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ABSTRACT

Common noise cancellation algorithms used in current hearing aids,including spectral
subtraction, Wiener filtering, and traditional adaptive filtering are prone to performance
degradation in non-stationary and dynamically varying speech environments and
certainly be in the real world situation which could be a noisy street, a public bus or
even at a party. Such approaches are based on predetermined values of adaptation
parameters or trained offline, and, therefore, are not able to react efficiently to
unpredictable noise properties. In overcoming these impediments, this paper develops
an adaptive noise cancellation (ANC) system based on reinforcement learning (RL) that
performs continuous, context-aware, real-time noise mitigation in smart hearing aids.
The proposed system that involves an RL agent interacting with acoustic environment
and being told whether speech clarity and listening comfort improves should make it
possible to optimize the approach to noise suppression via trial-and-error learning. A
Deep Q-Network (DQN) enables the decision-making process that dynamically updates
ANC filter parameters based on a concise state representation based on time frequency
features via short-time Fourier transform (STFT), such as, Mel-frequency cepstral
coefficients (MFCCs), instantaneous signal-to-noise ratio (SNR), and spectral flatness
measures. The reward is a combination of improvements in SNR and perceptual
improvements in speech quality (evaluated as perceptual evaluation of speech quality
or PESQ), such that the algorithm maximises intelligibility without causing unreasonable
distortion. The CHiME-4 noisy speech was used to conduct simulation experiments
consisting of real background noise with the case of a street, a cafe, and a transit
location. Comparison with Wiener filter, spectral subtractions and a deep speech
enhancement baseline that uses a convolutional neural network also illustrates that the
proposed RL-based ANC framework improves average SNR with 4.7 dB and STOI by 12.5
percent throughout various noises. These findings indicate the versatility and versatility
as well as the possibility of the framework to be individualized depending on the users
and hence it fits well as a candidate in future hearing aids that tend to maximize the
hearing experience in the most dynamic acoustic tasks.
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INTRODUCTION

Deafness is a common disorder that millions of people are
faced with globally, which greatly affects their expression
in life with regard to communication. Hearing aids are
also salient assistive equipment, whose major purpose is
to enhance desired speech at the expense of background
noise. The primary purpose of these devices is not only
to make sound louder, but also to make speech sound
more intelligible and comfortable to hear in diverse
acral settings. Although conventional algorithms of noise
reduction (i.e., Wiener filtering, spectral subtraction
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and least mean square (LMS) adaptive filtering) have
been demonstrated useful in the case of stationary
noise, they tend to be ineffective in real conditions of
dynamic noise process and non-stationary noise in real
life scenarios (e.g., in busy streets, restaurants, and
transport systems).

The main drawback of more traditional techniques is
their deterministic or slowly changing parameters and
these parameters cannot change fast enough to keep up
with very rapidly changing background noise profiles.
Also, quite a number of the current supervised deep
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learning automatic speech enhancement methods,
including convolutional, and recurrent neural networks
also rely on biased training on comparatively huge and
pre-gathered data. Although these models can learn
to perform very well in the training environment, they
tend to generalize poorly to acoustic and environments
that have not been encountered during training and
are prohibitively costly to implement on resource-
constrained hearing aid hardware in real-time.

Reinforcement Learning (RL) presents an interesting way
out of this problem as it provides a formulation of noise
suppression problem as a sequential decision making
problem. Unlike in supervised learning, there are no pre-
labeled datasets required in RL representing a significant
advantage compared to the hearing aid that is being
trained in the real-life acoustic setting. An RL agent
can learn and adaptively adjust the noise suppression
strategy by continuously monitoring environmental
indicators, taking corrective filtering measures, and
getting feedback expressed as performance gains (e.g.,
in terms of objective measures of quality, such as Signal-
to-Noise Ratio, SNR, or the perceived quality of the
sound, such as speech intelligibility, listening comfort).

In this paper, we forthright suggest an adaptive noise
cancellation (ANC) frame work in smart hearing aids by
using Deep Q-Network (DQN), which allows a hearing
aid to redefine the ANC filters parameter automatically
based on changes in the environment. Timefrequency
features such as Mel-Frequency Cepstral Coefficients
(MFCCs), real-time SNR estimations, and spectral
flatness scale observations are used to build the state
space, so that the RL agent makes its decisions on the
basis of both specechand perceptual inputs. The trade-
off between objective noise suppression and subjective
audio quality is achieved by the reward function and the
system is not to aggressively filter and alter the speech.

