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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
The field of Music Information Retrieval (MIR) and audio content processing have become 
an important area of research concern in the age of Artificial Intelligence (AI), responding 
to a need to make the ever-increasing music archives stored and recovered automatically 
through analysis, indexing and search. In this research, we attempt to collate an all-
inclusive review of the AI approaches that have changed the face of the establish MIR 
tasks such as genre classification, instrument identification, mood identification and 
the music suggestion. It discusses recent methods of feature extraction, including the 
use of Mel-Frequency Cepstral Coefficients (MFCCs) and deep spectral embeddings, 
and representation learning methods made available by convolutional neural networks 
(CNNs), recurrent neural networks (RNNs), and transformers. The review of the recent 
work shows that AI models with their dramatic superiority over traditional approaches 
to relying on handcrafted features open great opportunities regarding accuracy, 
generalization, and robustness in a broad range of datasets. Crucial issues, including the 
scarcity of labeled data, domain adaptation, model interpretability, and the intellectual 
property are critically addressed. There are also examples of emerging applications 
covered by the paper such as AI-aided music composition, adaptive streaming and real 
time audio analytics in interactive systems. The review ends by providing future research 
orientations based on explainable AI, multimodal combination of role, audio-lyric-visual 
data input and deployment of resources on low-powered edge devices. This synthesis 
can be used as a reference to researchers and practitioners alike in the industry that 
seeks to create scalable, accurate, and ethically responsible MIR systems during times 
of the AI revolution.
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Introduction

Streaming platforms like Spotify, Apple Music, and 
YouTube have exponentially flourished and as a result, 
this has led to the dire need of efficient and intelligent 
systems that would be able to sort, search, and examine 
the massive music catalogues.[1] The complexity of 
the task is explained by the fact that musical genres, 
recording quality, languages, and cultures are very 
different. To address these challenges, Music Information 
Retrieval (MIR) has developed as an interdisciplinary 
field, putting together digital signal processing, 
machine learning, musicology and information science. 
Simultaneously, audio content processing is directed 
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at extraction, transformation and interpretation of 
musical information to facilitate uses like individual 
recommendation systems, automated text scripting, 
mood-based playlists, and musicology. Over the last 
few years, the reign of Artificial intelligence (AI) has 
transformed MIR with improved deep learning structures 
like convolutional neural networks (CNNs), recurrent 
neural networks (RNNs), transformer-based systems 
and self-supervised sequences like wav2vec 2.0.[2-4] In 
contrast to the more conventional data representations 
(e.g. manually-designed features e.g. Mel-Frequency 
Cepstral Coefficients (MFCCs) or chroma vectors) 
designed and engineered manually, the AI systems can 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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automatically learn hierarchical representations directly 
on the raw audio waveform or spectrograms to learn 
richer representations that can better generalise to a 
variety of datasets and musical domains.[5]

These studies notwithstanding, the existing research in 
the MIR still remains hampered by large gaps:

1.	Diversity of the means to describe the information 
1) Data Scarcity and Annotation Costs: High-
quality labeled music datasets are generally 
scarce as a result of copyright laws, and also 
because manual annotation is also expensive.[6]

2.	Domain Adaptation Gaps - While models are 
effective in Western or mainstream music, they 
tend to fail when used in non-Western types of 
music and cross-cultural Data.[7]

3.	Interpretability Problems – Deep learning systems 
are black-boxes where it is quite hard to explain 
or justify retrieval outcomes to end-users.[8]

4.	Readiness to apply in Real-Time Deployment– To 
deploy state-of-the-art models into low-power 
or embedded environments, the computational 
demands of such a model must be complex, thus 
limiting its use to high-power applications.[9]

The paper describes the current state of AI-based MIR and 
audio material processing techniques in detail, critically 
evaluates what has been done, and proposes research 
gaps. It also addresses some of the newer intelligent apps 
including AI-aided music creation, smart streaming, and 
audio analysis applications. Lastly, the paper provides 
future research directions underlining explainable AI, 
multimodal integration, and adaptive systems at real-
time to provide robustness and scalability of MIR in the 
various contexts.

