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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
Common noise cancellation algorithms used in current hearing aids,including spectral 
subtraction, Wiener filtering, and traditional adaptive filtering are prone to performance 
degradation in non-stationary and dynamically varying speech environments and 
certainly be in the real world situation which could be a noisy street, a public bus or 
even at a party. Such approaches are based on predetermined values of adaptation 
parameters or trained offline, and, therefore, are not able to react efficiently to 
unpredictable noise properties. In overcoming these impediments, this paper develops 
an adaptive noise cancellation (ANC) system based on reinforcement learning (RL) that 
performs continuous, context-aware, real-time noise mitigation in smart hearing aids. 
The proposed system that involves an RL agent interacting with acoustic environment 
and being told whether speech clarity and listening comfort improves should make it 
possible to optimize the approach to noise suppression via trial-and-error learning. A 
Deep Q-Network (DQN) enables the decision-making process that dynamically updates 
ANC filter parameters based on a concise state representation based on time frequency 
features via short-time Fourier transform (STFT), such as, Mel-frequency cepstral 
coefficients (MFCCs), instantaneous signal-to-noise ratio (SNR), and spectral flatness 
measures. The reward is a combination of improvements in SNR and perceptual 
improvements in speech quality (evaluated as perceptual evaluation of speech quality 
or PESQ), such that the algorithm maximises intelligibility without causing unreasonable 
distortion. The CHiME-4 noisy speech was used to conduct simulation experiments 
consisting of real background noise with the case of a street, a cafe, and a transit 
location. Comparison with Wiener filter, spectral subtractions and a deep speech 
enhancement baseline that uses a convolutional neural network also illustrates that the 
proposed RL-based ANC framework improves average SNR with 4.7 dB and STOI by 12.5 
percent throughout various noises. These findings indicate the versatility and versatility 
as well as the possibility of the framework to be individualized depending on the users 
and hence it fits well as a candidate in future hearing aids that tend to maximize the 
hearing experience in the most dynamic acoustic tasks.
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Introduction

Deafness is a common disorder that millions of people are 
faced with globally, which greatly affects their expression 
in life with regard to communication. Hearing aids are 
also salient assistive equipment, whose major purpose is 
to enhance desired speech at the expense of background 
noise. The primary purpose of these devices is not only 
to make sound louder, but also to make speech sound 
more intelligible and comfortable to hear in diverse 
acral settings. Although conventional algorithms of noise 
reduction (i.e., Wiener filtering, spectral subtraction 
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and least mean square (LMS) adaptive filtering) have 
been demonstrated useful in the case of stationary 
noise, they tend to be ineffective in real conditions of 
dynamic noise process and non-stationary noise in real 
life scenarios (e.g., in busy streets, restaurants, and 
transport systems).

The main drawback of more traditional techniques is 
their deterministic or slowly changing parameters and 
these parameters cannot change fast enough to keep up 
with very rapidly changing background noise profiles. 
Also, quite a number of the current supervised deep 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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learning automatic speech enhancement methods, 
including convolutional, and recurrent neural networks 
also rely on biased training on comparatively huge and 
pre-gathered data. Although these models can learn 
to perform very well in the training environment, they 
tend to generalize poorly to acoustic and environments 
that have not been encountered during training and 
are prohibitively costly to implement on resource-
constrained hearing aid hardware in real-time.

Reinforcement Learning (RL) presents an interesting way 
out of this problem as it provides a formulation of noise 
suppression problem as a sequential decision making 
problem. Unlike in supervised learning, there are no pre-
labeled datasets required in RL representing a significant 
advantage compared to the hearing aid that is being 
trained in the real-life acoustic setting. An RL agent 
can learn and adaptively adjust the noise suppression 
strategy by continuously monitoring environmental 
indicators, taking corrective filtering measures, and 
getting feedback expressed as performance gains (e.g., 
in terms of objective measures of quality, such as Signal-
to-Noise Ratio, SNR, or the perceived quality of the 
sound, such as speech intelligibility, listening comfort).

In this paper, we forthright suggest an adaptive noise 
cancellation (ANC) frame work in smart hearing aids by 
using Deep Q-Network (DQN), which allows a hearing 
aid to redefine the ANC filters parameter automatically 
based on changes in the environment. Timefrequency 
features such as Mel-Frequency Cepstral Coefficients 
(MFCCs), real-time SNR estimations, and spectral 
flatness scale observations are used to build the state 
space, so that the RL agent makes its decisions on the 
basis of both specechand perceptual inputs. The trade-
off between objective noise suppression and subjective 
audio quality is achieved by the reward function and the 
system is not to aggressively filter and alter the speech.