The following are the contributions of this work:

» A new RL-based ANC framework where learning
is tailored to real-time operation in hearing
aids, and which adapts to any of a wide range of
dynamic acoustic conditions without re-training.

» A combination of perceptually relevant state
features to enable the RL agent to make informed
decisions to suppress noise whilst maintaining
some degree of speech naturality.

» Demonstration of significantly better results in
SNR and speech intelligibility than conventional
and deep learning based baselines on the CHiME-4
noisy speech corpus, using real world noise.

2

The rest of this paper is organized as follows. Section 2
provides related work concerning noise cancellation in
hearing aids as well as reinforcement learning applied
to speech processing. Section 3 describes the suggested
structure of the RL based ANC, the stages of feature
extraction, RL model design, and signal reconstruction.
Section 4 outlines the experimental environment and
data as well as scoring. Section 5 presents and describes
the results. Lastly, Section 6 provides the end of the
paper, as well as research directions to be followed
Figure 1.

vironmental Audio l i
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Fig. 1: Block diagram of the proposed RL-based adap-
tive noise cancellation (ANC) framework for smart
hearing aids.

RELATED WORK

Traditional one-channel improvement. Much of early
noise suppression in hearing aids was based on spectral
subtraction and MMSE spectral amplitude estimation.
Spectral subtraction is fast and low latency, but musical
noise tends to arise in non-stationary conditions.!" The
performance of MMSE-STSA degrades in cases where
noise statistics change quickly or the estimation of
SNR is poor; however, MMSE-STSA can be beneficial in
enhancing the perceptual quality, with early estimates
of its short- time spectral amplitude based on Gaussian
assumptions.? Adaptive filtering-LMS and extensions-
provide online update of coefficients, fixed step-size/
forgetting factor trade-offs restrict tracking of fast
acoustic variation typical of real scenes ( cafes, transit).
B 121 This sensitivity and these limits are recorded in
foundational speech-enhancement papers regulative
texts on speech-enhancement.

Hearing-aid beamforming and multchannel processing.
Microphone-array techniques (MVDR, GSC, binaural
beamforming) enhance SNR through spatial selectivity
and Interaural cue preservation and this would make
them appealing in the form factor of behind-the-ear.
Nevertheless, they require properly sounding voice
activity and steering vector estimation, which are
fragile in a dynamic scene and a moving talker.> '
Consequently, most powerful spatial filters usually
demand adaptive post-filters which have to be returned
under changing circumstances.
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Deep learning that is supervised. In DNN-based, denoising
is redefined as the mask/ratio estimation in TF domain
and can gain significantly compared to classical methods
at the same conditions.® 1 According to the surveys,
there are steady gains in PESQ/STOI in CNN/LSTM/TCN
families, although pitfalls are identified in generalizing
to unseen noises, and a large, labeled corpus is required.
® Complex-valued-based architectures (e.g. DCCRN)
improve phase modeling and robustness but most models
are trained offline and cannot adapt in-device, in real-
time to drifts in the noise distribution with a policy-
adaptation mechanism. Board-aware optimization in
VLSI'2 and in low-power Internet of Things!' designs
are increasingly considered key to embedding such
algorithms into portable devices with very tight energy
constraints.

Speech/audio reinforcement learning. RL samples
enhancement and spatial filtering as consecutive
decision-making problems whose rewards are functions
of intelligibility/quality. It has been demonstrated that
DQN-style agents could successfully and online adapt
beamformer parameter to enhance target speech
preservation even in the absence of any explicit tags.
®l The general DQN framework offers a sample-efficient
way of learning value functions with experience replay
and target networks which qualifies it as an embedded
implementation that has limited compute.[' Recent
context-aware optimization approaches of adaptive
filtering!"®! and of domain adaptive RFID-based beam-
steerable sensing solutions!' suggest they are central to
real-time implementations. Although evidence suggests
its effectiveness, the use of RL to real-time ANC in the
context of hearing-aid pipelines is under investigated:
existing literature is limited to beam steering or policy
learning offline, and few combine perceptually weighted
rewards, wearable constraints on hardware," and
delivering latencies of <1ms as demanded by hearing-
assistive devices.