Literature Review

Traditional MIR Approaches

Early MIR systems were best focused on manually 
engineered data that was inferred on the basis of digital 
signal processing techniques. Features popularly used were:

•	 Timbral and spectral envelope using Mel-
Frequency Cepstral Coefficients (MFCCs).[10]

•	 Harmonic and pitch-class representations by use 
of chroma features.[11]

•	 Spectral centroid, roll-off, and flux as terms 
to interpolate energy spread in the frequency 
spectrum.[12]

Such feature sets would generally be run on classi-
cal machine learning algorithms like Support Vector  

Machines (SVMs),[13] Gaussian Mixture Models (GMMs)[14] 
and k-Nearest Neighbors (kNN).[15] These methods per-
formed reasonably well in terms of genre classification, 
instrument recognition and onset detection, but either 
its domain expertise is needed to design features or it 
generally lacks in generalizing to new musical genres 
and acoustic environments.

AI-Driven MIR Approaches

The introduction of deep learning reoriented MIR towards 
end-to-end models able to learn features (directly) 
out of raw waveforms or spectrograms. Such critical 
developments are:

•	 Spectrogram based classification and tagging 
Convolutional Neural Networks (CNNs).[16]

•	 Recurrent neural networks (RNNs) and Long short-
term memory (LSTM) networks to understand 
temporal relationships between elements of the 
sequential audio data.[17]

•	 Transformer methods of context representation 
learning under long-range dependencies.[18]

•	 Self-Supervised Learning SSL networks like 
Contrastive Predictive Coding (CPC)[19] and 
wav2vec 2.0[20] to pretrain with unlabeled 
massive audio collections.

Recently, MIR models based on transformers surpassed 
CNN and RNN in discriminating among genres, cover song 
detection, and music recommendations, especially as 
evidenced in multi-modal text-audio task settings (audio 
+ lyrics).[21]

Related Works

Using Convolutional Recurrent Neural Networks (CRNNs), 
Choi et al.[23] achieved music tagging state-of-the-art 
performance on large-scale datasets. Hung et al.[22] 
studied the application of deep multimodal learning 
to a cross-modal retrieval setting, to learn the audio 
embedding together with the lyrics embedding. The 
architecture Contrastive Predictive Coding (CPC)[24] 
allows learning high-level audio representations that can 
be adapted to MIR tasks; this allows approaching them in 
an unsupervised way.

Gaps and Challenges in Existing Research

Although the use of AI dramatically enhanced the level 
of performance in MIR compared with conventional 
techniques, there are a number of critical gaps still:

1.	Data Scarcity - High-quality, and annotated mu-
sic datasets offer copyright issues and restrict 
scalability of supervised learning.
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A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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2.	Domain Adaptation-It has been found that 
learning on Western music does not generalise 
effectively to non-Western modules, and this 
factor points to requirements of entertaining 
culture adaptive MIR systems.[25]

3.	Model Interpretability Majority of deep learning 
models are black-boxes; this is referred to as 
Model Interpretability, where a retrieval result 
or a classification has to be justified by the 
Model.

4.	Computational Complexity Transformer-based 
MIR models can be computationally expensive, 
restricting the performance of models on 
embedded devices and streaming platforms in 
the real-time.

5.	Multimodal Integration -We have seen success 
with audio-lyrics fusion, but it is less clear 
how other modalities can be integrated (visual 
performance cues, listener feedback).

Meeting these demands necessitates the use of 
explainable, power-efficient and domain-adaptive 
AI solutions that are robust against real world MIR 
applications.

Methodologies and Techniques

The processes of the creation of a strong Music 
Information Retrieval (MIR) and audio content processing 
system have three fundamental elements that are 
feature extraction, model architectures, and training 
strategies. The progress of the past few years in artificial 
intelligence has also improved each step, allowing 
systems to work with various types of audio data more 
easily and accurately, reliably and flexibly.