The following are the contributions of this work:

	A new RL-based ANC framework where learning 
is tailored to real-time operation in hearing 
aids, and which adapts to any of a wide range of 
dynamic acoustic conditions without re-training.

	A combination of perceptually relevant state 
features to enable the RL agent to make informed 
decisions to suppress noise whilst maintaining 
some degree of speech naturality.

	Demonstration of significantly better results in 
SNR and speech intelligibility than conventional 
and deep learning based baselines on the CHiME-4 
noisy speech corpus, using real world noise.

The rest of this paper is organized as follows. Section 2 
provides related work concerning noise cancellation in 
hearing aids as well as reinforcement learning applied 
to speech processing. Section 3 describes the suggested 
structure of the RL based ANC, the stages of feature 
extraction, RL model design, and signal reconstruction. 
Section 4 outlines the experimental environment and 
data as well as scoring. Section 5 presents and describes 
the results. Lastly, Section 6 provides the end of the 
paper, as well as research directions to be followed 
Figure 1.

Fig. 1: Block diagram of the proposed RL-based adap-
tive noise cancellation (ANC) framework for smart 

hearing aids.

Related Work

Traditional one-channel improvement. Much of early 
noise suppression in hearing aids was based on spectral 
subtraction and MMSE spectral amplitude estimation. 
Spectral subtraction is fast and low latency, but musical 
noise tends to arise in non-stationary conditions.[1] The 
performance of MMSE-STSA degrades in cases where 
noise statistics change quickly or the estimation of 
SNR is poor; however, MMSE-STSA can be beneficial in 
enhancing the perceptual quality, with early estimates 
of its short- time spectral amplitude based on Gaussian 
assumptions.[2] Adaptive filtering-LMS and extensions- 
provide online update of coefficients, fixed step-size/
forgetting factor trade-offs restrict tracking of fast 
acoustic variation typical of real scenes ( cafes, transit).
[3, 12] This sensitivity and these limits are recorded in 
foundational speech-enhancement papers regulative 
texts on speech-enhancement.[4]

Hearing-aid beamforming and multchannel processing. 
Microphone-array techniques (MVDR, GSC, binaural 
beamforming) enhance SNR through spatial selectivity 
and Interaural cue preservation and this would make 
them appealing in the form factor of behind-the-ear. 
Nevertheless, they require properly sounding voice 
activity and steering vector estimation, which are 
fragile in a dynamic scene and a moving talker.[5, 11]  
Consequently, most powerful spatial filters usually 
demand adaptive post-filters which have to be returned 
under changing circumstances.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:

KEYWORDS: 
 comparator,  
gain,  
offset voltage,  
cadence, 
spectre.

ARTICLE HISTORY: 
Received xxxxxxxxxxxx
Accepted xxxxxxxxxxxx
Published xxxxxxxxxxxx

DOI:
https://doi.org/10.31838/jvcs/06.01. 03 
 
 
 
 
 
 
 
 

 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 

53

Deep learning that is supervised. In DNN-based, denoising 
is redefined as the mask/ratio estimation in TF domain 
and can gain significantly compared to classical methods 
at the same conditions.[6, 7] According to the surveys, 
there are steady gains in PESQ/STOI in CNN/LSTM/TCN 
families, although pitfalls are identified in generalizing 
to unseen noises, and a large, labeled corpus is required.
[8] Complex-valued-based architectures (e.g. DCCRN) 
improve phase modeling and robustness but most models 
are trained offline and cannot adapt in-device, in real-
time to drifts in the noise distribution with a policy-
adaptation mechanism. Board-aware optimization in 
VLSI[12] and in low-power Internet of Things[14] designs 
are increasingly considered key to embedding such 
algorithms into portable devices with very tight energy 
constraints.

Speech/audio reinforcement learning. RL samples 
enhancement and spatial filtering as consecutive 
decision-making problems whose rewards are functions 
of intelligibility/quality. It has been demonstrated that 
DQN-style agents could successfully and online adapt 
beamformer parameter to enhance target speech 
preservation even in the absence of any explicit tags.
[9] The general DQN framework offers a sample-efficient 
way of learning value functions with experience replay 
and target networks which qualifies it as an embedded 
implementation that has limited compute.[10] Recent 
context-aware optimization approaches of adaptive 
filtering[13] and of domain adaptive RFID-based beam-
steerable sensing solutions[11] suggest they are central to 
real-time implementations. Although evidence suggests 
its effectiveness, the use of RL to real-time ANC in the 
context of hearing-aid pipelines is under investigated: 
existing literature is limited to beam steering or policy 
learning offline, and few combine perceptually weighted 
rewards, wearable constraints on hardware,[15] and 
delivering latencies of <1ms as demanded by hearing-
assistive devices.