Positioning and being new. In connection to these
strands, we integrate a DQN-based controller in a
hearing aid ANC chain running in real time. In contrast
with trained models, for which the supervised relation
to new environments necessitates re-learning, the
agent online tunes filter hyper-params to a reward
based on trade between objective SNR improvements
and perceptual quality. The policy tracks non-stationary
noise without manual re-tuning compared to fixed-
rate adaptive filters and beam-formers and provides a
pathway to personalized, and context-aware hearing
assistance.
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METHODOLOGY
System Overview

The proposed Adaptive Noise Cancellation (ANC)
framework on the basis of Reinforcement Learning
(RL) algorithm-based smart hearing aids should be
used in real time and adapt to environmentally varying
acoustics. The architecture consists of 4 main modules
that can be identified in the role that they play in signal
enhancement.

Acoustic Front-End

The user environment will send its raw audio signal to
the acoustic front-end which then prepares that signal
to be processed further. Spatial selectivity is achieved
with a dual microphone or multi microphone directional
array, in which the desired speech source is enhanced by
the array and sounds arising in undesired directions are
attenuated. The analog audio signal before conversion
may be passed through a preprocessing stage in which
existing high-frequency components are removed by an
anti-aliasing filter that prevents aliasing distortion during
the analog-to-digital conversion process performed via
the analog-to-digital converter (ADC). This results in the
digital signal being partitioned into short overlapping
frames and then converted to the frequency domain by
Short-Time Fourier Transform (STFT) resulting in a time
frequency representation that has both temporal and
spectral features, which are important in making the
techniques of noise speech separation effective when
operating in a dynamic environment.

Module Extraction Featuring

The feature extraction phase runs the STFT frames to
produce a reduced number of environmental descriptors
comprising the input of the RL agent state. These are Mel-
Frequency Cepstral Coefficients (MFCCs), which encode
perceptually salient spectral properties of speech in a
way that is consistent with human hearing; estimates of
Signal-to-Noise Ratio (SNR), which quantifies clarity of
the speech relative to background noise on a frame-by-
frame basis; and the Spectral Flatness Measure (SFM),
which distinguishes tone-like, speech-like signals, which
are relatively flat, and noise-like signals, which are
generally not. Combining these complementary features,
the system is used to build a context-sensitive state
representation that would allow the RL agent to make
accurate and adaptive filtering decisions that would be
relevant to the operative acoustic environment.

Adaptive Filter Controller based on RL

The main component of the system is Deep Q-Network
(DQN), which is the decision-making component that as
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a state input takes the features extracted on the current
audio frame. Once the network is generated based on
this state it produces an according action where it
decides on the finest ANC filter parameters like the filter
length, step size and spectral weighting factor which are
intended to fit the most prevailing acoustic circumstances
in the best way possible. The RL agent adapts an
adaptive policy to maximize a reward function, achieved
through consistent exposure to the environment that is
able to balance objective SNR enhancing with subjective
speech-perceptual quality. Such makes it possible to
adapt in real-time such that hearing aid can efficiently
track and suppress non-stationary noise sources without
offline retraining.

Signal Reconstruction

The last step is to use the achievement of the chosen filter
configuration to adequately minimize the noise effects at
the cost of maintaining utterance quality. Here, the filter
parameters selected are directly used in the frequency-
domain to suppress undesired noise signals. The Inverse
Short-Time Fourier Transform (iSTFT) is then applied in
order to go back to time domain. The output sound must
stay natural sounding and comfortable to listen to; this
is achieved by optional post-processing: smoothing, gain
control, and dynamic range compression, prior to the
improved audio being presented to the receiver of the

hearing aid Figure 2.
@

RL-Based Signal
Extraction Adaptive Filter Reconstrucio
DQON

Module Controller
> Flitering
MFCCs Decision Making -
SNR l iSTFT
Action

Selection
Spectral
Flatness

Acoustic Feature
Front-End

Post-
Processing

Output to

Receiver

(Filter Paraineters)

Fig. 2: Block Diagram of the Proposed RL-Based
Adaptive Noise Cancellation Framework for Smart
Hearing Aids

Reinforcement Learning Model

The cancellation of noise is modelled as a Markov Decision
Process (MDP) in which the RL agent is the interacting
agent with the acoustic environment at discrete time
steps to maximize noise cancellation. The main aspects
of this model are the following:

> State (S): State at step, the polls will end when
it changes. Contains characteristic features that
depict the present acoustic scene. Particularly,

>4 I

the state vector contains the instantaneous
Signal-to-Noise Ratio, Mel-Frequency Cepstral
Processing, Criterion Invariant  Cepstral
Coefficients, Sub-band (SB) (), and Short Time
Fourier Transform (STFT) () based features.The
Spectral Flatness Measure which was modelled
as (), or equivalently.