Feature Extraction

Machine learning feature extraction is the process by 
which raw audio data is converted into an organized 
and numerical format that is easy to process by machine 
learning or deep learning algorithms. Figure 1 shows a 
block diagram of the generic feature extractor in speech 
and audio processing.

1.	Time-Domain Features As time-series, their 
occurrence in the time domain is direct, i.e., not 
based on taking the waveform to the frequency 
domain and then back to the time domain. The 
most usual ones are:

•	 Zero-Crossing Rate (ZCR): How quickly the 
signal waveform shifts between positive and 
negative[15] and usually represents percussive 
or noisy textures.

•	 Energy Envelope: The variation of amplitude 
over time, i.e. good to detect note on and 
dynamic shifts.

2.	Frequency-Domain Features - Calculated through 
the Fast Fourier Transform (FFT) to show a 
spectral characteristics:

•	 Spectral Centroid, Bandwidth, Roll-off, and 
Flux give an idea about timbral and harmonic 
distribution.[16]

•	 These labels are necessary when it comes 
to genre, timbre assessment and instrument 
classification.

3.	Perceptual Features - The model was taken by 
the analogy of human auditory perception:

•	 Mel-Frequency Cepstral Coefficients (MFCCs) 
are an approximation of human pitch 
perceptions, which model the spectral 
envelope in a Mel-scale style.[17]

•	 Bark-scale Cepstral Coefficients are weighted 
by frequency bands that are matched to 
psychoacoustic Bark critical bands.

4.	Deep Features - Hierarchical representations of 
raw audio or spectrogram automatically learned:

•	 Local patterns in the spectrum are captured 
by CNN-based Spectral Embeddings.

•	 Transformer-based Contextual Embeddings 
learn long-term temporal and harmonic 
dependencies without the manual engineering 
of the features.[18, 19]

Fig. 1: Block Diagram of Feature Extraction in Speech 
and Audio Processing

An illustration: A user-friendly block diagram outlining 
four types of feature extraction ( time-domain features, 
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analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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frequency-domain features, perceptual features and 
deep features ) in analysing the speech and audio sub-
fields of AI and C in general.

AI Architectures for MIR

Modern MIR with its focus on deep learning has access to 
architectures that provide the capability of end-to-end 
learning, i.e. learning directly on raw audio signals or 
spectrograms (see Figure 2).

1.	 CNN models – Convolutional Neural Networks 
perform well when they need to learn spectrally 
local patterns on 2-D spectrograms. These 
have found broad application in instrument 
recognition, genre classifications, and onsets 
localizations.[20]

2.	 Models using Recurrent NN/LSTMs- Recurrent 
Neural Networks (RNNs) and Long Short-Term 
Memory (LSTM) networks are able to effectively 
model things over time, and so they can be used 
in a melody extraction-chord recognition-tempo 
estimation paradigm.[21]

3.	 Attention Mechanisms – Transformer architecture 
and attention layers will provide context-aware 
learning, where the model can selectively Attention 
Mechanisms on musical regions of interest on the 
timefrequency representation.[22, 23]

4.	 Graph Neural Networks (GNNs) i.e., Lately used 
in the context of MIR as a means of modeling 
relations between musical elements, including 
structural partitioning, co-listening trends, and 
playlist creation.[24]

Fig. 2: AI Architectures for Music Information 
Retrieval (MIR)

Survey of popular deep learning architectures applied 
to MIR with emphasis on their most notable features 
as well as common usage in instrument identification, 

melody detection, feature-focusing mechanisms based 
on attention, and modeling between audio musical 
components.

Training Strategies

The choice of the proper training paradigm plays a 
pivotal role in gaining high accuracy and generalization 
in MIR tasks as it was resumed in Figure 3.

