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ABSTRACT

Urban populations and industrial activities grow rapidly and result in increasingly
dynamic and complex acoustic environments, which become a notable hindrance to
effective environmental sound monitoring activities. Soundscape analysis is important
in helping to characterize soundscapes, and these analyses have been used to
detect, categorize and make findings on various noise pollution scenarios, emergency
response, transportation, and intelligent city development. Conventional deep learning
algorithms, especially convolutional neural networks (CNNs) and recurrent network
architectures have had significant successes in acoustic scene classification (ASC) but
are intrinsically unable to learn due to the inability to learn non-local dependencies and
relational structures contained in the audio features. To overcome these constraints,
this paper introduces a Graph Neural Network (GNN) based acoustic scene analysis
system that present time--frequency representation of audio signals as graph-structured
information where each node represents a segment of spectrum or time and where the
edges describe the relationship defined by similarity between the nodes. This suggested
GNN structure combines spectral graph convolution networks along with attention-
based pooling to attain efficient capture of local, as well as global contextual reliances,
within city-based sounds. We perform intensive training on UrbanSound8K and SONYC-
UST datasets and include powerful data augmentation techniques allowance, including
SpecAugment, Mixup, and adding noise, to allow generalization under low signal-to-
noise ratio (SNR) settings. Evaluation vis-a-vis powerful baselines, comprising of VGG-
like CNNs and CRNNs, along with spectrogram transformers, shows that our GNN-
based technique attains an absolute accuracy advantage of as much as 4.8%, and a
steady elevation in F1-score and AUC measures. This framework is highly resistant to
environmental noise, scalable to handle large volumes of data as well as adaptable to
real-time deployments with loT-enables applications hence a strong candidate in next
generation urban acoustic monitoring environments. Potential future extensions involve
multi-modal sensor fusion and self-supervised pretraining with the additional goal of
generating more performance in the lower-resource context.
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INTRODUCTION

Rapid urbanization, fast growing population density,
and variety of sources of man-made and natural sounds
make urban soundscapes more and more complex. Such
soundscapes have a broad scope of acoustic activity, which
includes automotive traffic, construction equipment,
factory activity, emergency alarms, human voice, animal
vocalizations, and environmental sounds, like wind or
rain. The correct labeling and analysis of these acoustic
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scenes can be of high importance in many applications
such as noise control in the environment, the application
of regulations, accessibility of the population, city
planning and the adoption of autonomous smart city
structures.

Classification The aim of acoustic scene classification
(ASC) is to automatically determine or recognize the
context orsituationinwhich an audiorecordingoriginated
by classifying the recording in terms of its spectral and
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Fig. 1: Overview of the Proposed Graph Neural Network-Driven Acoustic Scene Classification Framework for
Environmental and Urban Sound Monitoring

temporal features. In the last decade, the progress in
deep learning led to an increase in ASC research, the most
successful of which have become convolutional neural
networks (CNNs). CNN-based learning centers on the
timefrequency representations ( e.g., Mel spectrogram
or constantQtransform ) and uses convolutional filters
to derive hierarchical representations. Being strong
performers, CNNs have a default assumption of a grid
structure in the input data that addresses localized
receptive fields. The design constrains their capability
to capture long term dependencies and non local
relationship across the time frequency domain which
are usually very important in differentiating acoustically
similar but contextually different urban sound events.

In order to resolve these shortcomings, more recent
research has been carried out to examine a range of
new architectures capable of modelling relational
dependencies in data. Graph Neural Networks (GNNs)
have become a successful method to learn graph-
structured data; they can express complicated
relationships between features. Audio processing: GNNs
can be used to convert spectrogram-like representations
(one or more frequency bins, a time frame, or localized
patches) to a graph-based structure whose nodes
represent various representations (e.g. bins, time
frames, or local patches), and edges modalities (e.g.
spectral similar, are close in time or co-occur). This type
of graph-based representation then allows the learning
model to pool information related to context not just
in proximate nodes, but also in distantly separate and
nonetheless relevant portions of the audio spectrum
increasing robustness and discriminative power.

