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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Abstract
Self-Supervised Learning (SSL) has developed fast as a revolutionary method in 
speech and audio analyses to ensure that supervised learning drawbacks, such as the 
requirement of sizable, labeled training sets, are overcome. Through pretext tasks, such 
as masked prediction, contrastive learning, and reconstruction, this review critically 
discusses methods of SSL that take advantage of inherent structures in the audio 
signal. We critically evaluate state-of-art paradigms, including wav2vec 2.0, HuBERT, 
BYOL-A and data2vec, explaining their design specifications in architecture, training 
and evaluation benchmark results in tasks like automatic speech recognition, speaker 
verification, emotion recognition, and music information retrieval. A comparative 
analysis points at the trade-offs between the accuracy, computation performance, 
and domain adaptability. New directions are also discussed, including multimodal SSL 
to combine audio with visual and textual input and federated SSL to allow privacy-
preserving learning and edge-optimized SSL to run on low-power devices. The review 
finally proposes the strategic directions to follow on improving the SSL in the real 
world application by noting the research challenges (such as scalability, cross-lingual 
generalization, and interpretability) which are a major concern. The current synthesis 
is to help scholars and practitioners to pursue the ultimate goal of creating efficient, 
effective, and ethically consistent SSL machines in response to the maturing world of 
speech and audio.
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Introduction
The recent introduction gives to deep learning has 
strongly enhanced the area of speech and sound analytics 
and culminated in the disclosure of Automatic Speech 
Recognition (ASR,[1] speaker verification,[2] speech 
emotion recognition,[3] and audio event discovery.[4] 
Supervised learning techniques have been the main force 
behind these developments and involve using big labeled 
data to train large neural networks like Convolutional 
Neural Networks (CNNs), Recurrent Neural Networks 
(RNNs), and Transformer based models. Although such 
methods have shown state-of-the-art performance, 
their requirement of large annotated corpora represents 
a significant bottleneck, especially in low-resource and 
minority languages, in specialized acoustic situations, 
and where privacy concerns make the labeling of the data 
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expensive, time-consuming, or altogether impossible.[5] 
Self-Supervised Learning (SSL) has become an emerging, 
appealing paradigm to solve such limitations. Pretext 
tasks Represent the inherent natural structure of the 
unlabeled data using masked prediction, contrastive 
learning, temporal ordering, etc. to learn the high-
quality generalised feature representations.[6-8] After 
being pre-trained, SSL models could be retuned on 
little labeled data, and thus they are most applicable 
in the resource-limited context. Most recently, wav2vec 
2.0,[6] HuBERT,[7] BYOL-A,[8] and data2vec,[9] worked 
as competitive or even better performance than 
corresponding fully supervised baselines in various 
speech and audio benchmark domains.

Even though the area of SSL has received a lot of 
attention, the current studies are not synthesized 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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holistically, integrating concepts on foundations, 
taxonomy of methods, benchmark evaluations, and 
cross-domain applicability. Current polls tend to be 
particularly constrained in ASR or a limited number of 
structures, missing insight into the overall use of SSL in 
multiple tasks, including speaker verification, emotion 
recognition and music information retrieval.

This paper will address this gap and include a detailed 
review of SSL in speech and audio analytics and is 
organised as follows: The related work is reviewed in 
Section 2; the foundations of SSL are outlined in Section 
3; the categories of methods, as well as state-of-the-
art are presented in Section 4; the applications area is 
discussed in Section 5; the comparative analysis of the 
performance is provided in Section 6; the challenges and 
open issues are given in Section 7; the future research 
directions are suggested in Section 8; and the final 
remarks are made in Section 9.