S.=[SNR ,MFCC_t,SpectralFlatness, ] (1)

All of these features would encode spectral and
perceptual properties of the input audio frame and thus
allow the RL agent to make informed choices, which
would depend on the real-time acoustic situation.

» Action (A): Action space involves discrete
choices of the parameters of the adaptive filter,
which include, among others, filter length, step
size and spectral weighting factor. The RL agent
selects an action at every step in time related
to a particular combination of filter settings to
use, which directly affects the dose of the noise
cancellation effects.

» Reward (R): The amount of reward signal
measures the effectiveness of the action that
has been selected by balancing objective and
perceptual gains. It can be viewed as a weighted
sum of enhancements in SNR, and perceptual
quality, which is computed by the Perceptual
Evaluation of Speech Quality (PESQ) metric:

R =axASNR+BxAPESQ @)

Where and the beta (,) are coefficients, moderating
the significance of signal definition and the perceptual
purer. Such a composite reward motivates the agent to
maximise a measure of noise reduction and maximise
naturalness.

» Policy: The policy is achieved by a Deep
Q-Network (DQN) which is a value-based RL
type of algorithm that approximates the optimal
action-value function determiningwith the deep
neural networks. Main parameters of recognition
and training of the DQN include:

> Input Layer: The dimensionality should be the
same as the dimension of the state vector (no of
extracted features).

» Hidden Layers: 256-neuron and 128-neuron fully
connected layers (with ReLU activation functions
on both to account nonlinear relationships
between the current state and action values).
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» Output Layer: The same number of neurons
as there are discrete actions; this is the
estimated Q-values of each of the possible filter
configurations.

» Learning Rate: It will be set to 0.0001 to have
stable and gradual updates during the training.

» Discount Frequency: It is set to 0.95 that
balances between long-term and immediate
reward through the optimization of long-term
policies.

» Replay Buffer Size: has a history of the
last 50,000 transitions to permit replay of
experience, thereby increasing sample efficiency
and correlation among successive data.

> Batch Size: 64 experiences are drawn randomly
without replacement in the batch size of the
replay buffer every training iteration so that
mini-batch gradient descent can be effectively
applied.

This novel set of rich state representation, discretized
adaptive actions, and perceptually motivated reward
allow the RL agent to learn the actual, real-time
adaptive filtering policy that achieves an effective
noise cancellation performance that self-optimizes
in transient acoustic conditions without ever needing
supervised labels or re-training Figure 3.

Reward
calculation

Experience
e e replay
RL agent —x
(DON)
State input

y
Y

Feature
extraction

Hidden layers

SNR :
MECC Applyﬁzg?ptave Experience
SFM replay
» Filter parameters A
Length
* Step size Reward

Calculation

Spectral weighting

Fig. 3: Reinforcement Learning Framework for
Adaptive Noise Cancellation

Procedure in Training

In the training of the Deep Q-Network (DQN) controller,
a process is adopted that should guide the agent to
learn the best policies of adaptive noise cancellation
by interacting with the acoustic environment. Steps
involved are as follows;
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Initialization:

Parameters of DQN such as network weights, replay
buffer, learning rate and hyperparameters are initialized
before training. This will form the basis of the learning
process of the agent.

Iterative Frame wise Processing:

To process every incoming audio frame the following
sequence is carried out:

» Feature Extraction (State): The front-end of the
audio is subjected to acoustical processing so as
to derive the current state which are the SNR,
MFCCs, spectral flatness features. Typing the
sounding space.

» Action Selection (Policy): The agent chooses an
action with 0 < 0 < 1 approach named (Policy) 0:
With an e-greedy policy, the agent chooses an
action. With probability where the agent either
explores, by taking a random action, or instead
exploiting the current knowledge, it picks the
action with the highest estimate of its Q-value.
This trade off aids in quality exploration and
exploitation in training.