The presented research provides a new GNN-based
acoustic scene analysis system that is aimed at being
deployed to environmental and urban sounds monitoring.
The strategy includes converting audio spectrograms
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into graph representations with preserved local and
global relationships between features and processing
such graphs with spectral and spatial graph convolution
layers to represent the complex correlation structure
of an urban soundscape. The framework integrates
innovative data augmentation techniques and powerful
graph learning methodologies that would ensure it
achieves high classification accuracy even in unfavorable
situations (i.e., when signal-to-noise ratios (SNRs) are
low and when multiple sound sources overlap).

This work is driven by two factors: 1) to overcome the
differences and drawbacks of traditional CNN-based ASC
methods in model non-local dependencies; and 2) to
build a scalable, robust to noise, and deployable system
to real world urban sound monitoring applications. By
conducting a broad spectrum of testing on benchmark
datasets, in particular UrbanSound8K and SONYC-UST,
the study establishes the inferiority of the traditional
deep learning architectures to the GNN-based approach,
the former likely to be potentially instrumental in
furthering intelligent acoustical monitoring applications
in the setting of the modern city.

RELATED WORK

The classification of acoustic scenes (ASC) has become
an important area of study by the audio signal processing
community because acoustic scene classification finds
extensive use in environmental and context-aware
computing, and smart city solutions. In this section,
existing literature is assessed in terms of the two major
domains that may be of importance to the proposed
study, the use of traditional ASC systems based on
convolutional and recurrent architectures, and the
follow-up use of graph neural networks (GNNs) in audio-
based applications.
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Acoustic scene classification

First-generation ASC systems were based on hand-coded
Mel-frequency cepstral coefficients (MFCCs, spectral
centroid, zero-crossing rate, and statistical descriptors,
and then applied traditional classifiers such as support
vector machines (SVMs) or Gaussian mixture models
(GMMs)." These methods were computationally efficient,
but with poor generalization to urban real-world settings
that were rich with heterogeneity and noise.

The introduction of deep learning changed the focus of
ASC research to one of feature learning performed via
data, especially convolutional neural networks (CNNs).
Indicatively, Hershey et al.”! showed that CNNs that are
trainedonalarge-scaleaudiodataset, inthiscaseAudioSet,
could deliver state-of-the-art performance on a variety
of sound classification tasks. Equally, Valenti et al.()
used VGG-like CNN architectures to classify urban
sounds using log-Mel spectrograms, achieving much
higher decision accuracies than those of handcrafted
feature-based systems. It has also been proposed to use
recurrent neural networks (RNNs), in particular including
long short-term memory (LSTM) units, to model temporal
dependencies in ASC. CRNNs commonly called CNNRNN
hybrids have revealed that they are an effective method
to capture both spectral and temporal cues.? '

Nevertheless, CNN and RNN architectures are by design
susceptible to processing spectral data as grid-like data,
thus having a reduced capacity of learning non-local and
irregular dependencies across frequency bins or time
steps. Such a constraint can be more visible in acoustic
scenes of urban environments, where the remote
parts of the time-frequency plane can have semantic
dependencies with each other because of co-occurring
or coinciding aural events. Transformers are said to
help tackle such long-range dependencies,® ' yet are
prohibitively cost-demanding and data-consuming when
aiming at urban monitoring tools with a low-power
footprint.

Graph Neural Networks in Audio

The graph neural networks (GNNs) approach has
emerged as a potential represented method of dealing
with non-Euclidean data structures: complex relational
patterns can be modeled, in a setting where grid-based
architecturescannot, whichopensnewfrontiersinbigdata
analysis.”> 1 GNNs have been studied in a few different
contexts including audio processing. Zhang et al.®
offered the approach to Music Genre Classification as a
GNN where Spectrogram was translated into the graph
with frequency bins, as nodes, and similarity-based
connections. Li et al.® " used GNNs in speech emotion
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recognition tasks showing greater noise-resistance
through the use of graph attention in order to only target
significantly relevant spectra.

