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 Voice biometric systems are based on speaker identification that is 
important for the secure and personalized human–machine interaction. 
But deploying reactive and reliable speaker recognition models on 
memory, delay, and computationally constrained edge devices still have 
been a problem. In this paper, we propose a lightweight speaker 
identification framework built on top of deep speaker embeddings, 
produced by a considerably smaller convolutional neural network 
(CNN) architecture. We use a time delayed CNN front end to extract a 
fixed length embedding from a variable length utterance and use 
average pooling and cosine similarity based classifier for low latency 
inference. Additionally, quantization aware training and pruning 
methods are used to optimize for performance at runtime, significantly 
reducing the model size and over 60% while retaining accuracy. The 
proposed model is evaluated on VoxCeleb1 and a custom low resource 
dataset where identified with a Top-1 accuracy of 94.2% and 92.5% 
respectively; with inference latency under 30 milliseconds on Raspberry 
Pi 4. In these results show that it is practical to run deep embedding 
speaker ID on embedded platforms, but with the robustness and 
precision retained. 
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1. INTRODUCTION 
As a natural and secure way of identifying users for 
smart devices, call centers, and IoT applications, 
voice-based authentication is increasingly being 
included within the conversation. Speaker 
identification unlike typical credentials or tokens 
utilize a user’s own unique vocal patterns to know 
and authenticate the user. Such systems are, 
however, difficult to deploy in real time on the edge 
devices because of the model complexity, limited 
processing capabilities and latency constraint. 
Despite the recent advancement in deep learning 
technology, the performance of speaker 
identification has been significantly improved 
especially when the speaker embeddings are 
derived from deep neural networks. These 
embeddiongs encode discriminative and speaker 
specific information in a compact vector form to 
make efficient comparisons across different voice 
samples. While state of the art embedding models 
are typically very accurate, the models themselves 
tend to be deep and compute intensive (e.g. a 
ResNet or Transformer based encoder), making 
them infeasible for real time applications on 
mobile or embedded systems. 
In order to deal with this, we propose a lightweight 
and scalable speaker identification framework 
based which generates deep speaker embeddings 

leveraging a compact CNN architecture trained 
with triplet loss and is optimised with pruning and 
quantization techniques. In addition to preserving 
high accuracy, this framework decreases memory 
usage and inference latency to the point that you 
can implement real time speaker ID on several 
such devices as Raspberry Pi, Jetson Nano or 
Cortex A series of chips. 
The contributions of this work are: 
1. A low-complexity CNN embedding extractor 

tailored for real-time speaker identification. 
2. A quantization-aware training pipeline and 

filter-level pruning for reducing memory 
footprint. 

3. Extensive evaluation on VoxCeleb1 and real-
world edge-compatible datasets 
demonstrating the trade-off between accuracy 
and efficiency. 

 
2. LITERATURE REVIEW 
Although speaker identification has seen 
significant progress in terms of accuracy and 
scalability, traditional statistical approach methods 
have now begun to be replaced by more recent 
deep learner based ones. This section describes the 
advances in speaker embedding techniques, 
advances from shallow to deep architectures, and 
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recent attempts to overcome the barriers towards 
being able to run in real-time on edge devices. 
 
2.1 Classical Approaches: GMM and i-Vectors 
Typically, speaker recognition systems were based 
on Gaussian Mixture Models (GMMs) and Universal 
Background Models (UBMs) (Reynolds et al., 
2000), using the probability distribution over 
handcrafted features such as MFCC as speakers' 
representation. These models were effective under 
controlled conditions, but were not discriminative 
enough for noisy, short duration, or mismatched 
conditions. 
Following the emergence of i-vectors (Dehak et al., 
2011), utterances were represented as low 
dimensional vectors in a total variability space, all 
codifying a compact representation of speaker 
identity. While i-vectors were an improvement 
over GMMs, they were still susceptible to noise in 
the environment and relied on the use of more 
complex back end classifiers like PLDA to effect 
speaker comparison. In addition, they did not 
successfully model the temporality dynamics in 
speech. 
 
