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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
Urban populations and industrial activities grow rapidly and result in increasingly 
dynamic and complex acoustic environments, which become a notable hindrance to 
effective environmental sound monitoring activities. Soundscape analysis is important 
in helping to characterize soundscapes, and these analyses have been used to 
detect, categorize and make findings on various noise pollution scenarios, emergency 
response, transportation, and intelligent city development. Conventional deep learning 
algorithms, especially convolutional neural networks (CNNs) and recurrent network 
architectures have had significant successes in acoustic scene classification (ASC) but 
are intrinsically unable to learn due to the inability to learn non-local dependencies and 
relational structures contained in the audio features. To overcome these constraints, 
this paper introduces a Graph Neural Network (GNN) based acoustic scene analysis 
system that present time--frequency representation of audio signals as graph-structured 
information where each node represents a segment of spectrum or time and where the 
edges describe the relationship defined by similarity between the nodes. This suggested 
GNN structure combines spectral graph convolution networks along with attention-
based pooling to attain efficient capture of local, as well as global contextual reliances, 
within city-based sounds. We perform intensive training on UrbanSound8K and SONYC-
UST datasets and include powerful data augmentation techniques allowance, including 
SpecAugment, Mixup, and adding noise, to allow generalization under low signal-to-
noise ratio (SNR) settings. Evaluation vis-a-vis powerful baselines, comprising of VGG-
like CNNs and CRNNs, along with spectrogram transformers, shows that our GNN-
based technique attains an absolute accuracy advantage of as much as 4.8%, and a 
steady elevation in F1-score and AUC measures. This framework is highly resistant to 
environmental noise, scalable to handle large volumes of data as well as adaptable to 
real-time deployments with IoT-enables applications hence a strong candidate in next 
generation urban acoustic monitoring environments. Potential future extensions involve 
multi-modal sensor fusion and self-supervised pretraining with the additional goal of 
generating more performance in the lower-resource context.

Author’s e-mail: kingdon.cc@upb.edu, kmsankarsathish@gmail.com

How to cite this article: Kingdon C C, Kumar M S. Graph Neural Network-Driven 
Acoustic Scene Analysis for Environmental and Urban Sound Monitoring. National Journal 
of Speech and Audio Processing, Vol. 1, No. 2, 2025 (pp. 27-33). 

Introduction
Rapid urbanization, fast growing population density, 
and variety of sources of man-made and natural sounds 
make urban soundscapes more and more complex. Such 
soundscapes have a broad scope of acoustic activity, which 
includes automotive traffic, construction equipment, 
factory activity, emergency alarms, human voice, animal 
vocalizations, and environmental sounds, like wind or 
rain. The correct labeling and analysis of these acoustic 
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scenes can be of high importance in many applications 
such as noise control in the environment, the application 
of regulations, accessibility of the population, city 
planning and the adoption of autonomous smart city 
structures.

Classification The aim of acoustic scene classification 
(ASC) is to automatically determine or recognize the 
context or situation in which an audio recording originated 
by classifying the recording in terms of its spectral and 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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temporal features. In the last decade, the progress in 
deep learning led to an increase in ASC research, the most 
successful of which have become convolutional neural 
networks (CNNs). CNN-based learning centers on the 
timefrequency representations ( e.g., Mel spectrogram 
or constantQtransform ) and uses convolutional filters 
to derive hierarchical representations. Being strong 
performers, CNNs have a default assumption of a grid 
structure in the input data that addresses localized 
receptive fields. The design constrains their capability 
to capture long term dependencies and non local 
relationship across the time frequency domain which 
are usually very important in differentiating acoustically 
similar but contextually different urban sound events.

In order to resolve these shortcomings, more recent 
research has been carried out to examine a range of 
new architectures capable of modelling relational 
dependencies in data. Graph Neural Networks (GNNs) 
have become a successful method to learn graph-
structured data; they can express complicated 
relationships between features. Audio processing: GNNs 
can be used to convert spectrogram-like representations 
(one or more frequency bins, a time frame, or localized 
patches) to a graph-based structure whose nodes 
represent various representations (e.g. bins, time 
frames, or local patches), and edges modalities (e.g. 
spectral similar, are close in time or co-occur). This type 
of graph-based representation then allows the learning 
model to pool information related to context not just 
in proximate nodes, but also in distantly separate and 
nonetheless relevant portions of the audio spectrum 
increasing robustness and discriminative power.