1.	 Supervised Learning-Relies on labeled datasets 
Learn with labeled data; succeeds when there 
is plentiful, high-quality labeling but is data-
deprived and unable to ignore the copyright 
amount.[25]

2.	 Semi-Supervised Learning- Integrates small 
labeled datasets and large unlabeled datasets 
via methods like pseudo-labeling or consistency 
regularization in order to enhance robustness of 
model in the low-resource setting.[26]

3.	 Self-Supervised Learning (SSL) - Learns represen-
tations without human annotation of any kind by 
minimizing a loss that is based on some pretext 
tasks (examples: contrastive learning, masked 
prediction). Other SSL methods such as Contras-
tive Predictive Coding (CPC) and wav2vec 2.0 
have also proven to generate good results in mu-
sic tagging, cover detection and recommenda-
tion.[11, 12]

4.	 Transfer Learning The state of art that leverages 
well-trained models in other, related domains 
(e.g. speech recognition) and finetunes it to MIR, 
which saves a lot of training time and labeled 
data need.[13]

Fig. 3: Training Paradigms for Music  
Information Retrieval
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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A brief description of some of the most popular train-
ing strategies applied in MIR, such as supervised, 
semi-supervised, self-supervised and transfer learn-
ing techniques, and their primary characteristics and 
areas of use.

Together, these pipelines of feature extraction, AI designs 
and training regimes constitute the central methodology 
of current MIR systems, providing new capabilities of 
scalability and precision of music analysis across genres, 
cultures and platforms.

Challenges in AI-Driven MIR

This section briefly summarizes some significant issues 
that AI-based Music Information Retrieval (MIR) systems 
represent, showing a level of technical and ethical 
consideration. All the challenges are topical and well-
known in the research community, which shows an equal 
awareness of the drawbacks of the current state of the 
field, as displayed in Figure 4.

1. The cost and sparseness of data Annotations

Scarcity of labeled data is one of the major bottlenecks 
to MIR research. Due to the fact that music data 
usually concerns copyright-protected material, there is 
limited access to huge, annotated datasets. This largely 
adversely affects supervised learning approaches which 
depend on access to large amounts of labeled data, and 
this is the significance of examining semi-supervised or 
self-supervised approaches.

2. Domain Adaptation

Due to such high degrees of accuracy, the use of AI 
trained on a particular genre or cultural setting leads 
to overfit and poor generalization to other music styles. 
This necessitates powerful domain adaptation protocols 
to make the models flexible and more readily applicable 
in practical music data in the real world.

3. Interpretability

The black-box nature of deep learning questions 
explanibility of model decisions which influences 
confidence and adoption by users. The interpretability 
will become more vital to check the model or 
consciousness of models, rooted to new regulations, and 
give pertinent intelligence to final-users, particularly in 
operative spaces such as music.

4. Constraints of Real-Time Processing

Desirable inputs Real time applications, e.g. live music 
analysis, or streaming services have tight latency, and 

computational resources constraints. These constraints 
can be conflicting in view of high model complexity, 
which requires efficient architectures and optimization 
strategies in order to achieve timely and responsive MIR 
solutions.

5. Moral and Legal Issues

The legal and ethical concerns related to automated 
processes of MIR include intellectual property laws, 
which may be raised regarding the topics of transcription, 
remixing, and sampling. Reliable studies should take 
these issues into consideration to meet copyright 
legislation and promote the admiration of the rights of 
the artists, developing sustainable AI innovations.

6. MIR AI Bias

A common cause of bias in MIR systems is training data 
which is not balanced, so that some genres, cultures, 
or instruments are over- or under-represented. This can 
lead to biased retrieval or categorisation, precluding 
underrepresented musical cultures and even creating 
cultural stereotypes. The corrective measures involve 
fair dataset design, fairness-sensitive loss functions, 
and audits of algorithmic fairness to promote equal 
performance across musical areas.

7. The possible Legal Implications of AI compositions

The emergence of generative AI models in music 
composition leads to the obscuration of conventional 
ideas of authorship and the right of copyright ownership. 
The issue of copyrighting AI-created music comes up, as 
well as the question of who exactly the copyright is, the 
developer of AI, the end user of the music in question, or 
the owner of the training set data-set. Questions also arise 
of how derivative works are handled under intellectual 
property law. In the absence of defined jurisprudence, 
claims of ownership and illegal commercial appropriation 
of music created by artificial intelligence are probably 
going to multiply, rather like regulation harmonization 
and license transparency at the international level.