Doubling down on this area, Stowell et al.l'> "2 applied
GNNs to the problem of spectrogram-to-bird species
classification, showing qualities substantially better
than a conventional CNN baseline in situations of sparse
or imbalanced data. All of these works emphasize the
properties of GNNs to extract inter-dependencies across
the whole graph and to boost classification accuracy.

Although this has improved, little has been done to apply
GNNs to big-city acoustic monitoring. Prior works are
often limited to controlled conditions or restricted data
sets; little work has been done to real-world deployment,
i.e., low signal-to-noise ratio (SNR), heterogeneous
recording environments, and computer resource
limitation in embedded platforms. Furthermore, the
former GNN-based solutions in audio have probably
been tested on the audio data related to music analysis
or speech processing that cannot be compared to the
gap in the environment and urban sounds monitoring
applications.

This gap is filled by the proposed study since an Urban
Sound Monitoring-specific GNN-based acoustic scene
analysis framework will be developed as part of this
study. The work differs with the earlier works in that it is
not solely useful to music or speech recognition, it uses
high-performance graph creation algorithms to handle
noisy and diverse environments, and handles new, large
benchmarks such as UrbanSound8K, and SONYC-UST.
The study also shows that GNNs are practical in large-
scale urban acoustic surveillance tasks as GNN achieves
significantly higher accuracy when direct comparisons
are made among the CNN, CRNN, and transformer-based
baselines under different noise levels.

PROPOSED METHODOLOGY
Feature Extraction

The signals fed to the input are high fidelity and are
sampled at 44.1 kHz to fully provide high-quality
representation of both the environmental and urban
soundscapes. All audio segments are converted to
a log-Mel spectrogram by means of a short-time
Fourier transform (STFT) with a window length of 40
ms and fiftieth secondary overlap which can yield
a timefrequency representation, representing both
spectral data and duty dynamic. The log-Mel scaling
lays stress on perceptually relevant bands of frequency
that allows the classifier to pay attention to significant
acoustic procedures.

29



C.C. Kingdon and M. Sathish Kumar : Graph Neural Network-Driven Acoustic Scene Analysis for
Environmental and Urban Sound Monitoring

Graph Construction

Log-Mel-spectrogram is a plot-like structure with nodes
being either the frequency bins or frames of the analysis
depending on the analysis setting. Following a k-nearest
neighbor (k-NN) algorithm in the spectral domain,
cosine similarity is used as the metric of the edge
weight to measure the extent of similarity of nodes. The
transformation represents inherent connections existing
at the time frequency representation, so the graph
model can represent local and non-local connections in
the data.

GNN Architecture

The graph built is then inputted into the GNN model, and
the model starts with an input layer that receives node
features and relationships. The node embeddings are
learned through using multiple graph convolution layers
that aggregate both the feature information of neighbors
and distant neighbors. These node embeddings are
pooled globally into a set of node-level representations
by a global mean pooling layer that is then fed into fully
connected layers to arrive at a final classification into
fixed acoustic scene categories. The architecture has
spatial and spectral dependence capturing capabilities
with computational efficiency.

Training Procedure

Cross-entropy is the loss that is used in training the model
to maximize the classification accuracy. Adam optimizer
which is at a learning rate 0.001 is used to ensure
stable convergence. In a bid to enhance robustness and
generalization, the augmentation methods like Mixup,
SpecAugment, and random noise injection are used on the
input audio signals. Simulating a variety of urban acoustic
conditions is enabled by these augmentations so the
model can be used effectively in real-world deployments.

EXPERIMENTAL SETUP
Datasets

The specified framework is tested on the two benchmark
datasets that have been extensively applied in the
acoustic scene classification and urban sound monitoring
studies.

o UrbanSound8K: It consists of 8732 labeled sound
excerpts of a maximum of 4 seconds duration,
divided into 10 classes of urban sounds: air
conditioner, car horn, children playing, dog bark,
drilling, engine idling, gunshot, jackhammer,
siren and street music. It is a cross-validation
dataset that is divided into 10 stratified folds
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to have each equally represented in the folded.
Sample format is 44.1 kHz on all audio files
stored in 16-bit PCM WAV format.

e SONYC-UST: The Sounds of New York City - Urban
Sound Tagging dataset is created by the real-
world sound recordings executed by a network of
environmental sensors installed in New York City.
Recordings are labeled with several annotations
of different noise sources such as traffic, human
activities, construction. The clips are 10 seconds
long, are supplied with multi-label annotations
that have been checked using crowdsourcing and
verification of the expert.