Positioning and being new. In connection to these 
strands, we integrate a DQN-based controller in a 
hearing aid ANC chain running in real time. In contrast 
with trained models, for which the supervised relation 
to new environments necessitates re-learning, the 
agent online tunes filter hyper-params to a reward 
based on trade between objective SNR improvements 
and perceptual quality. The policy tracks non-stationary 
noise without manual re-tuning compared to fixed-
rate adaptive filters and beam-formers and provides a 
pathway to personalized, and context-aware hearing 
assistance.

Methodology
System Overview

The proposed Adaptive Noise Cancellation (ANC) 
framework on the basis of Reinforcement Learning 
(RL) algorithm-based smart hearing aids should be 
used in real time and adapt to environmentally varying 
acoustics. The architecture consists of 4 main modules 
that can be identified in the role that they play in signal 
enhancement.

Acoustic Front-End

The user environment will send its raw audio signal to 
the acoustic front-end which then prepares that signal 
to be processed further. Spatial selectivity is achieved 
with a dual microphone or multi microphone directional 
array, in which the desired speech source is enhanced by 
the array and sounds arising in undesired directions are 
attenuated. The analog audio signal before conversion 
may be passed through a preprocessing stage in which 
existing high-frequency components are removed by an 
anti-aliasing filter that prevents aliasing distortion during 
the analog-to-digital conversion process performed via 
the analog-to-digital converter (ADC). This results in the 
digital signal being partitioned into short overlapping 
frames and then converted to the frequency domain by 
Short-Time Fourier Transform (STFT) resulting in a time 
frequency representation that has both temporal and 
spectral features, which are important in making the 
techniques of noise speech separation effective when 
operating in a dynamic environment.

Module Extraction Featuring

The feature extraction phase runs the STFT frames to 
produce a reduced number of environmental descriptors 
comprising the input of the RL agent state. These are Mel-
Frequency Cepstral Coefficients (MFCCs), which encode 
perceptually salient spectral properties of speech in a 
way that is consistent with human hearing; estimates of 
Signal-to-Noise Ratio (SNR), which quantifies clarity of 
the speech relative to background noise on a frame-by-
frame basis; and the Spectral Flatness Measure (SFM), 
which distinguishes tone-like, speech-like signals, which 
are relatively flat, and noise-like signals, which are 
generally not. Combining these complementary features, 
the system is used to build a context-sensitive state 
representation that would allow the RL agent to make 
accurate and adaptive filtering decisions that would be 
relevant to the operative acoustic environment.

Adaptive Filter Controller based on RL

The main component of the system is Deep Q-Network 
(DQN), which is the decision-making component that as 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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a state input takes the features extracted on the current 
audio frame. Once the network is generated based on 
this state it produces an according action where it 
decides on the finest ANC filter parameters like the filter 
length, step size and spectral weighting factor which are 
intended to fit the most prevailing acoustic circumstances 
in the best way possible. The RL agent adapts an 
adaptive policy to maximize a reward function, achieved 
through consistent exposure to the environment that is 
able to balance objective SNR enhancing with subjective 
speech-perceptual quality. Such makes it possible to 
adapt in real-time such that hearing aid can efficiently 
track and suppress non-stationary noise sources without 
offline retraining.

Signal Reconstruction

The last step is to use the achievement of the chosen filter 
configuration to adequately minimize the noise effects at 
the cost of maintaining utterance quality. Here, the filter 
parameters selected are directly used in the frequency-
domain to suppress undesired noise signals. The Inverse 
Short-Time Fourier Transform (iSTFT) is then applied in 
order to go back to time domain. The output sound must 
stay natural sounding and comfortable to listen to; this 
is achieved by optional post-processing: smoothing, gain 
control, and dynamic range compression, prior to the 
improved audio being presented to the receiver of the 
hearing aid Figure 2.