2.2 Deep Neural Network-Based Speaker 
Embeddings 
Given this, deep learning was adopted as an 
alternative to the statistical approaches, as these 
have the limitations as observed before. One of the 
early innovations was the d-vector model proposed 
by Variani et al. (2014), who trained a DNN to 
classify speakers, and extracted embeddings from 
the DNN word-embedding layer. We found that 
these embeddings have improved a generalization 
as well as better discriminability in short 
utterances. 
This idea was then extended to build x-vector 
architectures (Snyder et al., 2018), which used 
Time Delay Neural Networks (TDNNs) trained 
using cross- entropy loss layers for speaker 
classification, and next computed segment level 
statistics to account for variable length input. The 
resulting embeddings were found to work in both 
speaker verification and identification tasks, 
especially when scored with cosine or PLDA. 
 
2.3 Architectures for Enhanced 
Discriminability 
Some advanced models were proposed to further 
improve the quality of the representation. Deep 
residual connections and channel attention are 

applied to the ResNet-based architectures (e.g., 
Desplanques et al., 2020 – ECAPA TDNN) to cope 
with better intra-speaker variability and inter-
speaker distinction. The transformer-based 
approaches (Zhang et al., 2021) brought in self-
attention mechanisms to model long range 
dependencies in speech. On benchmark settings 
like VoxCeleb2 and SITW, these models achieved 
state of the art performance in comparison. 
Yet, such deep architectures are compute 
expensive with millions of parameters and high 
FLOP count and thus not practical for real time, 
embedded deployment. 
 
2.4 Lightweight and Efficient Speaker ID 
Models 
In recognition of that, researchers are starting to 
explore lightweight architectures. Parameterized 
sinc filters to reduce model complexity while 
keeping interpretability were introduced by 
SincNet (Ravanelli & Bengio, 2018). Low resource 
inference other efforts used MobileNet, Tiny 
ResNet or CNN+GRU hybrids. The model size and 
latency can be reduced by pruning, quantization 
and knowledge distillation (Lin et al., 2020; Kim et 
al., 2021). 
However, many of these models are still burdened 
with a trade-off. Difficulties with robustness to 
challenge acoustic environments, limited variable 
length utterance support, or difficulty with unseen 
speakers without retraining. 
 
2.5 Gaps and Motivation for This Work 
Though deep speaker embeddings have emerged 
as the key pillar of state of the art speaker 
recognition, there exists a massive dearth of real 
time capable embedding based frameworks, 
designed to run on low power edge devices. 
Existing models are either too slow for the 
accuracy they give up or are too large to run on 
embedded processors. Additionally, most existing 
works are speaker verification oriented, while 
identification requires models that are not just 
small but also extensible and nonrely on retraining. 
In this work we fill these gaps with a CNN-based 
embedding extractor trained with triplet loss, 
optimized through structured pruning and 
quantization aware training, and custom designed 
for real time speaker identification. It is well 
balanced with representational fidelity, latency, 
and memory usage and it generalizes well to low 
resource or noisy conditions. 

 
Table 1. Comparative Summary of Speaker Identification Models 

Model / 
Author 

Architectur
e 

Embeddin
g Method 

Training 
Loss 

Accuracy / 
EER 

Deployment 
Feasibility 

Limitations 

Variani et al., 
2014 (d-
vector) 

DNN Frame-
level 
average 

Softmax ~85% on 
internal 
datasets 

Moderate 
(CPU/GPU) 

Sensitive to 
short 
utterances; 
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lacks temporal 
modeling 

Snyder et al., 
2018 (x-
vector) 

TDNN Statistics 
pooling 

Softmax 89.9% 
(VoxCeleb1
) 