The presented research provides a new GNN-based 
acoustic scene analysis system that is aimed at being 
deployed to environmental and urban sounds monitoring. 
The strategy includes converting audio spectrograms 

into graph representations with preserved local and 
global relationships between features and processing 
such graphs with spectral and spatial graph convolution 
layers to represent the complex correlation structure 
of an urban soundscape. The framework integrates 
innovative data augmentation techniques and powerful 
graph learning methodologies that would ensure it 
achieves high classification accuracy even in unfavorable 
situations (i.e., when signal-to-noise ratios (SNRs) are 
low and when multiple sound sources overlap).

This work is driven by two factors: 1) to overcome the 
differences and drawbacks of traditional CNN-based ASC 
methods in model non-local dependencies; and 2) to 
build a scalable, robust to noise, and deployable system 
to real world urban sound monitoring applications. By 
conducting a broad spectrum of testing on benchmark 
datasets, in particular UrbanSound8K and SONYC-UST, 
the study establishes the inferiority of the traditional 
deep learning architectures to the GNN-based approach, 
the former likely to be potentially instrumental in 
furthering intelligent acoustical monitoring applications 
in the setting of the modern city.

Related Work

The classification of acoustic scenes (ASC) has become 
an important area of study by the audio signal processing 
community because acoustic scene classification finds 
extensive use in environmental and context-aware 
computing, and smart city solutions. In this section, 
existing literature is assessed in terms of the two major 
domains that may be of importance to the proposed 
study, the use of traditional ASC systems based on 
convolutional and recurrent architectures, and the 
follow-up use of graph neural networks (GNNs) in audio-
based applications.

Fig. 1: Overview of the Proposed Graph Neural Network-Driven Acoustic Scene Classification Framework for 
Environmental and Urban Sound Monitoring
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Acoustic scene classification

First-generation ASC systems were based on hand-coded 
Mel-frequency cepstral coefficients (MFCCs, spectral 
centroid, zero-crossing rate, and statistical descriptors, 
and then applied traditional classifiers such as support 
vector machines (SVMs) or Gaussian mixture models 
(GMMs).[1] These methods were computationally efficient, 
but with poor generalization to urban real-world settings 
that were rich with heterogeneity and noise.

The introduction of deep learning changed the focus of 
ASC research to one of feature learning performed via 
data, especially convolutional neural networks (CNNs). 
Indicatively, Hershey et al.[2] showed that CNNs that are 
trained on a large-scale audio dataset, in this case AudioSet, 
could deliver state-of-the-art performance on a variety 
of sound classification tasks. Equally, Valenti et al.[3]  
used VGG-like CNN architectures to classify urban 
sounds using log-Mel spectrograms, achieving much 
higher decision accuracies than those of handcrafted 
feature-based systems. It has also been proposed to use 
recurrent neural networks (RNNs), in particular including 
long short-term memory (LSTM) units, to model temporal 
dependencies in ASC.[4] CRNNs commonly called CNNRNN 
hybrids have revealed that they are an effective method 
to capture both spectral and temporal cues.[5, 15]

Nevertheless, CNN and RNN architectures are by design 
susceptible to processing spectral data as grid-like data, 
thus having a reduced capacity of learning non-local and 
irregular dependencies across frequency bins or time 
steps. Such a constraint can be more visible in acoustic 
scenes of urban environments, where the remote 
parts of the time-frequency plane can have semantic 
dependencies with each other because of co-occurring 
or coinciding aural events. Transformers are said to 
help tackle such long-range dependencies,[6, 14] yet are 
prohibitively cost-demanding and data-consuming when 
aiming at urban monitoring tools with a low-power 
footprint.

Graph Neural Networks in Audio

The graph neural networks (GNNs) approach has 
emerged as a potential represented method of dealing 
with non-Euclidean data structures: complex relational 
patterns can be modeled, in a setting where grid-based 
architectures cannot, which opens new frontiers in big data 
analysis.[7, 13] GNNs have been studied in a few different 
contexts including audio processing. Zhang et al.[8]  
offered the approach to Music Genre Classification as a 
GNN where Spectrogram was translated into the graph 
with frequency bins, as nodes, and similarity-based 
connections. Li et al.[9, 11] used GNNs in speech emotion 

recognition tasks showing greater noise-resistance 
through the use of graph attention in order to only target 
significantly relevant spectra.