Fig. 2: Block Diagram of the Proposed RL-Based 
Adaptive Noise Cancellation Framework for Smart 

Hearing Aids

Reinforcement Learning Model

The cancellation of noise is modelled as a Markov Decision 
Process (MDP) in which the RL agent is the interacting 
agent with the acoustic environment at discrete time 
steps to maximize noise cancellation. The main aspects 
of this model are the following:

	State (S): State at step, the polls will end when 
it changes. Contains characteristic features that 
depict the present acoustic scene. Particularly, 

the state vector contains the instantaneous 
Signal-to-Noise Ratio, Mel-Frequency Cepstral 
Processing, Criterion Invariant Cepstral 
Coefficients, Sub-band (SB) (), and Short Time 
Fourier Transform (STFT) () based features.The 
Spectral Flatness Measure which was modelled 
as (), or equivalently.

	 St=[SNRt,MFCC_t,SpectralFlatnesst ]	 (1)

All of these features would encode spectral and 
perceptual properties of the input audio frame and thus 
allow the RL agent to make informed choices, which 
would depend on the real-time acoustic situation.

	Action (A): Action space involves discrete 
choices of the parameters of the adaptive filter, 
which include, among others, filter length, step 
size and spectral weighting factor. The RL agent 
selects an action at every step in time related 
to a particular combination of filter settings to 
use, which directly affects the dose of the noise 
cancellation effects.

	Reward (R): The amount of reward signal 
measures the effectiveness of the action that 
has been selected by balancing objective and 
perceptual gains. It can be viewed as a weighted 
sum of enhancements in SNR, and perceptual 
quality, which is computed by the Perceptual 
Evaluation of Speech Quality (PESQ) metric:

	 Rt=α×∆SNR+β×∆PESQ	 (2)

Where and the beta (,) are coefficients, moderating 
the significance of signal definition and the perceptual 
purer. Such a composite reward motivates the agent to 
maximise a measure of noise reduction and maximise 
naturalness.

	Policy: The policy is achieved by a Deep 
Q-Network (DQN) which is a value-based RL 
type of algorithm that approximates the optimal 
action-value function determiningwith the deep 
neural networks. Main parameters of recognition 
and training of the DQN include:

	Input Layer: The dimensionality should be the 
same as the dimension of the state vector (no of 
extracted features).

	Hidden Layers: 256-neuron and 128-neuron fully 
connected layers (with ReLU activation functions 
on both to account nonlinear relationships 
between the current state and action values).
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 

55

	Output Layer: The same number of neurons 
as there are discrete actions; this is the 
estimated Q-values of each of the possible filter 
configurations.

	Learning Rate: It will be set to 0.0001 to have 
stable and gradual updates during the training.

	Discount Frequency: It is set to 0.95 that 
balances between long-term and immediate 
reward through the optimization of long-term 
policies.

	Replay Buffer Size: has a history of the 
last 50,000 transitions to permit replay of 
experience, thereby increasing sample efficiency 
and correlation among successive data.

	Batch Size: 64 experiences are drawn randomly 
without replacement in the batch size of the 
replay buffer every training iteration so that 
mini-batch gradient descent can be effectively 
applied.

This novel set of rich state representation, discretized 
adaptive actions, and perceptually motivated reward 
allow the RL agent to learn the actual, real-time 
adaptive filtering policy that achieves an effective 
noise cancellation performance that self-optimizes 
in transient acoustic conditions without ever needing 
supervised labels or re-training Figure 3.

Fig. 3: Reinforcement Learning Framework for 
Adaptive Noise Cancellation

Procedure in Training

In the training of the Deep Q-Network (DQN) controller, 
a process is adopted that should guide the agent to 
learn the best policies of adaptive noise cancellation 
by interacting with the acoustic environment. Steps 
involved are as follows;

Initialization:

Parameters of DQN such as network weights, replay 
buffer, learning rate and hyperparameters are initialized 
before training. This will form the basis of the learning 
process of the agent.

Iterative Frame wise Processing:

To process every incoming audio frame the following 
sequence is carried out:

	Feature Extraction (State): The front-end of the 
audio is subjected to acoustical processing so as 
to derive the current state which are the SNR, 
MFCCs, spectral flatness features. Typing the 
sounding space.

	Action Selection (Policy): The agent chooses an 
action with 0 < 0 < 1 approach named (Policy) 0: 
With an e-greedy policy, the agent chooses an 
action. With probability where the agent either 
explores, by taking a random action, or instead 
exploiting the current knowledge, it picks the 
action with the highest estimate of its Q-value. 
This trade off aids in quality exploration and 
exploitation in training.

	Filter Application: The selected action is related 
to a certain set of adaptive filter parameters and 
causes them to be applied to the audio frame in 
order to perform noise cancellation.

