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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
Smart mobile learning applications are becoming increasingly dependent on embedded 
devices which run with harsh limitations with regards to computation power, energy, 
and network variability. Although cloud computing is capable of providing scalable 
processing, storage capacities, the integration of embedded platforms to cloud 
infrastructure is still a big problem especially when it comes to use in resource and 
intensive and latency-sensitive learning applications. In this paper, the author proposes 
a smart embedded-cloud computing system of smart mobile learning applications 
relying on Deep Reinforcement Learning (DRL). This proposed solution defines the 
computation offloading problem and resource allocation issue as a sequential decision-
making problem, according to which the DRL agent is a dynamic, in charge of deciding 
whether the learning tasks need to be performed locally on the embedded system or 
offloaded through edge servers or cloud servers. State space is a combination of device 
status, network status and task properties and the reward mechanism serves to manage 
the combination of execution latency, energy use and quality of service. Numerous 
experiments performed in a simulated mobile learning setting prove that the suggested 
DRL-based mechanism is more favourable, compared to traditional local execution, 
offloading to the cloud, and heuristic-based approaches, in terms of lower latency and 
energy consumption. The findings demonstrate the scalability and flexibility of DRA 
on dynamic mobile systems, so that the suggested model is a prospective indicator to 
the future-generation smart mobile learning systems combining embedded and cloud 
computing technologies.
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Introduction
The way contemporary education has been changing is 
due to the high increase of the smart mobile learning 
systems which have ensured that learners can access 
instructional materials anytime and anywhere on their 
mobile and embedded devices. Multimedia classroom 
tutorials, live evaluation, learning analytics, and adaptive 
content delivery are applications that are characterized 
by high computation intensity and low response times, 
which are necessary to achieve reasonable Quality of 
Experience (QoE). Nevertheless, these demands are 
very challenging to perform through mobile devices 
only, which are limited by restricted processing power, 
part-memory, battery and storage. Consequently, local 
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execution of computation-intensive learning tasks can 
be consumptively energy intensive and response times 
may be very slow, which are extremely detrimental to 
the efficiency of a system and user experience time.[8, 10]

To overcome such shortcomings, cloud computing 
and edge computing paradigm have become viable 
solutions as they provide scaling computing and storage 
as compared to isolated embedded systems. Mobile 
learning applications can be implemented to spread 
computation to the edge servers or remote data centres 
in a cloud to create a drastic reduction in the workload 
on the device, as well as enhance responsiveness and 
performance. According to current work, edge cloud 
collaboration can successfully deliver latency-sensitive 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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learning services by moving computation to the end 
users as well as utilising cloud scalability to execute 
intricate processing operations.[3, 7] However, the nature 
of network conditions, the movement of users and the 
heterogeneous task demands often makes the use of 
static or heuristic-based offloading strategies fail to 
adapt to the dynamic network conditions resulting in an 
inefficient resource utilisation.[1, 5]

The offloading of intelligent computation and control 
of the resources have thus emerged as critical research 
issues in mobile edge computing settings. The stochastic 
and time-varying characteristics of mobile networks are 
not easy to manage with the traditional optimization 
based techniques. In that regard, Deep Reinforcement 
Learning (DRL) has been receiving growing interest 
because of its capability to represent computation 
offloading as a row-by-row decision-making process and 
optimise the optimal policies through the environment 
interaction. The approaches based on DRL have 
proven to be more robust in dynamically balancing 
between latency, energy consumption, and the system 
throughput at different conditions of the networks, and  
devices.[2, 9, 12, 14, 15] The particular features of DRL ensure 
that it is especially relevant in smart mobile learning 
applications where a workload on tasks, network 
bandwidth, and device conditions are constantly altered.

Based on these observations, a paper has been 
proposed on the proposal of DRC based embedded-cloud 
computing integration framework with smart mobile 
learning applications. The suggested framework allows 
to make intelligent decisions about the offloading of 
intelligent tasks by taking into account jointly the state 
of devices, the state of the network, and the specifics 
of the task and achieve maximum impacts on execution 
latency, energy consumption, and Quality of Service 
(QoS). The key contributions of the work are three-
fold, including (i) designing a DRL-based embedded-
cloud integration architecture that suits the context 
of mobile learning systems; (ii) creating an intelligent 
and dynamic task offloading strategy, and (iii) a more 
rigorous performance-evaluation that shows that there 
are significant performance gains over traditional local 
execution and heuristic offloading techniques.[4, 11, 13]