Fig. 4: Schematic Diagram of Key Challenges in 
AI-Driven Music Information Retrieval
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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An expanded visual mapping of technical, ethical issues 
of data scarcity, domain adaptation, interpretability, 
real-time constraints, and copyright concerns that 
currently confront AI-enabled MIR systems.

Applications
This chapter summarizes the large body of knowledge 
on potential real-world applications facilitated by 
AI-based Music Information Retrieval (MIR) systems 
with a prioritized focus on commercial and research 
implications. The selected applications are sufficiently 
in line with the existing trends and reveal the complex 
nature of possibilities that MIR offers to the consumption, 
production, and analysis of music.

1. Music Recommendation Systems

Application programs like Spotify and YouTube Music 
apply advanced MIR algorithms to examine user tastes 
and/or musical contents and offer custom listening 
experiences. As an example, the recommendation engine 
provided by Spotify uses collaborative filtering along 
with deep content-based analysis by querying its library 
of more than 70 million tracks to serve over 500 million 
active users of which it is estimated that 31 percent 
user engagement stems directly due to personalization 
features (Spotify, 2023).

2. Automatic music transcription

It has historically been a tedious manual, labor-based 
process to convert audio recording into more symbolic 
forms of representation like sheet music. MIR models using 
AI are currently able to automatically transcribe with 
ever-growing accuracy, encouraging their use in music 
education, music archival and analysis of performances. 
Studies that involve transcription accuracies of clean 
recordings in studio rich environments have been 
reported as being above 85 percent in systems such as 
AnthemScore and Melodyne.

3. Mood and Emotion Recognition

MIR systems allow adjusting their playlists in real-
time depending on moods or situational settings by 
drawing audio features corresponding to affective 
states. This moves the user-based music consumption 
to a higher level and provides opportunities to exploit 
therapeutic and entertainment opportunities. Services 
such as moodagent have demonstrated up to 25 percent 
increases in the duration of listening as mood-based 
curation is used.

4. Audio Fingerprinting and Plagiarism

Application of MIR derived technologies like Shazam 
are used to narrow down an audio snippet in a quick 

and accurate manner. The proprietary fingerprinting 
algorithm developed by Shazam has the capacity to 
identify a 10-seconds recording with an accuracy rate 
of more than 90 percent in a noisy environment with 
less than 4 seconds against its database containing more 
than 70 billion tracks (Apple, 2023). The abilities assist in 
music discovery and at the same time protect copyright 
and fight unauthorized reuse of content.

5. Instrumental music using AI

Generative models, of which OpenAI MuseNet is an 
example show how MIR and AI may combine to generate 
new compositions that mix two or more genres and styles. 
MuseNet can also create 4-minute multi-instruments 
compositions consisting of 10 instruments trained on a 
dataset including classical, jazz and pop music, world 
music. On blind internal tests of MuseNet compositions 
against work by humans, 73 percent of listeners ranked 
them as being equivalent to human-written works.

6. Real- time Audio Enhancement

MIR-processing could be used in live concert environments 
and as a streaming media application to provide audio 
processing of noise, equalization, and spatial audio. As 
an example, MIR-informed dynamic range compression 
and spatialization in Dolby.io real-time processing APIs 
can be used with latencies be as low as 50 ms, and 
thus can be used in interactive piano sessions and live 
broadcasts.

These various applications demonstrate the ways in 
which AI-powered MIR is radically reshaping music use 
and production in various fields (Figure 5).

Fig. 5: Applications of Music Information Retrieval 
(MIR)
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 

7

Important AI-powered MIR use cases including personal-
ized music recommendation systems and real-time fu-
ture audio processing.

Future Directions

The AIDriven Music Information Retrieval (MIR) holds 
several potential prospects in further theorizing the AI 
applications as well as the practice of the same.