	Reward Computation: The quality of the result 
of the filtered audio is measured with the 
objective measurement of improves Signal-to-
Noise Ratio (SNR), and the perceptual scores 
based on objective measurement points with 
the PESQ score. These measures are scaled 
together to calculate the reward  the expression 
of which is the efficiency of the selected action 
in improving the quality of speech.

	Experience Storage: The tuple  and the ordered 
input of a current state, action, reward, and next 
state, (commonly referred to as experience), is 
written in the replay buffer. This memory allows 
experience replay, which stabilizes training by 
de-correlating samples in time.

	Network Update: At regular intervals, some 
random mini-batches of the previous experiences 
are sampled out of the replay buffer and used to 
train the DQN. On these sampled experiences, 
the weights of the network are trained via 
gradient descent to reduce the error between 
the temporal differences, which makes the 
policy of the agent better at each iteration.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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During repeated interaction and learning across a large 
number of audio frames, the DQN agent revises its policy 
step by step, so that, after several million frames, 
effective adaptive noise cancellation is achieved, 
that generalizes to different audio frames and noise 
conditions that are varying and non- stationaryFigure 
4. Such a process of training allows the hearing aid to 
be usable in the real-time environment since the model 
would routinely improve user experience without the 
need to offline retrain.

Fig. 4: Training Procedure for the DQN-based 
Adaptive Noise Cancellation System

Experimental Setup

The proposed RL-based adaptive noise cancellation 
framework was tested on the CHiME-4 noisy speech 
corpus, an extended noisy speech dataset that has been 
commonly used as a standard testbed and is generally 
considered as depicting highly degraded acoustic settings 
occurring in realistic settings. This set of recordings 
consists of multi-channel data mainly recorded in real 
world environments with high non-stationary and Rich 
noise: crowded cafes, busting buses and city-centers. 
CHiME-4 has such testbed capabilities because of the 
diversity of noise types and time dynamics to validate 
noise suppression algorithms that will be applicable in 
real hearing aid usage. Audio effects were treated at a 

frame level and all the experiments were done in controls 
so as to have replicability and similar representation in 
the performance against each other.

Three proven noise cancellation techniques were chosen 
as benchmarks to assess the performance of the proposed 
method: Wiener Filter, a traditional statistical technique 
which estimates the noise spectra and subtracts them 
based on the signal and noise power of that noisy 
speech; Spectral Subtraction which suppresses the 
noise by subtracting an estimated noise spectrum of the 
noisy speech spectra; and a Deep Speech Enhancement 
(DSE) CNN model, the contemporary supervised deep 
leave learned with large speech datasets to understand 
denoising. The metrics applied to evaluate the 
performance were Signal-to-Noise Ratio Improvement 
(ΔSNR), which expresses the objective improvement in 
signal-to-noise listening; Perceptual evaluation of speech 
quality (PESQ), a verified and commonly used numerical 
scale that can be used to characterize audio quality 
as perceived by humans; and Short-Time objective 
intelligibility (STOI) which is a measure of intelligibility of 
speech in noise. These add-on measurements would offer 
a full evaluation of objective noise reduction measures, 
as well as the subsequent perceived improvements on 
quality of speech offered by every technique.

Table 1. Experimental Setup Summary

Component Details

Dataset CHiME-4 noisy speech corpus — multi-
channel recordings from cafés, public 
buses, and streets, with highly non-
stationary noise patterns.

Baselines 1. Wiener Filter — Statistical noise 
power estimation. 
2. Spectral Subtraction — Estimated 
noise spectrum subtraction. 
3. DSE-CNN — Deep speech 
enhancement using CNN architecture.

Evaluation Metrics ΔSNR: Signal-to-Noise Ratio 
improvement (objective clarity). 
PESQ: Perceptual Evaluation of 
Speech Quality (audio quality). 
STOI: Short-Time Objective 
Intelligibility (speech intelligibility).

Results and Discussion

Table 2 shows the results of relative performance of 
the proposed RL-based adaptive noise cancellation 
(ANC) framework in comparison with three baseline- 
Wiener filtering, spectral subtraction, and deep speech 
enhancement convolutional neural network (DSE-CNN). 
The RL-based ANC outperformed in all measures (with an 
average SNR gain of +4.7 dB, a PESQ rating of 2.92, and STOI 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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rating of 88.4%) across all of the metrics: 2-SNR, PESQ, 
and STOI. By contrast, optimally-performing baseline, 
DSE-CNN, gained +4.0 dB SNR improvement, 2.78 PESQ, 
and 85.9% STOI. Compared to the new DSP algorithms, 
their conventional counterparts, i.e., Wiener filtering 
and spectral subtraction had significant performance 
shortcomings, especially under conditions of hard-to-
break noise that included dealing with non-stationary 
noise, respectively, reaching only SNR improvements 
of +2.8 dB and +3.1 dB. These findings lead to the 
clear indication that the mechanism of reinforcement 
learning to perform parameter adjustment allows the 
proposed system to outperform existing and classical 
supervised approaches as well as modern state-of-the-
art approaches.