The same process of preprocessing the two datasets was
used which involves the same feature extraction pipeline
mentioned in Section 3.1, such as log-Mel spectrogram
computation, resampling, and normalization.

UrbanSound8K - Class Distribution SONYC-UST - Class Distribution

Children Playing Music
Dog Bark
Drilling

Engine Idling

Gunshot

200 400 600 800 1000
Number of Samples

Fig. 2: Class distribution for UrbanSound8K and
SONYC-UST datasets.
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Baselines

The results of the suggested GNN-based acoustic scene
classification (GNN-ASC) framework are benchmarked to
three powerful baselines:

e CNN (VGG-like): Deep convolutional neural
network, made up of stacked convolutional and
pooling layers that took its inspiration on VGG
architecture and was optimized on spectrogram
classification.

CRNN: A family of convolutional recurrent neural
networks using convolutional neural network layers to
extract spatial features and gated recurrent units (GRUs)
to model time series of audio data.

e Spectrogram Transformer: A modification
of transformer architecture to consume 2D
spectrograms behaviour modelling features
and using self-attention to capture long-range
timefrequency dependencies.

Such baselines have been introduced according to the
usual hyperparameter settings taken out of literature to
guarantee their reasonable comparison.
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Fig. 3: Architectural pipelines for CNN, CRNN, and
Spectrogram Transformer models.

Evaluation Metrics

The quantitative values describing the model performance
are expressed through three evaluation metrics those
are accuracy, reflecting the ratio of the number of
correctly predicted samples to the total number of test
samples and is most applicable to balanced collections;
F1-score as the harmonic mean of precision and recall,
as a balance measure of performance in situations with
potential class imbalance, as well as area under the
receiver operating characteristic curve (AUC) intended to
assess the effectiveness of diagnostic decision threshold
at different levels of severity. In a given scenario, it may
become especially useful with multi-label classification
(e.g., those on the SONY Each of the experiments was
done on a 5-fold cross-validation and the average values
of such metrics across different folds are provided to
be on a safe and unbiased estimation of the models
performance.
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Fig. 4: Evaluation metric definitions and computation
flow for Accuracy, F1-score, and AUC.

RESULTS AND DISCUSSION

Quantitative Performance Comparison

The proposed Graph Neural Network-based Acoustic
Scene Classification (GNN-ASC) framework performance
was compared to three powerful baselines: CNN
(VGG -like), CRNN and Spectrogram Transformer.
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The comparison results presented in Table 1 show
values on accuracy, F1-score, and AUC. The presented
GNN-ASC had a 90.9 accuracy rate, 89.7 F1-score, and
94.6 AUC which was higher than all the baselines in
all measurements. The accuracy gain (over the best-
performing baseline, Transformer) was by 4.8 percent,
which demonstrates the benefit of graph-property
feature modelling over and against grid-based or the
self-attention methods in performing this task.

Robustness in Noisy Environments

To test model robustness, in tandem with clean test
conditions, experimentation was completed under the
different signal to noise ratios (SNRs). The GNN-ASC
repeatedly showed improved classification accuracy in
low- SNR regimes over baseline systems, with average
errors of 6-8% lower accuracy at low- SNR with the
0-5 dB range. Such enhancement is explained by the
fact that the GNN model has exploited the relational
dependencies between non-adjacent time-frequency
components to perform more effective noise-resistant
feature aggregation.

Class-wise Performance Analysis

Confusion matrix analysis showed that the GNN-ASC also
provided significant misclassification reduction between
acoustically similar and overlapping categories of sound,
as well as between categories which are acoustically
dissimilar. Two examples are between “engine idling”
and “air conditioner” which were reduced significantly
and between “drilling” and “jackhammer” which was
reduced significantly. This is an indication that the graph-
based representation obtains discriminative patterns
that tend to be discarded in either convolutional-only
models or transformer-based methods. Moreover, the
model had a greater sensitivity to short-lived signals like
car honking, firearm shooting, etc, which contain sparse
but unique spectra.