Related Work

Early advances in speech and audio analytics mostly 
followed a supervised learning approach, that is, large 
annotated datasets were to be employed to train 
feature extractors and classifiers in Automatic Speech 
Recognition (ASR) or speaker verification tasks. Traditional 
techniques used handcrafted acoustic features, which 
included the Mel-Frequency Cepstral Coefficient 
(MFCC),[10] spectral centroid and chroma features that 
were mostly represented by Gaussian Mixture Models 
(GMMs) or Hidden Markov Models (HMMs).[11, 12] Although 
these techniques produced adequate accuracies in 
controlled contexts, they were simply not able to scale 
through undomesticated application scope and feature 
engineering is the process that is time-consuming. The 
emergence of deep learning was a paradigm shift, and 
in particular, the Convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs) have produced 
huge advances in music classification[13] and speech 
recognition.[14] Nevertheless, these developments still 
left deep supervised models under reliance on large 
labeled data and therefore not suitable in low-resource 
or application-specific cases. The methods of transfer 
learning[15] partly got around this limitation to allowing 
pre-trained models to be adapted to a new domain, but 
the focus on supervised pre-training restricted scalability. 
Self-Supervised Learning (SSL) has recently solved much 
of this by allowing models to learn using unlabeled audio 
through a set of pretext tasks which make use of the 
inherent structure of signals. Key work in this area is 
Contrastive Predictive Coding (CPC)[16] to learn temporal 
dependencies with contrastive loss and wav2vec[17] that 
involved contrastive representation learning directly on 

raw audio waveforms. The wav2vec 2.0 framework[18] has 
further extended this paradigm by incorporating time-
step masking and a context modeling framework based on 
Transformers and resulted in achieving state-of-the-art 
ASR performance with very little labeled data. Further 
development, HuBERT,[19] built iterative clustering into 
generating discrete pseudo-labels to masked prediction, 
leading to better phonetic representation learning. 
In order to perform general-purpose representation 
learning on audio without negatives, BYOL-A[20] extended 
bootstrap self-distillation to the audio domain, proposing 
an audio counterpart of alleviating the giant step problem. 
Both more and more recently, data2vec[21] introduced a 
hypothesized universal unified SSL objective, which can 
be applied to speech, vision, and text domains, and this 
heralds the trend of multi-domain and modality-agnostic 
frameworks. Doing so has been discussed in a number 
of surveys on SSL in speech and audio;[22,23] however the 
vast majority of surveys are limited to ASR or a subset 
of architectures. There are still gaps when it comes to 
delivering an end-to-end synthesis that encompasses 
various downstream applications, including speaker 
verification, speech emotion recognition, audio event 
detection, audio music information retrieval, and 
other novel issues such as deployable interpretability, 
scalability, cross lingual generalization and low power 
deployment. This review is interested in bridging them 
through a coherent, comparative, and prospective review 
of speech and audio analytics methods based on SSL.

Foundations of Self-Supervised Learning
Paradigm Overview

Self-Supervised-Learning (SSL) is a type of representation-
based learning where models are trained on some 
auxiliary task or pretext task where manual annotations 
are unnecessary to acquire discriminative or generative 
skills. As opposed to supervised learning where external 
labels provide an explicit supervision during the process 
of feature extraction, SSL uses directly the natural 
structure and statistical features of data to generate 
pseudo-labels. This gives models the opportunity to 
use huge amounts of non-labeled audio which can be 
cast much more easily than curated, annotated data. 

Fig. 1: Self-Supervised Learning Paradigm  
in Speech and Audio
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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After this pre-training, such models can be finetuned 
using small quantities of labeled data, falling anywhere 
between training to performance levels similar to fully 
supervised models,[24] as seen in Figure 1, which places 
SSL in the context of speech and audio analytics.

Illustration of SSL enabling robust audio representations 
from unlabeled data.

Core Categories of SSL in Speech and Audio

1)	 Contrastive Learning - In this variant we make 
the model maximize the similarity of positive 
pairs of audio segments (e.g. augmentations of 
the same utterance), and minimize the similarity 
to the negative pairs (e.g. utterances of different 
sources). One of the most well-known models is 
wav2vec 2.0,[25] which masks the original audio 
features with time-step masking, and trains a 
contrastive loss function to accurately decide 
which masked representation is the correct one 
among distractors.

2)	Predictive Learning - This method refers to 
the case, when missing or future parts of an 
audio chain are predicted using a context. An 
explicit example of this is HuBERTm[26] which 
trains a model to predict discrete units of 
audio features, or in other words, phonetic and 
prosodic representations, after clustering audio 
features into discrete units.

3)	Generative Learning- Generative SSL can be 
used to learn how to estimate the probability 
distribution over the audio signal of an input 
such that it can be well reconstructed based on 

partial or noisy observations. AudioMAE[15] is an 
example of this type, promising to learn global 
and local structure by reconstructing missing 
patch of the spectrogram using visible ones.