Doubling down on this area, Stowell et al.[10, 12] applied 
GNNs to the problem of spectrogram-to-bird species 
classification, showing qualities substantially better 
than a conventional CNN baseline in situations of sparse 
or imbalanced data. All of these works emphasize the 
properties of GNNs to extract inter-dependencies across 
the whole graph and to boost classification accuracy.

Although this has improved, little has been done to apply 
GNNs to big-city acoustic monitoring. Prior works are 
often limited to controlled conditions or restricted data 
sets; little work has been done to real-world deployment, 
i.e., low signal-to-noise ratio (SNR), heterogeneous 
recording environments, and computer resource 
limitation in embedded platforms. Furthermore, the 
former GNN-based solutions in audio have probably 
been tested on the audio data related to music analysis 
or speech processing that cannot be compared to the 
gap in the environment and urban sounds monitoring 
applications.

This gap is filled by the proposed study since an Urban 
Sound Monitoring-specific GNN-based acoustic scene 
analysis framework will be developed as part of this 
study. The work differs with the earlier works in that it is 
not solely useful to music or speech recognition, it uses 
high-performance graph creation algorithms to handle 
noisy and diverse environments, and handles new, large 
benchmarks such as UrbanSound8K, and SONYC-UST. 
The study also shows that GNNs are practical in large-
scale urban acoustic surveillance tasks as GNN achieves 
significantly higher accuracy when direct comparisons 
are made among the CNN, CRNN, and transformer-based 
baselines under different noise levels.

Proposed Methodology

Feature Extraction

The signals fed to the input are high fidelity and are 
sampled at 44.1 kHz to fully provide high-quality 
representation of both the environmental and urban 
soundscapes. All audio segments are converted to 
a log-Mel spectrogram by means of a short-time 
Fourier transform (STFT) with a window length of 40 
ms and fiftieth secondary overlap which can yield 
a timefrequency representation, representing both 
spectral data and duty dynamic. The log-Mel scaling 
lays stress on perceptually relevant bands of frequency 
that allows the classifier to pay attention to significant 
acoustic procedures.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Graph Construction

Log-Mel-spectrogram is a plot-like structure with nodes 
being either the frequency bins or frames of the analysis 
depending on the analysis setting. Following a k-nearest 
neighbor (k-NN) algorithm in the spectral domain, 
cosine similarity is used as the metric of the edge 
weight to measure the extent of similarity of nodes. The 
transformation represents inherent connections existing 
at the time frequency representation, so the graph 
model can represent local and non-local connections in 
the data.

GNN Architecture

The graph built is then inputted into the GNN model, and 
the model starts with an input layer that receives node 
features and relationships. The node embeddings are 
learned through using multiple graph convolution layers 
that aggregate both the feature information of neighbors 
and distant neighbors. These node embeddings are 
pooled globally into a set of node-level representations 
by a global mean pooling layer that is then fed into fully 
connected layers to arrive at a final classification into 
fixed acoustic scene categories. The architecture has 
spatial and spectral dependence capturing capabilities 
with computational efficiency.

Training Procedure

Cross-entropy is the loss that is used in training the model 
to maximize the classification accuracy. Adam optimizer 
which is at a learning rate 0.001 is used to ensure 
stable convergence. In a bid to enhance robustness and 
generalization, the augmentation methods like Mixup, 
SpecAugment, and random noise injection are used on the 
input audio signals. Simulating a variety of urban acoustic 
conditions is enabled by these augmentations so the 
model can be used effectively in real-world deployments.

Experimental Setup
Datasets

The specified framework is tested on the two benchmark 
datasets that have been extensively applied in the 
acoustic scene classification and urban sound monitoring 
studies.

• UrbanSound8K: It consists of 8732 labeled sound 
excerpts of a maximum of 4 seconds duration, 
divided into 10 classes of urban sounds: air 
conditioner, car horn, children playing, dog bark, 
drilling, engine idling, gunshot, jackhammer, 
siren and street music. It is a cross-validation 
dataset that is divided into 10 stratified folds 

to have each equally represented in the folded. 
Sample format is 44.1 kHz on all audio files 
stored in 16-bit PCM WAV format.

