM layers of 256 hidden units in 
audio sequence-recognition tasks.

Attention Mechanism

The intended form of attention is an additive attention 
mechanism that computes a weighted sum of the 
outputs of the BiLSTM network to enable the network 
to concentrate on the time-frequency regions that are 
most useful to classification. This method does not only 
enhance the performance but also makes the decisions 
more interpretable most importantly knowing which 
segments of the spectrogram have been put into account 
of making that decision. Figure 5 shows the Additive 
Attention Mechanism of ASC and ESA, which therein 
display how attention weights are used to enforce 
attention to those acoustically informative regions of 
BiLSTM outputs prior to classification.

Fig. 5. Additive Attention Mechanism for  
ASC and ESA.

The mechanism finds attention weights across BiLSTM 
outputs, producing a weighted sum of the outputs, and 
increases the areas in the timefrequency space that 
are the most informative, resulting in higher and more 
interpretable accuracy in classification.

Classification

The attention-weighted features are concatenated to 
a fully connected dense layer with softmax activation 
which outputs probability scores across each of the 
target classes in ASC and ESA. During the training, 
a cross-entropy loss function is involved, and the 
optimizer used to optimized the learning rate adaptively 
is Adam. The Attention-Guided Classification process 
of Environmental Sound Analysis is reflected in Figure 
6, where the weighted features are converted to the 
probability of the classes to take the final decision.

Graphics illustrating the process of classification in 
which the features that are weighted with attention are 
passed through a dense layer and activated using softmax 
functions in the case of Acoustic Scene Classification 
(ASC) and Environmental Sound Analysis (ESA), providing 
probabilities in each target class. Adaptive learning in 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 

63

a network is trained with cross-entropy loss and Adam 
optimizer.

Experimental Setup
Datasets

The framework is tested using two well accepted 
benchmark datasets:

• TUT Urban Acoustic Scenes 2018 (TUT-ASC2018) 
- Audio recordings were recorded in 10 urban 
scenes such as park, street, airport, shopping 
mall and public squares. The recording clips are 
10 s long, and sampled at 44.1kHz and recorded 
in several cities in order to provide a diversity in 
the acoustic environment.[20]

• ESC-50: A set of 2,000 labeled audios of 
environmental data consisting of 50 classes 
and based on five large categories: natural 
soundscapes, animals, human non-speech, 
interior/domestic sounds, and exterior/urban/
noise. They consist of 5 seconds of clips with a 
frequency of 44.1 kHz.[21]

The two datasets are divided into training, validation, 
and testing sets according to their official evaluation 
guidelines to compare them to the previous studies 
fairly. Table 1 presents the lists of specifications of the 
datasets, as well as baseline model architectures with 
regard to performing the benchmark on them, and 
Figure 7 presents a visual overview of the TUT-ASC2018 
and ESC-50 datasets to be used for Environmental Sound 
Analysis with a representation of their respective class 
categories and spectrograms of sample data.

Fig. 7: Dataset Overview: TUT-ASC2018 & ESC-50 for 
Environmental Sound Analysis

Infographic summarising the main features of the TUT 
Urban Acoustic Scenes 2018 (TUT-ASC2018) and ESC-50 
datasets, such as class distribution of the dataset, file 

Fig. 6: Attention-Guided Classification in 
Environmental Sound Analysis

Table 1: Dataset Specifications and Baseline Model Architectures

Dataset / Model Description Key Specifications / Architecture

TUT Urban Acoustic 
Scenes 2018 (TUT-
ASC2018)

Urban environmental audio 
dataset with 10 scene classes.

10-second stereo recordings; 44.1 kHz sampling rate; 
recorded across multiple cities and locations.

ESC-50 Environmental sound dataset with 
50 classes in five categories.

5-second mono recordings; 44.1 kHz sampling rate; 2,000 
labeled audio clips (40 clips/class).

CNN-only (VGGish-like) Convolutional model for 
spectrogram-based feature 
extraction.

4 Conv2D layers (3×3 kernels, ReLU) + BatchNorm + 
MaxPooling; Fully Connected layers for classification.

BiLSTM-only Temporal sequence modeling from 
spectrogram input.

2 BiLSTM layers (256 units each), Dropout (0.3), Fully 
Connected layers for classification.

CNN + GRU Hybrid Combines spatial and temporal 
modeling.