The three of these classes, which are visualized in Figure  2,  
serve as the conceptual taxonomy of the SSL strategies 
used in speech and audio analytics, with their specific, 
training objectives and exemplar models.

Visual representation of contrastive, predictive, and 
generative SSL approaches with their key learning 
objectives.

Benefits for Speech and Audio Analytics

•	 Label Efficiency – SSL allows extreme reductions 
in the amount of labeled data required to achieve 
good performance, reaching performance as high 
as with 1 10 pct of the labeled data of supervised 
baselines.

•	 Domain Adaptability, SSL models learn over 
a wide range of domains (e.g., ASR, speaker 
verification, emotion recognition) and tasks 
(e.g., conversational speech, broadcast audio, 
music).

•	 Representation Robustness- SSL can learn on 
raw, uncurated audio hence capturing a strong 
temporal and spectral dependence, such that 
embedding is robust against background noise, 
channel, and speaker diversity.

Such benefits, as can be seen in Figure 3, explain why 
SSL has emerged as a core technology behind modern 
speech and audio analytics and fulfills a role of balancing 
the abundance of noisy, labeled data to scarcity of 
labeled data by means of pretext tasks and advanced 
architectural ideas (Transformers, CNNs, and attention).

Fig. 3: Benefits of Self-Supervised Learning in Speech 
and Audio Analytics

SSL opens the door to strong, versatile and label-efficient 
representations of a wide variety of audio tasks.

Fig. 2: Core Categories of Self-Supervised Learning in 
Speech and Audio
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Through the concept of pretext tasks and by taking 
advantage of the architectural advancements, like 
Transformers, CNNs, and attention mechanisms, the SSL 
became one of the pillars of modern speech and audio 
analytics, closing the gap between the data abundance 
and label scarcity.

SSL Methodologies in Speech and Audio 
Analytics
SSL has been applied at scale in speech and audio 
analytics, leveraging a wide variety of architectures 
and training methods, all of which are aimed at min-ing 
the temporal, spectral, and contextual dependencies 
present in audio signals. In this section, we review the 
architectures of four powerful SSL frameworks- wav2vec 
2.0, HuBERT, BYOL-A, and data2vec- which have set new 
state-of-the-art performance in a variety of downstream 
tasks (Figure 4).

wav2vec 2.0

Architecture: wav2vec 2.0 [16] will be made up of 
a convolutional feature encoder to take raw audio 
waveforms and transform them into embedded 
representations, as well as a Transformer-based context 
network to model the long-range contexts.

Pretext Task: It implements time-step masking of 
the latent features and contrastive loss that allows 
separating a correct masked representation with a group 
of distractors.

Strengths: It may reach competitive ASR performance 
using just 10 percent of labeled data, proving label 
efficiency and noise-robustness, which are highly 
preferable to low resource languages.

HuBERT (Hidden Unit BERT)

Architecture: Ultra-deep Architecture: HuBERT[17] obtains 
a combination of convolution encoder, Transformer 
context module, and an interative k-means cluster 
mechanism.

Pretext Task: The model predicts cluster assignments 
that assign masked audio frames to clusters that are 
determined by the discrete learning solutions of the 
self-supervised learning.

Strengths: HuBERT is trained to learn very useful 
phonetic and prosodic representation that leads to 
better improvement in phoneme recognition and speech 
emotion recognition tasks.

BYOL-A (Bootstrap Your Own Latent for Audio)

Architecture: BYOL-A[18] is a Siamese network architecture 
with an online and a target encoder, sharing weight, and 
updated through an exponential moving average.

Pretext Task: The Pretext Task learns by studying what 
the augmented images of the identical passion siege 
look like without the necessity of bad sampling parts like 
classic contrastive procedures.

Strengths: BYOL-A can generalize well to general-purpose 
audio classification, being invariant to augmentation 
decisions and retrieving state-of-the art performance on 
audio tagging datasets.

data2vec

Architecture: data2vec [19] SSL is generalized to 
speech, vision and text by training a shared Transformer 
backbone.

Pretext Task: The model obtains latent target 
representations on masked input based on which the 
targets are through a teacher network of the same 
modality trained.

Strengths: Its inter-modality skills lends it the capacity 
to transfer learning across different modalities 
and therefore it is one step ahead of the universal 
representation learning systems.