• SONYC-UST: The Sounds of New York City - Urban 
Sound Tagging dataset is created by the real-
world sound recordings executed by a network of 
environmental sensors installed in New York City. 
Recordings are labeled with several annotations 
of different noise sources such as traffic, human 
activities, construction. The clips are 10 seconds 
long, are supplied with multi-label annotations 
that have been checked using crowdsourcing and 
verification of the expert.

The same process of preprocessing the two datasets was 
used which involves the same feature extraction pipeline 
mentioned in Section 3.1, such as log-Mel spectrogram 
computation, resampling, and normalization.

Fig. 2: Class distribution for UrbanSound8K and 
SONYC-UST datasets.

Baselines

The results of the suggested GNN-based acoustic scene 
classification (GNN-ASC) framework are benchmarked to 
three powerful baselines:

• CNN (VGG-like): Deep convolutional neural 
network, made up of stacked convolutional and 
pooling layers that took its inspiration on VGG 
architecture and was optimized on spectrogram 
classification.

CRNN: A family of convolutional recurrent neural 
networks using convolutional neural network layers to 
extract spatial features and gated recurrent units (GRUs) 
to model time series of audio data.

• Spectrogram Transformer: A modification 
of transformer architecture to consume 2D 
spectrograms behaviour modelling features 
and using self-attention to capture long-range 
timefrequency dependencies.

Such baselines have been introduced according to the 
usual hyperparameter settings taken out of literature to 
guarantee their reasonable comparison.
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Fig. 3: Architectural pipelines for CNN, CRNN, and 
Spectrogram Transformer models.

Evaluation Metrics

The quantitative values describing the model performance 
are expressed through three evaluation metrics those 
are accuracy, reflecting the ratio of the number of 
correctly predicted samples to the total number of test 
samples and is most applicable to balanced collections; 
F1-score as the harmonic mean of precision and recall, 
as a balance measure of performance in situations with 
potential class imbalance, as well as area under the 
receiver operating characteristic curve (AUC) intended to 
assess the effectiveness of diagnostic decision threshold 
at different levels of severity. In a given scenario, it may 
become especially useful with multi-label classification 
(e.g., those on the SONY Each of the experiments was 
done on a 5-fold cross-validation and the average values 
of such metrics across different folds are provided to 
be on a safe and unbiased estimation of the models 
performance.

Fig. 4: Evaluation metric definitions and computation 
flow for Accuracy, F1-score, and AUC.

Results and Discussion
Quantitative Performance Comparison

The proposed Graph Neural Network-based Acoustic 
Scene Classification (GNN-ASC) framework performance 
was compared to three powerful baselines: CNN 
(VGG -like), CRNN and Spectrogram Transformer.  

The comparison results presented in Table 1 show 
values on accuracy, F1-score, and AUC. The presented 
GNN-ASC had a 90.9 accuracy rate, 89.7 F1-score, and 
94.6 AUC which was higher than all the baselines in 
all measurements. The accuracy gain (over the best-
performing baseline, Transformer) was by 4.8 percent, 
which demonstrates the benefit of graph-property 
feature modelling over and against grid-based or the 
self-attention methods in performing this task.

Robustness in Noisy Environments

To test model robustness, in tandem with clean test 
conditions, experimentation was completed under the 
different signal to noise ratios (SNRs). The GNN-ASC 
repeatedly showed improved classification accuracy in 
low- SNR regimes over baseline systems, with average 
errors of 6-8% lower accuracy at low- SNR with the 
0-5 dB range. Such enhancement is explained by the 
fact that the GNN model has exploited the relational 
dependencies between non-adjacent time-frequency 
components to perform more effective noise-resistant 
feature aggregation.

Class-wise Performance Analysis

Confusion matrix analysis showed that the GNN-ASC also 
provided significant misclassification reduction between 
acoustically similar and overlapping categories of sound, 
as well as between categories which are acoustically 
dissimilar. Two examples are between “engine idling” 
and “air conditioner” which were reduced significantly 
and between “drilling” and “jackhammer” which was 
reduced significantly. This is an indication that the graph-
based representation obtains discriminative patterns 
that tend to be discarded in either convolutional-only 
models or transformer-based methods. Moreover, the 
model had a greater sensitivity to short-lived signals like 
car honking, firearm shooting, etc, which contain sparse 
but unique spectra.