Moderate; 
GPU 
preferred 

High latency on 
edge devices; 
large 
parameter 
count 

Desplanques 
et al., 2020 
(ECAPA-
TDNN) 

ResNet + 
SE-Blocks 

Aggregated 
channel 
attention 

AAM-
Softmax / 
GE2E 

96.0% 
(VoxCeleb2
) 

Low 
feasibility for 
embedded 
systems 

Very large 
model (~14M 
params); 
unsuitable for 
real-time 

Ravanelli& 
Bengio, 2018 
(SincNet) 

CNN with 
sinc filters 

Mean-
pooling 

Softmax ~90% 
(TIMIT) 

Good; lower 
complexity 

Needs 
optimization 
for noisy real-
world data 

Kim et al., 
2021 (Tiny-
ResNet) 

Depthwise 
CNN 
(MobileNet-
like) 

Temporal 
pooling 

AM-
Softmax 

~91% 
(VoxCeleb1
) 

High (Edge 
devices 
compatible) 

Still larger than 
microcontrolle
r-class models 

Zhang et al., 
2021 
(Transformer
) 

Self-
attention 
encoder 

Contextual 
embedding
s 

GE2E / 
Contrastiv
e 

~93% 
(VoxCeleb2
) 

Very low 
(Transforme
r-heavy) 

Slow inference; 
unsuitable for 
on-device ID 

Proposed 
(This Work) 

Lightweight 
CNN (6-
layer) 

Global avg 
pooling 

Triplet 
Loss 

94.2% 
(VoxCeleb1
), 92.5% 
(custom) 

Excellent 
(Raspberry 
Pi, Cortex-
A53) 

Slightly less 
expressive 
than full-scale 
Transformer 
models 

 
3. METHODOLOGY 
In this section, we describe a complete workflow of 
the proposed speaker identification framework 
that can work within reasonable limits of real time 
in edge computing platforms. The structure of the 
methodology can be split into five key stages: In 
this project there are many separate parts. 
preprocessing and feature extraction, generation of 
embedding, model compression techniques, and 
classification during inference. 
 
3.1 Overview 
The three major modules of the proposed speaker 
identification pipeline are. In the first step, raw 
audio waveforms undergo a preprocessing and 
feature extraction stage, such that the most 
important part of the audio information for the 
proposed neural network input are obtained in the 
form of compact, informative log-mel 
spectrograms. Next, a ‘lightweight’ CNN based 
covert embedding extractor is then learnt to 
encode the robust speaker representations in low 
dimensional space. The goal of this module is to 
train using a metric learning objective that makes 
separation of speakers likely. Finally, the 
framework is then used during inference to match 
test embeddings to stored identities in a similarity-
based classifier framework such as cosine 

similarity, thus enabling real time identification 
without retraining. 
The modular design of our system ensures that 
every component of the system contributes to high 
identification accuracy at low latency to 
accomplish the end goal of effective speaker 
recognition on memory and compute limited 
devices. 
 
3.2 Input Preprocessing 
The variable length audio is fed into the 
preprocessing pipeline designed to give consistent 
and compact time Frequency representation. To 
begin with, raw audio signals are audio signals that 
are first resampled at 16 kHz sampling rate for 
consistency reasons and also to reduce processing 
overhead. To have time continuity, the signal is 
divided into overlapping frames with an 
application of a Hamming window of 25 
milliseconds which is applied with 10-milliseconds 
stride. 
In addition, a 512-point Fast Fourier Transform 
(FFT) is then applied to each frame to get the 
short-time magnitude spectrum. We run these 
spectra through a 64 channel mel filterbank to get 
log mel spectrograms (Mel spectrograms scaled in 
log to be perceptually relevant and compact). After 
we've normalized each training sample, we either 
pad or truncate to a 2s window and take the 2d 



18                                                 National Journal of Speech and Audio Processing | Jan - Mar 2025 

 

 

Robbi Rahim et al / Lightweight Speaker Identification Framework Using Deep Embeddings for Real-Time 
Voice Biometrics 

 
 

spectrogram for us to use as fixed size input to a 
CNN. Thus, this preprocessing guarantees 
uniformity across utterance with different 

durations as well as across a variety of 
environmental conditions. 