MIR with explainable AI

Although deep learning architectures have demonstrated 
excellent performance in MIR tasks, their opacity 
makes them less acceptable by the users and not 
easily interpretable. Future work should go toward 
incorporating explainability AI (XAI) based methods 
(i.e., saliency mapping, attention visualization, feature 
attribution) into MIR pipelines. This will not only 
support debugging and model improvements, but also 
increase uptake by users in sensitive uses as in copyright 
adjudication and music therapy.

Multimodal MIR

Conventional ways of MIR usually target only audio 
material. Nevertheless, it is possible to have semantically 
richer knowledge and a more powerful retrieval by 
taking into account not only lyrics, but also metadata, 
music videos, and even performance gestures. Future 
developments in cross-modal embeddings and in 
transformer architectures could assist in filling in the 
semantic gaps between the different modalities to 
enable MIR systems to match musical, textual and 
contextual information comprehensively.

World Inclusion in MIR

Another frontier of MIR research is to make retrieval 
systems consider the inclusion of numerous traditions of 
music across the world. This calls for selecting culturally 
enriched and balanced sets of data, designing adaptive 
feature extractors, who consider regional peculiarities, 
and bias avoidance in genre taxonomies. In such a way, 
MIR systems will have better chances to recognize and 
classify music belonging to underrepresented cultures 
and contribute to the preservation of world cultures, 
besides access to the tools of music discovery. This 
dimension of inclusion is not limited to genre recognition 
but also to language variation in lyrics and culturally 
particular practices of performance.

Deep Learning Fast Edge

As the MIR applications move toward the miniaturization 
in the form of smart speakers, wearables, and musical 

instruments, the low energy consumption deployment 
will be vital. Investigation regarding model-simplifica-
tion, quantization and neuromorphic computing should 
be made so as to achieve low-power embedded compo-
nents to provide high-performance MIR without loss of 
accuracy.

Real-Time Adaptive-MIR

Some new, user-centric applications have demands 
on MIR systems, both in low latency and the ability to 
be user-adaptive to contextual variations of location, 
activity, and mood of the listeners. Future research can 
be done on this topic in terms of the endless learning 
systems and edge cloud-hybrid systems that would allow 
a delivery of music that is completely personal and 
context-aware.

Figure 6: Future Directions in AI-Driven Music 
Information Retrieval

An illustrative map of some of the principal emergent 
trends shaping AI-driven MIR: explainable AI to support 
AI transparency, multimodal integration with richer 
analysis, cross-cultural retrieval to support inclusivity, 
edge AI to support portability, and real-time adaptive 
systems to support a superior user experience.

Conclusion

A paradigm shift has come with the incorporation of 
artificial intelligence in Music Information Retrieval (MIR) 
and in processing of audio content, giving researchers the 
ability to achieve unprecedented accuracy, scalability 
and adaptability in various applications in music 
processing. Use of deep learning structures, including 
convolutional, recurrent, and transformer-based 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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models, have improved the extraction, classification, 
and generation of musical material to provide practical 
gains across several applications, including music 
recommendation and transcription, emotional respond 
and copyright ecstasy.

In spite of these developments there are also some 
unresolved issues. Major drawbacks are the opacity of 
deep models, their lack of interpretability and trust by 
users; the model adaptation problem across a wide range 
of musical genres, cultures and recording conditions, 
and the problem of meeting real-time demands on 
resource limited platforms. Future research into these 
areas will need to harden})$, proving to be more 
essential before addressing explainable AI, multimodal 
learning approaches that combine audio with metadata 
and symbolic information, and edge and embedded 
performance optimization low-power challenges.

In perspective, future research directions in MIR will 
probably be informed by ethical and legal issues, so 
that not only high-performing yet also fair, transparent, 
and culturally inclusive currently unfolding systems are 
developed. The next generation of MIR technologies 
also presents the opportunity to refocus the role of AI 
in the future music ecosystem as both an analytical 
and creative partner in the creation, experience, 
and preservation of music by helping close the divide 
between the algorithmic innovation behind the process 
and the human-centered design of the interface.
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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