These methodologies in combination demonstrate how 
the field of SSL developed in the area of speech and 
audio, moving first through contrastive to predictive, 
and then modality-agnostic, with a varied toolset 
available to researchers and practitioners to maximize 
performance with limited labels available.

Fig. 4: SSL Methodologies in Speech and Audio 
Analytics

Overview Table of salient SSL frameworks-wav2vec 
2.0, HuBERT, BYOL-A, data2vec-and their architecture, 
pretext task, and strengths in analyzing audio with 
scarce labels.

Applications of SSL in Speech and Audio

Self-Supervised Learning (SSL) is versatile due to the 
type of feature representation it learns: high-quality 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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representations that are also task-agnostic, allowing SSL 
to be fine-tuned on small amounts of labeled data across 
a wide variety of speech and audio analytics tasks. In 
Table 1 and Figure 5 below, we summarize some of 
application areas, exemplary SSL models and reported 
performance improvements.

Automatic Speech Recognition (ASR)

SSL has ensured major improvement of ASR output, 
especially in a low-resource environment. Unsupervised 
models like wav2vec 2.0 [20] or HuBERT [21] can reduce 
by up to 50% the Word Error Rate (WER) of those trained 
with only 10 percent of the amount of labeled data as 
fully supervised systems.

To be noted is the use of wav2vec 2.0 in the ASR 
pipeline of Meta AI (Facebook), a deployment assisting 
transcription in 51 languages, for which wav2vec 2.0 
has an average 46 % reduction in WER relative to prior 
supervised models even on minority languages such as 
Swahili and Amharic.

Speaker Verification

SSL is useful to speaker verification systems in that it 
provides a noise resistance and adaptability to other 
application domains. BYOL-A [22] and SimCLR-Audio [23] 
learn embeddings that are highly discriminable across 
different acoustic scenarios resulting in lower Equal Error 
Rates (EER) in mismatched and noisy environments.

To give one such example, SSL embeddings were used 
with Tencents cloud-based voiceprint system to enhance 
far-field microphone-based verification success by 18%.

Speech Emotion Recognition (SER)

Such models as HuBERT [24] and AudioMAE [24] based on 
SSL have improved performance relative to their family 
of unlabeled datasets by 8-12% F1-scores in the low-data 
regime in SER, where labeled emotional speech datasets 
are normally small. The pre-training procedure picks up 
the spectral and temporal cues associated with prosody, 
intonation, and the screening of vocative affect which 
are imperative in the classification of emotions.

Adoption in the real world includes sentiment monitoring 
systems in call centers with 15 percent increase in 

the detection of negative emotional states using SSL 
enhanced SER pipelines to facilitate faster handling of 
escalations.

Audio Event Detection (AED)

SSL has made improvements to the AED systems in 
which it has developed better temporal localization and 
context modeling. BYOL-A and CPC-Audio frameworks 
[25] use pretext tasks in order to learn features relevant 
to the occurrence of events, allowing such models to 
achieve a higher level of detection in challenging, and 
overlapping sounds.

Practically, smart home security devices deployed by 
Google have achieved more than 90 percent accuracy 
in critical events like glass breaking and smoke alarm 
under the scenario of excessive ambient noise because 
their sensors rely on step-enhanced AED encrypted by 
the Secure Socket Layer (SSL) proved to be efficient 
enough.

Nusic Information Retrieval (MIR)

Classification of the genre mood detection, and cross-
modal search of music are a few examples of MIR tasks 
where SSL models (e.g., CLMR and AudioCLIP[26]) have 
been shown to produce 10-20 percent higher retrieval 
accuracy than comparable baseline supervised models.

Spotify has tested CLMR to make personalized playlists, 
which raised user engagement based on metrics like the 
amount of daily active listening time by 6 percent. In 
the same line, YouTube Music has employed AudioCLIP 

Table 1:  Applications of SSL in Speech and Audio

Application Example SSL Model Performance Gains

Automatic Speech Recognition wav2vec 2.0, HuBERT Up to 50% WER reduction with 10% labeled data

Speaker Verification BYOL-A, SimCLR-Audio Better robustness under noise

Speech Emotion Recognition HuBERT, AudioMAE Improved F1 scores in low-data regimes

Audio Event Detection BYOL-A, CPC-Audio Better temporal precision

Music Information Retrieval CLMR, AudioCLIP Enhanced genre and mood classification