3 Conv2D layers (3×3 kernels) + GRU (256 units) + Dense 
classification layers.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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specifications, categorical icon maps, and examples 
of spectrograms as an aid to visualizing the useful 
properties of sound classification system in the field of 
environmental sound, as a point of comparison between 
the proposed environmental sound classification models.

Evaluation Metrics

The evaluation criteria of the models is given in following 
metrics:

• Classification Accuracy ( % ) - assesses the 
summated portion of many samples classified 
accurately.

• F1-Score- This is the harmonic mean of precision 
and recall and this offers a fair indicator of the 
imbalanced class distributions.

• Confusion Matrix - Gives a breakdown of 
predictions map by class, so error analysis can 
be studied more closely and give a reason to 
point out which classes are most commonly 
misclassified.

Table 2 provides the formal definitions, formulas and 
significance of these metrics and thus provides clarity 
and consistency in performance assessment across 
experiments. The evaluation metrics shown in figure 8 
have graphical representation of Accuracy, Precision, 
Recall and F1-Score as well as an example confusion 
matrix to give a clearer idea of what they represent.

Fig. 8: Evaluation Metrics

Illustration to ASC and ESA, including graphical depictions 
of Accuracy, Precision, Recall, F1-Score and sample 
Confusion Matrix.

Baseline Models

Results are compared to the following baselines in order 
to examine the effectiveness of the proposed method:

1. CNN-only (VGGish-like) download download – 
A convolutional that is optimized to extract 
spectrogram-based features without temporal 
modeling.

2. BiLSTM-only BiLSTM is a recurrent architecture 
that takes advantage of time-based features 
explicitly derived with regard to the input 
spectrograms.

3. CNN + GRU Hybrid - This is a competitive hybrid 
baseline CNN using convolutional feature 
extractors then a Gated Recurrent Unit (GRU) to 
model a time sequence.

Figure 9 is used to draw a visual analogy of these baseline 
architectures, and show the structural variations of their 
processing pipeline in spectrogram-based ASC and ESA 
tasks.

Fig. 9: Baseline Model Comparison

illustrating flows of conceptual processing of CNN-only, 
BiLSTM only and CNN+GRU hybrid architectures along 

Table 2: Evaluation Metrics and Their Significance

Metric Formula Description / Significance

Accuracy (%) Accuracy= Measures the proportion of correctly classified samples out of the total samples. 
Indicates overall model performance.

Precision Precision= Measures the proportion of correctly predicted positive cases among all predicted 
positives. High precision indicates low false positive rate.

Recall 
(Sensitivity)

Recall= Measures the proportion of correctly predicted positive cases among all actual 
positives. High recall indicates low false negative rate.

F1-Score F1=2× Harmonic mean of precision and recall, balancing both metrics. Particularly useful for 
imbalanced datasets.

Confusion Matrix N/A A matrix summarizing prediction results by showing the counts of true and false 
classifications for each class. Useful for detailed per-class performance analysis.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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with significant structural differences in processing 
spectrogram inputs to ASC and ESA.

These baselines were implemented and trained on the 
same preprocessing, data augmentation and optimization 
parameters as the proposed model in order to promote 
a fair comparison.

Results and Discussion
Performance Comparison

As it will be shown in Table 3, the performance of the 
proposed CNN+BiLSTM+Attention model is compared to 
three other baseline models: CNN-only, BiLSTM-only, 
and CNN+GRU hybrid (also details in Table 1 and in 
visual representation in Figure 9). The accuracy of such 
classification of both Acoustic Scene Classification (ASC) 
and Environmental Sound Analysis (ESA) is summarized in 
Table 3 and is also spatially visualized with a bar chart 
in Figure 10 - Performance Comparison Bar Chart of ASC 
& ESA.

Table 3 – Performance Comparison of Baseline and 
Proposed Models

Model
ASC Accuracy 

(%) ESA Accuracy (%)

CNN-only 84.2 82.7

BiLSTM-only 81.5 80.1

CNN+GRU 86.4 85.0

Proposed 
CNN+BiLSTM+Attention

89.6 88.3

Fig. 10: Performance Comparison Bar Chart for  
ASC & ESA

All tasks of the proposed hybrid model have the best 
accuracy compared to CNN-only with a higher accuracy 
of 5.4% on ASC and 5.6% on ESA. Such an improvement 
illustrates the strengths (encompassing the advantages 
of one-dimensional CNN and the temporal context 
modeling of the (BiLSTM) and attention-driven weighting 
of features).