Related Work

Early studies relating to smart mobile learning systems 
were mainly on the utilisation of embedded and mobile 
devices as a means of providing educational content 
in digital format with main focus being on portability 
and accessibility. Nonetheless, in reality, due to low-
level computational power, energy requirements, and 

storage, standalone embedded systems can hardly 
afford high-end learning capabilities, including real-
time analytics, multimedia processing, and adaptive 
customization. These limitations have been observed by 
some researchers and have shown that a mobile learning 
architecture that is strictly device centric tends to lead 
to high latencies and a quick depletion of a battery thus 
compromising the user experience and reliability of the 
system.[8, 10]

Mobile learning architecture has extensively manifested 
the use of cloud computing and lately both edge computing 
paradigms to address these limitations. Mobile learning 
systems based on the cloud sale allow computational 
intensive activities to be off loaded to remote servers 
which is scalable and centrally administered. Edge 
computing also enhances this paradigm through having 
more computing resources closer to the end users, 
hence, minimising communication latency and enhance 
responsiveness in learning applications with high delays .[3, 7]  
It has been demonstrated that hybrid edge cloud 
architecture can be effective in balancing performance 
and scalability and it can be used in interactive and real 
time educational services.[11] However, the majority of 
the current architectures are based on predetermined 
or fixed resource allocation mechanisms, which restrict 
their dynamism in the dynamic mobile scenario.

The major approaches to traditional task offloading 
and task scheduling in mobile edge computing have 
been either heuristic based, mathematic optimization 
like policies, or rule based decision processes. These 
are greedy, threshold-based, and convex optimization 
methods that are designed to ensure that the latency 
or energy is minimised. Although those techniques are 
theoretically optimal, given some fixed assumptions, 
they are not usually effective when it comes to practical 
situations, which involve changing network properties, 
user mobility and unbalanced task demands.[1, [5] In order 
to circumvent these issues, machine learning-driven 
solutions like supervised learning models, evolutionary 
optimization algorithms have been pursued but these 
models generally demand large labelled data sets, or do 
not keep up with changes in the environment.[3, 4]

Reinforcement learning and deep reinforcement learning 
(DRL) has become an influential technique of intelligent 
offloading of computations in mobile and edge devices 
in the last few years. The DRL-based techniques view 
the offloading choices as a sequential decision-making 
task allowing systems to acquire the best possible policy 
by continuously interacting with the environment. As a 
number of studies have proved, DRA makes considerably 
higher optimisation of latency, energy consumption, 
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high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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and Quality of Service during the dynamic environment, 
compared to traditional methods as well as to heuristic 
and uninformed methods.[2, 9, 12, 14, 15] In spite of these 
improvements, currently used DRL-based systems are 
largely adapted to generic mobile edge computing 
applications and do not give much attention to the 
particular needs of smart mobile learning applications, 
including learning QoE, embedded device specifications, 
and education workload specifications. The breach is the 
reason a DRL-based embedded-cloud integration model 
which is specific to smart mobile learning systems is 
developed.

System Architecture and Problem Formulation
Overall Embedded–Cloud Learning Architecture

The proposed system will entail an integrated 
embedded, edge and cloud architecture to serve smart 
learning mobile applications within dynamic operating 
environments. The architecture, as depicted in (Fig. 1), 
has three main layers, which include the mobile learner 
device layer, the edge/cloud computing layer, and the 
network communication layer. Mobile learner device is 
an embedded platform meaning a smartphone, tablet, 
wearable learning device capable of interaction with 
the user, a small scale computation and contextual 
information sensing. These devices perform tasks that 
are related to learning like contents rendering, tracking 
user behaviour, and initial data pre-processes and allows 
them to work under stringent energy and computational 
constraints.

The cloud computing layer and edge offers computational 
and storage resources that can be scaled to solve learning 
tasks that consume resources. The edge servers are 
deployed in geographic proximity to learners to support 
operations sensitive to latency, like real-time assessment 
evaluation and interactive content processing, whereas 
cloud servers are used to perform computation-intensive 
operations, such as learning analytics, learners in 

training their models, and massive storage of data. The 
hierarchical structure allows a workload allocation to 
be effective and balances between low latency service 
provision and high computing power. The architecture 
enables run time linking between embedded devices, 
edge nodes and cloud servers in accordance with 
application demands and state of systems as illustrated 
in (Fig. 1).