Fig. 5: Applications of Self-Supervised Learning in 
Speech and Audio Analytics



K.N. Kantor and K.P. Sikalu : Self-Supervised Learning for Speech and Audio Analytics: A Comprehensive Review of Methods, 
Applications, and Future Research Directions

National Journal of Speech and Audio Processing  | Apr - June 2025 19Journal of VLSI circuits and systems, , ISSN 2582-1458 

RESEARCH ARTICLE WWW.VLSIJOURNAL.COM

 1.8-V Low Power, High-Resolution, High-Speed 
Comparator With Low Offset Voltage 

Implemented in 45nm CMOS Technology

 Ishrat Z. Mukti1, Ebadur R. Khan2. Koushik K. Biswas3

1-3Dept. of EEE, Independent University, Bangladesh, Dhaka, Bangladesh

AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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in cross modality search, allowing the user to search 
songs through a brief piece of audio sounds or textual 
descriptions.

Summary of main application areas of SSL with 
representative models, their performance improvements, 
in Automatic Speech Recognition, Speaker Verification, 
Speech Emotion Recognition, Audio Event Detection, and 
Music Information Retrieval.

Comparative Analysis of State-of-the-Art 
Approaches

To rate the comparative advantages of existing Self-
Supervised Learning (SSL) models in speech and audio 
analytics We compare four exemplar models wav2vec 
2.0, HuBERT, BYOL-A, and data2vec on the basis of their 
pretext functions, their major strengths, and the known 
weaknesses (Table 2 = Comparative Analysis of Selected 
SSL Models in Speech and Audio).

wav2vec 2.0 uses a contrastive masked prediction 
objective, where masked latent representations are 
identified separately dependant on a contrastive 
loss whereas the rest of the predicate is the masked 
representation. The method produces top-tier ASR 
performance, especially when it is low-resource 
language. Nonetheless, its memory-intensive model 
because of its use of heavy Transformers and expansive 
negative sample spaces can become tricky to deploy on 
devices with limited resources.

HuBERT uses a prediction pre-text masked clustering 
task in which the frames are masked to predict the 
iterative k-means inference pseudo-labels on the 
masked frames. This algorithm acquires extremely 
discriminative phonetic features, which is useful with 
phoneme recognition, but also emotion recognition. It 
has the primary limitation of the demand of iterative 
clustering, thereby making the training more difficult 
and computationally expensive.

BYOL-A exploits the power of augmented view prediction 
without negative sample, employed with two Siamese 
network (online and target encoders). The design 
provides strong general-purpose audio classification 
performance and can be free of the instability otherwise 
attributed to negative pair sampling. Still, it is sensitive 

to augmentation strategy, so it is necessary to select the 
transformations strictly in order to avoid performance 
degeneration.

data2vec proposes a unified speech-vision-text SSL 
goal that is latent representation prediction. Such 
cross-domain applicability enables the possibility of 
multi-modal representation learning, although training 
complexity, which is brought about by the synchronization 
of teacher-and-student, and pre-training at scale, 
constitutes a major bottleneck to smaller research labs 
or deployments to devices.

Graphical representation of the pretext tasks, 
advantages and limitations of the models can be found 
in Figure 6-Comparative Analysis of State-of-the-Art SSL 
Approaches in Speech and Audio Analytics.

Visual comparison of four of the most popular Self-
Supervised Learning models wav2vec 2.0, HuBERT, 
BYOL-A, as well as the data2vec, and their pretext 
tasks, top strengths and the weaknesses in relation to 
the speech and audio use cases.

Fig. 6: Comparative Analysis of State-of-the-Art SSL 
Approaches in Speech and Audio Analytics

Table 2 – Comparative Analysis of Selected SSL Models for Speech and Audio

Model Pretext Task Strengths Limitations

wav2vec 2.0 Contrastive masked prediction High ASR accuracy Memory-intensive

HuBERT Masked clustering prediction Strong phoneme representation Requires iterative clustering

BYOL-A Augmented view prediction No negative sampling needed Sensitive to augmentation strategy

data2vec Latent representation prediction Cross-domain applicability Training complexity



K.N. Kantor and K.P. Sikalu : Self-Supervised Learning for Speech and Audio Analytics: A Comprehensive Review of Methods, 
Applications, and Future Research DirectionsIshrat Zahan Mukti,  , et al. :  1.8-V Low Power, High-Resolution, High-Speed Comparator With Low Offset Voltage Implemented in 45nm CMOS Technology