> Filter Application: The selected action is related
to a certain set of adaptive filter parameters and
causes them to be applied to the audio frame in
order to perform noise cancellation.

» Reward Computation: The quality of the result
of the filtered audio is measured with the
objective measurement of improves Signal-to-
Noise Ratio (SNR), and the perceptual scores
based on objective measurement points with
the PESQ score. These measures are scaled
together to calculate the reward the expression
of which is the efficiency of the selected action
in improving the quality of speech.

» Experience Storage: The tuple and the ordered
input of a current state, action, reward, and next
state, (commonly referred to as experience), is
written in the replay buffer. This memory allows
experience replay, which stabilizes training by
de-correlating samples in time.

> Network Update: At regular intervals, some
random mini-batches of the previous experiences
are sampled out of the replay buffer and used to
train the DQN. On these sampled experiences,
the weights of the network are trained via
gradient descent to reduce the error between
the temporal differences, which makes the
policy of the agent better at each iteration.
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During repeated interaction and learning across a large
number of audio frames, the DQN agent revises its policy
step by step, so that, after several million frames,
effective adaptive noise cancellation is achieved,
that generalizes to different audio frames and noise
conditions that are varying and non- stationaryFigure
4. Such a process of training allows the hearing aid to
be usable in the real-time environment since the model
would routinely improve user experience without the
need to offline retrain.

Initializalion
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y
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Spectral weighting)
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\ J

!

( Reward Calculation )
R, = RSNR A PESQ
R:

4
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3

[ Sample Mini-batch
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Network Update
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Fig. 4: Training Procedure for the DQN-based
Adaptive Noise Cancellation System

EXPERIMENTAL SETUP

The proposed RL-based adaptive noise cancellation
framework was tested on the CHIiME-4 noisy speech
corpus, an extended noisy speech dataset that has been
commonly used as a standard testbed and is generally
considered as depicting highly degraded acoustic settings
occurring in realistic settings. This set of recordings
consists of multi-channel data mainly recorded in real
world environments with high non-stationary and Rich
noise: crowded cafes, busting buses and city-centers.
CHIiME-4 has such testbed capabilities because of the
diversity of noise types and time dynamics to validate
noise suppression algorithms that will be applicable in
real hearing aid usage. Audio effects were treated at a

o I

frame level and all the experiments were done in controls
so as to have replicability and similar representation in
the performance against each other.

Three proven noise cancellation techniques were chosen
as benchmarks to assess the performance of the proposed
method: Wiener Filter, a traditional statistical technique
which estimates the noise spectra and subtracts them
based on the signal and noise power of that noisy
speech; Spectral Subtraction which suppresses the
noise by subtracting an estimated noise spectrum of the
noisy speech spectra; and a Deep Speech Enhancement
(DSE) CNN model, the contemporary supervised deep
leave learned with large speech datasets to understand
denoising. The metrics applied to evaluate the
performance were Signal-to-Noise Ratio Improvement
(ASNR), which expresses the objective improvement in
signal-to-noise listening; Perceptual evaluation of speech
quality (PESQ), a verified and commonly used numerical
scale that can be used to characterize audio quality
as perceived by humans; and Short-Time objective
intelligibility (STOI) which is a measure of intelligibility of
speech in noise. These add-on measurements would offer
a full evaluation of objective noise reduction measures,
as well as the subsequent perceived improvements on
quality of speech offered by every technique.

Table 1. Experimental Setup Summary

Component Details
Dataset CHiME-4 noisy speech corpus — multi-
channel recordings from cafés, public
buses, and streets, with highly non-
stationary noise patterns.
Baselines 1. Wiener Filter — Statistical noise

power estimation.

2. Spectral Subtraction — Estimated
noise spectrum subtraction.

3. DSE-CNN — Deep speech
enhancement using CNN architecture.

ASNR: Signal-to-Noise Ratio
improvement (objective clarity).
PESQ: Perceptual Evaluation of
Speech Quality (audio quality).
STOI: Short-Time Objective
Intelligibility (speech intelligibility).