A major advantage of the suggested RL-based ANC is the 
possibility of adapting to the changing noise situation in 
real-time as filter parameters may be solved on the fly. 
In contrast to fixed-parameter DSP methods, where it is 
possible to assume (statically) about noise properties, 
the RL agent checks the environment with the extracted 
features (SNR, MFCCs, spectral flatness) and chooses the 
best parameter settings using its learned policy. This 
allows the system to provide good speech quality and 
intelligibility in cases where noise profiles vary at high 
rates like when we move to a noisy street after being 
in a silent room. Comparing transversely, supervised 
deep learning methods such as DSE-CNN despite the 
effectiveness on such comparable training conditions are 
more likely to have performance lapses when subjected 
to noise inputs not in the training dataset Figure 5. The 
flexibility of the RL framework thus has a vital robustness 
benefit using real-world hearing aid.

Fig. 5: Proportional contribution of ΔSNR 
improvement across different noise cancellation 

methods, highlighting the superior performance of 
the proposed RL-based ANC framework.

Nevertheless, there are practical considerations to 
using RL-based ANC whose advantages amount to some 
benefits. The training process, or the process of learning 
how to best adjust filters to their environment can be 
a computationally expensive, time-consuming process 
and can be particularly prohibitive when learning from 
scratch. This constraint may be solved by transferring 
the first-stage of training to an intermediary device--a 
smartphone or desktop computer--and then deploying 
the compact, trained policy to the hearing aid hardware. 
After deployment, the on-device inference has relatively 
modest computational needs -- which makes it viable 
on power-constrained embedded devices. Moreover, it 
may be considered in the future to train using transfer 
learning or meta-reinforcement learning to speed up the 
adaptation on new users and environments, cutting the 
time of training and introducing personalisation with no 
degradation in real-time performance.

Table 2. Comparative performance of the proposed RL-
based adaptive noise cancellation (ANC) framework and 

baseline methods in terms of ΔSNR, PESQ, and STOI.

Method ΔSNR (dB) PESQ STOI (%)

Wiener Filter 2.8 2.31 81.2

Spectral Subtraction 3.1 2.45 82.6

DSE-CNN 4.0 2.78 85.9

Proposed RL-Based ANC 4.7 2.92 88.4

Conclusion

The proposed study shows a reinforcement learning-
based adaptive noise cancellation (ANC) model of 
smart hearing aids, as a solution to the limitations 
of the existing noise suppression algorithms in the 
dynamic and non-stationary acoustics. Utilizing a Deep 
Q-Network (DQN) to optimize filter parameters in real 
time according to subjectively defined features of 
acoustic relevance to intelligibility, the proposed system 
was shown to offer significant gains in objective and 
subjective quality ratings of speech downstream. An 
experimental comparison of the CHiME-4 noisy speech 
database bore fruit in showing that the RL-based ANC 
topped conventional DSP solution like Wiener filtering 
or spectral subtraction and a deep speech enhancement 
CNN, with an SNR gain of +4.7 dB, a PESQ score of 2.92 
and a STOI score attainment of 88.4%. This outcome 
affirms that the framework would be resistant to 
different and unforeseeable noise patterns, which is 
promising in next-generation hearing aids. The initial 
training process is computationally intensive but can be 
effectively addressed by offline training and lightweight 



Al-Jame Fahad and Tasil Leyene : Adaptive Noise Cancellation in Smart Hearing Aids  
Using Reinforcement LearningIshrat Zahan Mukti,  , et al. :  1.8-V Low Power, High-Resolution, High-Speed Comparator With Low Offset Voltage Implemented in 45nm CMOS Technology

Journal of VLSI circuits and systems, , ISSN 2582-1458 20

A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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ON-device inference that allows to deploy onto power-
restricted embedded systems. In future, we will combine 
multi-microphone beamforming, policy adaptation 
accelerated by meta-learning and real user studies to 
establish additional evidence on the effectiveness of the 
proposed framework in individualized hearing support.
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