 

 
Fig 1. Relative processing time for each stage in the audio preprocessing pipeline 

 
3.3 Embedding Network Architecture 
The system's core is a lightweight convolutional 
neural network (CNN) tuned to produce 
discriminative speaker embedding using minimal 
number of computations. It is composed of six 
convolutional layers where the channels depth 
increases while the kernels are kept fixed to 3x3. 
Batch normalizaion is used after each layer to 
stabilize training and the ReLU activation function 
is used to introduce non-linearity. Spatial 
dimensions are reduced utilizing max-pooling 
layers, interleaved with them are layers of max-
pooling to also induce translational invariance. 

The output of the convolutional layers are fed into 
a global average pooling (GAP) layer to squash the 
temporal dimension to a fixed length no matter 
how long the input is. Then, this passes through a 
fully connected bottleneck layer to get a 128D 
embedding vector to compactly encode speaker 
specific information. A triplet loss function is used 
to train the model to optimize this embedding 
space by enforcing this margin based separation 
between positive (same speaker) and negative 
(different speaker) pairs. This loss pushes 
embeddings from the same speaker close in 
Euclidean space, and embeddings from different 
speakers further apart. 

 

 
Fig 2. Block Diagram of the Lightweight CNN-Based Embedding Architecture for Speaker Identification 
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3.4 Pruning and Quantization 
Two keys compression techniques are applied on 
model to adapt it to deployment on resource 
constrained environments: This work employs 
structured pruning and quantization aware 
training (QAT). 
During the structured pruning phase, we prune 
filters that contribute the least to output variance 
(L1 norm magnitude) for each convolution layer. A 
series of this process is performed layer-by layer, 
decreasing the FLOPs and parameter count by 60% 
and keeping structural consistency. 

After pruning, the model is then retrained using 
QAT which allows simulating 8bit integer 
quantization during both the forward and 
backward pass. Such network is robust to precision 
reduction and easy to convert to hardware 
compatible formats (TensorFlow Lite, ONNX, etc.). 
The quantized and pruned model is under 1 MB in 
memory with real time operationality on 
processors like ARM Cortex-A72 or Cortex-M7 with 
insignificant performance loss. 

 

 
Fig 3. chart showing the impact of pruning and quantization on model size and accuracy 

 
3.5 Inference and Classification 
Inferencing also consists of preprocessing a 
speaker’s utterance through the CNN to derive a 
128-D embedding vector. Then these embeddings 
are compared to the pre enroled speaker vectors 
stored in an embedding database. Efficient and 
effective high dimensional comparison of the 
closeness between embeddings uses cosine 
similarity. 
The final speaker decision is an election, based on 
a nearest-neighbor approach or top-k voting, as 

described in terms of a fixed tradeoff between 
speed and robustness. Because solely the 
classification phase is in embedding space, adding 
new speakers is simply to enroll new embeddings, 
which requires no model retraining and therefore 
scales well and allows personalizations in real 
world applications. 
The entire pipeline is optimized for an inference 
latency less than 30 milliseconds per utterance and 
is deployed on real world edge platforms like 
Rapsberry Pi 4B and Jetson Nano. 

 

 
Fig 4. Inference Pipeline for Real-Time Speaker Identification Using Deep Embeddings 
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4. RESULTS AND DISCUSSION 
We propose evaluating experimentally the 
proposed lightweight speaker identification 
framework in this section. We measure 
performance in classification accuracy, inference 
latency, and model size, and compare our 
optimised search to relevant baselines. 
 