Evaluation Metrics

RESULTS AND DISCUSSION

Table 2 shows the results of relative performance of
the proposed RL-based adaptive noise cancellation
(ANC) framework in comparison with three baseline-
Wiener filtering, spectral subtraction, and deep speech
enhancement convolutional neural network (DSE-CNN).
The RL-based ANC outperformed in all measures (with an
average SNRgainof +4.7dB, aPESQratingof2.92, and STOI
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rating of 88.4%) across all of the metrics: 2-SNR, PESQ,
and STOI. By contrast, optimally-performing baseline,
DSE-CNN, gained +4.0 dB SNR improvement, 2.78 PESQ,
and 85.9% STOI. Compared to the new DSP algorithms,
their conventional counterparts, i.e., Wiener filtering
and spectral subtraction had significant performance
shortcomings, especially under conditions of hard-to-
break noise that included dealing with non-stationary
noise, respectively, reaching only SNR improvements
of +2.8 dB and +3.1 dB. These findings lead to the
clear indication that the mechanism of reinforcement
learning to perform parameter adjustment allows the
proposed system to outperform existing and classical
supervised approaches as well as modern state-of-the-
art approaches.

A major advantage of the suggested RL-based ANC is the
possibility of adapting to the changing noise situation in
real-time as filter parameters may be solved on the fly.
In contrast to fixed-parameter DSP methods, where it is
possible to assume (statically) about noise properties,
the RL agent checks the environment with the extracted
features (SNR, MFCCs, spectral flatness) and chooses the
best parameter settings using its learned policy. This
allows the system to provide good speech quality and
intelligibility in cases where noise profiles vary at high
rates like when we move to a noisy street after being
in a silent room. Comparing transversely, supervised
deep learning methods such as DSE-CNN despite the
effectiveness on such comparable training conditions are
more likely to have performance lapses when subjected
to noise inputs not in the training dataset Figure 5. The
flexibility of the RL framework thus has a vital robustness
benefit using real-world hearing aid.

Proposed RL-Based ANC

Wiener Filter

DSE-CNN

Spectral Subtraction

Fig. 5: Proportional contribution of ASNR
improvement across different noise cancellation
methods, highlighting the superior performance of
the proposed RL-based ANC framework.
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Nevertheless, there are practical considerations to
using RL-based ANC whose advantages amount to some
benefits. The training process, or the process of learning
how to best adjust filters to their environment can be
a computationally expensive, time-consuming process
and can be particularly prohibitive when learning from
scratch. This constraint may be solved by transferring
the first-stage of training to an intermediary device--a
smartphone or desktop computer--and then deploying
the compact, trained policy to the hearing aid hardware.
After deployment, the on-device inference has relatively
modest computational needs -- which makes it viable
on power-constrained embedded devices. Moreover, it
may be considered in the future to train using transfer
learning or meta-reinforcement learning to speed up the
adaptation on new users and environments, cutting the
time of training and introducing personalisation with no
degradation in real-time performance.

Table 2. Comparative performance of the proposed RL-
based adaptive noise cancellation (ANC) framework and
baseline methods in terms of ASNR, PESQ, and STOI.

Method ASNR (dB) PESQ STOI (%)
Wiener Filter 2.8 2.31 81.2
Spectral Subtraction 3.1 2.45 82.6
DSE-CNN 4.0 2.78 85.9
Proposed RL-Based ANC | 4.7 2.92 88.4
CONCLUSION

The proposed study shows a reinforcement learning-
based adaptive noise cancellation (ANC) model of
smart hearing aids, as a solution to the limitations
of the existing noise suppression algorithms in the
dynamic and non-stationary acoustics. Utilizing a Deep
Q-Network (DQN) to optimize filter parameters in real
time according to subjectively defined features of
acoustic relevance to intelligibility, the proposed system
was shown to offer significant gains in objective and
subjective quality ratings of speech downstream. An
experimental comparison of the CHIiME-4 noisy speech
database bore fruit in showing that the RL-based ANC
topped conventional DSP solution like Wiener filtering
or spectral subtraction and a deep speech enhancement
CNN, with an SNR gain of +4.7 dB, a PESQ score of 2.92
and a STOI score attainment of 88.4%. This outcome
affirms that the framework would be resistant to
different and unforeseeable noise patterns, which is
promising in next-generation hearing aids. The initial
training process is computationally intensive but can be
effectively addressed by offline training and lightweight
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ON-device inference that allows to deploy onto power-
restricted embedded systems. In future, we will combine

multi-microphone beamforming,

policy adaptation

accelerated by meta-learning and real user studies to
establish additional evidence on the effectiveness of the
proposed framework in individualized hearing support.
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