Discussion of Findings

The robust characteristics of GNN-ASC as a monitoring 
tool with consistently strong and fairly stable 
performance across all metrics and all test conditions 
suggests that GNN-ASC offers the right solution to these 
challenges and may be applied successfully to real-
world urban sound monitoring. Using spectral graph 
convolution not only enables the model to utilize global 
contextual dependencies that cannot be achieved 
using traditional CNN architectures but also enables 
harnessing the local contextual dependencies The best 
use of local contextual dependencies with traditional 
Transformer architectures is heavily computer intensive. 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Also, the noise tolerance and flexibility in the presence 
of overlapping classes suggests the proposed framework 
could be effectively used in IoT-powered smart city 
infrastructure, environmental monitoring data centers 
and automated noise control systems. 

Table 1: Performance Comparison of Baseline Models and 
Proposed GNN-ASC

Model
Accuracy 

(%)
F1-score 

(%) AUC (%)

CNN (VGG-like) 84.2 82.9 90.1

CRNN 85.4 84.7 91.3

Transformer 86.1 85.2 91.9

Proposed GNN-ASC 90.9 89.7 94.6

Fig. 5(a): Grouped Bar Chart Comparing Accuracy,  
F1-score, and AUC Across CNN, CRNN, Transformer, 

and Proposed GNN-ASC Models

Fig. 5(b): Confusion Matrix of the Proposed GNN-ASC 
Model Highlighting Class-Wise Prediction Performance 

and Improvements in Overlapping Acoustic Scenes

Conclusion

The research introduced a Graph Neural Network-
Driven Acoustic Scene Classification (GNN-ASC) system, 
which could serve to improve environmental and 
urban situation audio tracking. With the advantage of 
featuring audio relative to a graph representation of 
the characteristics used with the inclusion of contextual 
relationships between acoustic events, the proposed 
technique provided significant improvements when 
compared to the classic CNN and CRNN and transformed 
baselines. Accuracy, F1-score, and AUC increased overall 
in experimental results over the benchmark datasets, 
and, as the result of the confusion matrix analysis, 
a significant improvement in the classification of 
overlapping scenes and acoustically similar scenes was 
observed. Durability of the framework against complex 
and noisy conditions in an urban setting qualifies the 
framework as a prospective solution in scalable and 
real-time implementation in smart city infrastructure, 
public safety systems, and environmental monitoring 
infrastructures. Multi-modal extensions to include visual 
and geospatial data, lightweight GNN architectures on 
edge devices, and self-supervised pretraining will form 
future work to continue advancing generalization on the 
low resources front.

Future work

Based on the encouraging performance of the proposed 
GNN-ASC framework, one can consider various avenues 
to advance its performance and extend its scope. The 
multi-modal data integration, i.e., acoustics plus visual 
input, geospatial context or sensory information collected 
by IoT sensors is one such opportunity to enhance 
the context-sensitive classification under challenging 
urban settings. Lightweight and edge-optimized GNN 
architectures can be developed using different methods, 
such as pruning, quantization, or knowledge distillation 
and Deployed on the low-power embedded devices in 
a real-time workflow. Incorporation of self-supervised 
and semi-supervised learning to enable the model to use 
vast amounts of unlabelled audio in the environment 
will also help its generalization, especially regarding 
low-resource or underrepresented sound types. Domain 
adaptation and transfer learning technology can help 
accelerate new deployment in geographic areas or 
application areas with no re-training effort. Moreover, 
the employment of dynamic graph learning strategies 
will allow the system to realize the changing relations 
in streaming data between acoustic events. Lastly, 
resilience to extreme noise conditions may be augmented 
through adding state-of-art denoising techniques and 
adversarial teaching antiques, so performance is assured 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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under extreme noise levels or in highly degraded or 
corrupted audio settings. These extensions are to future-
proof the proposed system into being more scalable, 
accommodative, and resilient to next generation sound 
monitoring applications in smart cities.
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