Interpretation of Results

Three main reasons can be cited as the causes of the great 
performance improvements of the proposed method:

1. Complementary Feature Learning – CNN layers 
learn spectral features that are localized, whereas 
the BiLSTM layers learn long dependencies in 
audio samples.

2. Attention Mechanism - The network attends 
the acoustically informative parts of a speech: 
it highlights important time-frequency areas by 
comparing speech segments far apart.

3. Noise-Resilient Learning - Do NLP Data Aug-
mentations help? Experimental results confirm 
noise-resilient learning: the model does general-
ize across both datasets with SpecAugment and 
mixup data augmentation techniques (see de-
tails of the datasets in Figure 7).

These findings correlate with those of recent work,[3],4]  
on sound classification that demonstrates hybrid CNNRNN 
with attention architectures perform better than single-
stream models.

Noise Robustness

The proposed model was also assessed under varying 
noisy conditions, and Signal-to-Noise Ratios (SNRs) of 
20 dB, 10 dB and 0 dB were used. The classification 
accuracy of the model was very high, and the reduction 
in performance never exceeded 46 6 of accuracy at the 
per-maximal SNR value. Such robustness indicates that 
the architecture may prove to be applicable in real-
world scenarios like smart surveillance and autonomous 
environmental monitoring, whereby it will always be 
exposed to background noise. In Table 4 Noise Robustness 
(Proposed Model), the formulated model was tested to 
determine how each noise level performed in achieving 
high accuracy. The accuracy plot comprehensively 
showed this performance in Figure 11 – Noise Robustness 
Accuracy Plot (SNR vs Accuracy).

Table 4: Noise Robustness (Proposed Model)

SNR (dB) Overall Accuracy (%)

20 87.0

10 84.0

0 80.0

The findings validate previous research on the 
effectiveness of hybrid deep learning with attention 
in ASC and ESA and confirm its suitability as a method, 
not only due to its high level of accuracy but also noise 
tolerance, within the intended scope of the designed 
model presented and discussed in Sections 3.13 3.6.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Conclusion and Future Work

This research paper introduced a Hybrid Deep 
Learning scheme of Acoustic Scene Classification (ASC) 
and Environmental Sound Analysis (ESA) capable of 
synergistical integration of CNN-based spatial feature 
extraction, a Bidirectional LSTM net-based time 
modelling, and an attention mechanism that selects the 
most relevant time-frequency areas. By exploiting the 
advantages of convolutional and recurrent architecture, 
the framework extended the state-of-the-art to two 
well-established benchmark datasets, namely TUT Urban 
Acoustic Scenes 2018 and ESC-50, reaching 89.6% and 
88.3% accuracy on the corresponding benchmark tasks 
(ASC and ESA), outperforming baseline convolutional 
neural network (CNN) based models, as well as recurrent 
neural network (BiLSTM) based models, as well as their 
hybrid variants.

The findings prove three significant contributions of this 
work:

1.	 Architectural Synergy – CNN, BiLSTM, and attention 
modules have been handled in a remarkable way 
that helps transduce both spectral and temporal 
correlations with an improved capability of 
discrimination.

2.	 Noise Robustness a steady performance in terrible 
SNRs (020 dB), as well as a minute 46 percent 
decline in accuracy, proves its appropriateness in 
real-life application.

3.	 Complete Evaluation – Extensive experimentation 
across various dataset and comparison with 
solid benchmarks, so methodology is sound and 
experimentation can be easily reproduced.

The prospect of the following research directions can be 
viewed:

• Transformer-Based Extensions - Using audio 
transformers or conformer architecture to 

better global context modelling and lessen 
the dependence on hand-crafted architectural 
fusion.

• Multimodal Learning -Its relevant direction is 
that it introduces visual information such as 
video data into the audio information processing, 
which is called audio-visual scene scene 
understanding, which may benefit classification 
in see--understanding audio-noise interfering 
scenarios.

• Real-Time Edge Deployment - improving the 
framework to be deployed on low-power 
embedded systems through compression, 
quantization and hardware awareness in neural 
architecture search (NAS).

Finally, it must be noted that the presented hybrid 
system not only extends the state of the art in ASC and 
ESA but due to its flexibility and robustness, offers a 
strong and versatile basis towards future generations 
of environmental sound recognition systems that are 
capable of functioning even in real-world environments 
in a variety of ways.
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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