4.1 Experimental Setup 

The VoxCeleb1 and a custom short duration, low 
resource dataset recorded in natural acoustic 
environments were used for the experiments. Top-
1 identification accuracy, inference time, and 
memory footprint were used to evaluate the 
models. TensorFlow Lite was run on Raspberry Pi 
4B (ARM Cortex A72, 1.5 GHz, 4GB RAM) and a 
simulated Cortex A53 platform. 
 
4.2 Quantitative Performance 

 
Model Top-1 Accuracy 

(VoxCeleb1) 
Accuracy (Custom 
Set) 

Model 
Size 

Inference 
Time 

x-vector (TDNN) 89.9% 85.1% ~13 MB ~120 ms 
MobileNet-based Model 91.0% 87.3% ~4.5 MB ~58 ms 
Proposed 
(Uncompressed) 

94.2% 92.5% 2.5 MB 41 ms 

Proposed (Pruned+QAT) 93.3% 91.7% <1 MB 27 ms 
 
Overall, the proposed framework has better 
accuracy than other compact models with low 
inference latency (<30ms) and subMB model size. 
Most notably, the counterpart being pruned and 
replaced by quantized smalnet only has a minor 
drop in performance (0.9%) but provides major 
performance gains in size and speed, making it a 
perfect solution for real-time speaker recognition 
on edge devices. 
 
4.3 Deployment Validation 
The pruned and quantized model could achieve 
real time inference (RTF < 1) on a Raspberry Pi 4B 
with average latency of 27.4ms per utterance. It 
proved robust to different noise conditions and 
was able to identify speakers, without the need for 
retraining. Furthermore, the system was made 
scalable and personalization ready by allowing 
new speaker identities to be enrolled dynamically 
by adding new embedding vectors. 
 
4.4 Discussion 

We demonstrate that these results hinge on the 
ability of the proposed embedding framework to 
combine triplet loss, a lightweight architecture, 
and quantization aware training to increase 
accuracy while making the model deployable. The 
triplet loss forces the embedding space to be 
semantically meaningful, and can be used to easily 
identify only with few training data. This allows 
the model to be robust to variable length inputs 
since global average pooling is used. 
The proposed method can greatly reduce the 
resource consumption compared to deeper models 
including ECAPA-TDNN and ResNet based 
encoders, and meanwhile keep high accuracy. In 
contrast to the traditional classification networks 
that need to be retrained for each additional class 
added and are not suitable for real world 
applications, the embedding based framework has 
the ability to incrementally enroll speakers, and it 
is well suited for dynamic real world applications 
like voice controlled access systems, personal 
assistants, and smart security modules. 

 

 
Fig 5. Performance Comparison of Speaker Identification Models in Terms of Accuracy, Model Size, and 

Inference Time 



National Journal of Speech and Audio Processing | Jan - Mar 2025 

 

21 

Robbi Rahim et al / Lightweight Speaker Identification Framework Using Deep Embeddings for Real-Time 
Voice Biometrics 

 

 
 

5. CONCLUSION 
The lightweight speaker identification framework 
for real time voice biometrics on resource 
constrained edge device is presented in this study. 
By using deep embedding learning along with the 
compact convolutional architectures, the proposed 
system achieves a suitable balance between the 
identification accuracy and the used memory and 
computational latency. The model was then 
compressed through structured pruning and a 
quantization aware training routine taking it down 
to under 1mb with minimal loss in performance, 
thus being able to run real time on platforms like 
Raspberry Pi and ARM Cortex based systems. 
We present experimental results on standard 
dataset such as VoxCeleb1 and customized low 
resource test set which show that the framework is 
more accurate and efficient in terms of deployment 
than state of art classical and lightweight baselines. 
In addition, the embedding based approach is 
easily scalable and personalizable, because new 
speakers can be registered without retraining of 
the model. 
In brief, this work provides a practical, efficient, 
and scalable solution to deploy speaker 
recognition systems in applications of real world 
such as smart assistant, secure access control, 
embedded conversation agent, etc. 
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