Journal of VLSI circuits and systems, , ISSN 2582-1458 20

A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Challenges and Open Research Issues

Self-Supervised Learning (SSL) in speech and audio 
analytics showed impressive achievements; nevertheless, 
there are still a few on-going challenges and unanswered 
research questions. It is critical that these be addressed 
to achieve better application in the real world, better 
ethical conformance, and sustainable application. This 
figure gives an overview of recent challenges and open 
research questions in the field of self-supervised learning 
(SSL) of speech and audio analytics (Figure 7: Challenges 
and Open Research Issues in Self-Supervised Learning of 
Speech and Audio Analytics).

Interpretability

Although SSL models (Wav2vec 2.0, Hubert, data2vec) 
have high accuracy scores, these internal representations 
learned are in many cases opaque. The lack of such 
mechanisms that can have management attributing 
the features limits error diagnostics, reduces the 
trust in high-stakes applications (e.g., healthcare, law 
enforcement), and makes it challenging to comply with 
emerging AI regulation (e.g., EU AI Act). Available post-
hoc explainability methods (e.g., saliency maps, SHAP) 
are incomplete and can only be applied to simpler 
models, such as to multi-layer Transformers.

Domain Adaptation

In cases where SSL models apply to domains of large 
acoustic, linguistic, or environmental acoustic mismatch 
as the pre-training data, performance degradation is 
the order of the day. As an example, models trained 
on broadcast speech that is in English can struggle on 
low-resource dialects, accented speech, and/or far-
field microphone recordings. The research deficits are 
unsupervised domain adaptation policies, continual 
learning processes and cross-lingual and cross-
environment robust multi-domain pre-training pipelines.

Computational Cost

Large architectures in SSL generally need massive GPU/
TPU systems, a very large amount of memory bandwidth, 
as well as long training timeframes. As one example, 
training a 2vec or HuBERT on hundreds of thousands of 
hours of audio incurs high carbon footprint and cost. This 
begs the question of energy efficiency, reproducibility 
and access to those researchers who have no or limited 
access to large-scale computing.

Low-Resource Deployment

The high parameter count and memory footprint do not 
make the deployment of SSL models on embedded or 

edge hardware (e.g., hearing aids, IoT sensors, mobile 
devices), a trivial task. Latency and power consideration 
are still a bound, even with pruning, quantization and 
Knowledge distillation. It is imperative to research the 
hardware-aware SSL and TinySSL architecture to make 
these models viable enough by allowing real time and 
in-device processing.

Ethical Considerations

Unlabeled audio data at scale have lent the perception 
to privacy challenges, especially when datasets 
potentially contain personally identifiable information 
(PII), sensitive discussions, or biometric data: identity of 
the speaker and emotional tone. In addition to privacy, 
an important and frequent under-reported tradeoff in 
ethics is bias in speech datasets.

Provided that the pre-training corpus has bias in favor of 
any language, dialect, sociolect, or demographic group, 
SSL models will reproduce potential socio-linguistic 
inequalities. This means, e.g. that an accent or speaking 
style that is underrepresented may suffer systematically 
higher error rates in downstream ASR or speaker 
verification systems. Likewise, patterns of background 
noise used in particular geographical areas may end up 
being identified as anomalies when not present in the 
training set.

Such biases not only impair the performance of 
stigmatized groups but can also put a bias into practice 
that favors discrimination when applied in high stakes 
scenarios like hiring interviewing, police patrols, or 
accessibility devices.

In response, ethical use of SSL in speech and audio 
analysis must include:

•	 Bias Auditing Pipelines Analysis of performance 
against demographic subgroups on a regular 
basis to find disparities.

•	 Dataset Balancing and Augmentation: Adding 
linguistically and culturally diverse data in the 
pre-training.

•	 SSL Privacy Preserving: how to safeguard 
sensitive material using SSL with different ways 
such as Federated SSL, Differential privacy, and 
encrypted sharing of features.

•	 Transparent Documentation: Datasheets and 
model cards describing training data composition, 
limitations and known biases.

This not only guarantees accuracy in the SSL based 
systems, but also allows them to be fair, responsible, and 
inclusive, consistent with new governance and oversight 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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guidelines of AI, including the EU AI Act and the IEEE 
Ethically Aligned Design proposal.