Discussion of Findings

The robust characteristics of GNN-ASC as a monitoring
tool with consistently strong and fairly stable
performance across all metrics and all test conditions
suggests that GNN-ASC offers the right solution to these
challenges and may be applied successfully to real-
world urban sound monitoring. Using spectral graph
convolution not only enables the model to utilize global
contextual dependencies that cannot be achieved
using traditional CNN architectures but also enables
harnessing the local contextual dependencies The best
use of local contextual dependencies with traditional
Transformer architectures is heavily computer intensive.
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Also, the noise tolerance and flexibility in the presence
of overlapping classes suggests the proposed framework
could be effectively used in loT-powered smart city
infrastructure, environmental monitoring data centers
and automated noise control systems.

Table 1: Performance Comparison of Baseline Models and
Proposed GNN-ASC

Accuracy F1-score
Model (%) (%) AUC (%)

CNN (VGG-Llike) 84.2 82.9 90.1
CRNN 85.4 84.7 91.3
Transformer 86.1 85.2 91.9
Proposed GNN-ASC | 90.9 89.7 94.6

100 N Accurac 94.6

Fl-scorey 90.1 91.3 91.9 90.9 gg7
- AUC 85.4 g4.7 86.1 g5
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g 40
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Fig. 5(a): Grouped Bar Chart Comparing Accuracy,
F1-score, and AUC Across CNN, CRNN, Transformer,
and Proposed GNN-ASC Models
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Fig. 5(b): Confusion Matrix of the Proposed GNN-ASC
Model Highlighting Class-Wise Prediction Performance
and Improvements in Overlapping Acoustic Scenes
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CONCLUSION

The research introduced a Graph Neural Network-
Driven Acoustic Scene Classification (GNN-ASC) system,
which could serve to improve environmental and
urban situation audio tracking. With the advantage of
featuring audio relative to a graph representation of
the characteristics used with the inclusion of contextual
relationships between acoustic events, the proposed
technique provided significant improvements when
compared to the classic CNN and CRNN and transformed
baselines. Accuracy, F1-score, and AUC increased overall
in experimental results over the benchmark datasets,
and, as the result of the confusion matrix analysis,
a significant improvement in the classification of
overlapping scenes and acoustically similar scenes was
observed. Durability of the framework against complex
and noisy conditions in an urban setting qualifies the
framework as a prospective solution in scalable and
real-time implementation in smart city infrastructure,
public safety systems, and environmental monitoring
infrastructures. Multi-modal extensions to include visual
and geospatial data, lightweight GNN architectures on
edge devices, and self-supervised pretraining will form
future work to continue advancing generalization on the
low resources front.

FUTURE WORK

Based on the encouraging performance of the proposed
GNN-ASC framework, one can consider various avenues
to advance its performance and extend its scope. The
multi-modal data integration, i.e., acoustics plus visual
input, geospatial context or sensory information collected
by loT sensors is one such opportunity to enhance
the context-sensitive classification under challenging
urban settings. Lightweight and edge-optimized GNN
architectures can be developed using different methods,
such as pruning, quantization, or knowledge distillation
and Deployed on the low-power embedded devices in
a real-time workflow. Incorporation of self-supervised
and semi-supervised learning to enable the model to use
vast amounts of unlabelled audio in the environment
will also help its generalization, especially regarding
low-resource or underrepresented sound types. Domain
adaptation and transfer learning technology can help
accelerate new deployment in geographic areas or
application areas with no re-training effort. Moreover,
the employment of dynamic graph learning strategies
will allow the system to realize the changing relations
in streaming data between acoustic events. Lastly,
resilience to extreme noise conditions may be augmented
through adding state-of-art denoising techniques and
adversarial teaching antiques, so performance is assured
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under extreme noise levels or in highly degraded or
corrupted audio settings. These extensions are to future-
proof the proposed system into being more scalable,
accommodative, and resilient to next generation sound
monitoring applications in smart cities.
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