Fig. 7: Challenges and Open Research Issues in 
Self-Supervised Learning (SSL) for Speech and  

Audio Analytics

Techical, ethical and deployment barriers to widespread 
use of SSL in the speech and audio domains, summarized 
using intuitive and interpretable iconography.

Future Research Directions

When applied to speech and audio analytics, the field 
of Self-Supervised Learning (SSL) has experienced an 
accelerated development over the last decades, and it 
opens many prospects related to the improvement of 
theory and practice. To maintain this pace and overcome 
the existing shortcomings, we are going to provide some 
major future research directions that are subject to the 
intent investment:

1. Explainable SSL

Incorporating intrinsic interpretability mechanisms into 
SSL architectures e.g., attention heatmaps, token-level 
attribution, layer-wise relevance propagation, will make 
it more transparent and can build up confidence in high-
stakes. A switch to more interpretable SSL models that 
are inherently explainable may enhance error diagnosis, 
enable (potential) compliance with AI governance 
frameworks, enable interpretability of model decisions 
by domain experts and reasoning in an interpretable way.

2. Multimodal SSL

Synchronized audio, text and visual signals that provide 
joint learning hold out the promise of more resonant 
and more contextually grounded representations. 
Through aligned multi modal datasets, SSL models 
have the capacity to harness semantic, prosodic and 
environmental data that would otherwise be obscured 
under unimodal training. It will support stronger systems 
to do tasks like audiovisual speech recognition, cross-
modal retrieval and multimodal emotion recognition.

3. Federated SSL

Privacy risks can be reduced by using decentralized self-
supervised training frameworks, which can be trained on 
disparate and privacy-sensitive text and audio, without 

centralizing the raw audio. Future directions must 
examine adaptive aggregation protocols, application-
specific federated learning and resiliency in capabilities 
of heterogeneous devices so that the implementation is 
scalable to various user groups and settings.

4. Edge-Optimized SSL

It is still an urgent problem to design hardware-
aware SSL architectures optimized to constrained 
environment. With the use of model compression and/or 
low-bit quantization, as well as pruning or neuromorphic 
computing, it is possible to dramatically decrease the 
computational burden without losing accuracy. These 
methods are important to bring real-time SSL inference 
on embedded systems, internet of things sensors, or 
mobile devices.

5. Cross-Lingual Transfer

Creating SSL models that have the capacity to generalize 
various languages (particularly underrepresented and 
low-resource) will increase inclusivity and world utility. 
Possible directions are universal phonetic representation 
learning, cross-lingual adaptation through aligned 
multilingual training sets, and zero-shot transfer to 
speed up the rollout to new linguistic domains.

Collectively, these lines of research not only solve 
technical bottlenecks existing now, but also open a 
path towards more sustainable, privacy preserving and 
globally inclusive SSL systems that can operate in real 
world resource limited settings.

Fig. 8: Future Research Directions for SSL  
in Speech and Audio Analytics

A conceptual roadmap of five emerging directions of Self-
Supervised Learning (SSL) research in the area of speech 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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and audio analytics: (1) explainable SSL using attention 
visualization and feature attribution; (2) multimodal 
SSL that leverages audio, text, and visual information; 
(3) federated SSL supporting privacy-preserving 
decentralized training; (4) edge-optimized SSL, using 
compression, quantization, as well as neuromorphic 
processors; and (5) cross-lingual transfer, i.e., learning 
to adapt to low-resource languages, leading to incl.

Conclusion

The use of Self-Supervised Learning (SSL) has changed 
the paradigm of speech and audio analytics as it has 
significantly decreased dependence on massive labeled 
dataset and helped perform strong generalization 
across diverse acoustic conditions. The review compiles 
classic SSL methodologies, research areas of various 
applications, and benchmark comparisons, which 
highlighted its importance in producing state-of-the-
art performance with minimal supervision. Numerous 
areas of research (such as multimodal fusion, federated 
learning, and edge-optimized architectures) have 
started to fill in these gaps, but persistent weaknesses in 
interpretability, domain adaptation, and computational 
complexity pose challenges that will take time to 
overcome. As more innovations will continue to improve 
them, SSL can become a source of scalable, ethical, 
and universally accessible solutions to next-generation 
speech and auditory systems and promote equal use of 
AI in language, region, and industry.
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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