The network communication model links the mobile 
devices to the edge servers and cloud servers via 
heterogeneous wireless connectivity systems which 
include Wi-Fi, 4G and 5G networks. Network performance 
is a time-varying phenomenon caused by the mobility 
of users, change in channel, and fluctuation of traffic 
load which has a great influence on the performance of 
tasks. There are bidirectional flow of Learning content, 
computation tasks as well as control information through 
the network. In particular, uncooked/semi cooked 
learning data is uploaded by the embedded device 
to edge/cloud, and refined outputs, feedbacks and 
learning suggestions are sent back to the learner. The 
management of the flow of data among these layers is 
needed to ensure reasonable Quality of Service (QoS) in 
smart mobile learning platforms.

Computation Offloading Problem Definition

Computation offloading is formulated as a decision-
making problem in the proposed framework, where 
every learning task that is created by a mobile device 
can be either performed locally, or offloaded to an edge 
server, or also transferred to a cloud. Each job is defined 
in terms of CPU cycle demand, size of input data, size 
of output data and deadline. The embedded gadget is 
limited with the capacity of the battery, processing and 
memory resources where the edge and cloud servers 
offer some heterogeneous but limited computational 
resources that are shared by multiple users. The goal 
of the offloading strategy is to come up with an best 
implementation decision that reduces the end to end 

Table 1: Comparison of Related Work on Mobile Learning and Task Offloading

Ref. Computing Paradigm Methodology Application Focus Key Limitations

[8] Cloud-based Edge-assisted architecture Mobile learning Limited adaptability

[10] Edge–Cloud ML-enabled education 
systems

Smart education Static decision models

[1] Edge computing DRL-based offloading MEC systems Not learning-specific

[5] Edge computing Mobility-aware DRL Mobile networks High model complexity

[12] Edge–Cloud DRL + service caching MEC Generic application scope

[14] Edge computing DRL for low latency MEC Ignores learning QoE

Proposed Embedded–Edge–Cloud DRL-based adaptive 
offloading

Smart mobile learning Addresses identified gaps
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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execution duration as well as the use of energy besides 
making sure that the learning service delivery is reliable 
and the QoS of learning is maintained. The current multi-
objective optimization problem under the dynamic 
system conditions is the core of the solution provided 
by Deep Reinforcement Learning that will be discussed 
further in the following sections, and the general system 
interactions and the decision flow can be summarised in 
(Fig. 1).

Fig.1: Embedded–Cloud System Architecture Diagram.

Deep Reinforcement Learning–Based  
Offloading Model

DRL Framework Design

In order to facilitate dynamic and intelligent offloading 
computation into smart mobile learning settings, the 
proposed structure presented develops the offloading 
decisioning process as Deep Reinforcement Learning 
(DRL) problem. As (Fig. 2) demonstrates, the embedded 
device inside of the mobile is the agent of the DRL, and 
it continuously communicates with the environment 
that is the network conditions and the resources of the 
edge and cloud computing. The agent takes a note of 
the system state at every epoch of decision making 
and chooses a suitable offloading action in order to 
optimise the performance of learning services taking 
into consideration the embedded device constraints. 
Such agent environment interaction enables the system 
to dynamically respond to the change in user behaviour, 
task workload and network variability.

The state space is meant to fully represent the 
environment of operation of the mobile learning system. 
It contains some of the most important parameters, 
which include the remaining battery level of the 
embedded device, the available network bandwidth, the 

data size of the input of the tasks, the computational 
demand (CPU cycles), and the device CPU load at the 
moment. All these state variables are a representation of 
the internal state of the device of the learner as well as 
an external computing and communication world. Action 
space is characterised by three potential execution 
choices, namely, local execution on the embedded 
device, offloading to an edge server, or offloading to a 
remote cloud server. This discrete action design is an 
actual execution choice in real embedded-cloud learning 
systems as demonstrated in (Fig. 2).

Reward mechanism is important in allowing the DRA 
agent to be made to make the best offloading decisions. 
The proposed model constitutes a weighted sum of the 
negative execution latency, energy consumption and 
Quality of Service (QoS) degradation as the reward. The 
reward functionality will provide the necessary balance 
between system efficiency and user experience by 
punishing excessive delay and energy consumption and 
rewarding constancy in the delivery of learning services. 
This multi-objective reward objective allows the DRL 
agent to engage in learning policies that optimise 
the time and battery consumption of end-to-end task 
execution under dynamic scenarios and the policy 
minimising acceptable learning QoS that is in line with 
the system goals as illustrated in (Fig. 2).

4.2 DRL Algorithm Selection and Training Strategy

Value-based and policy-gradient DRL models that can 
be considered as evidence DQN (Deep Q-Networks), 
Proximal Policy Optimization (PPO), and Actor-Critic 
due to discrete nature of the offloading decision space 
and dynamics of mobile environments respectively. Ac-
tor-critic and PPO algorithms are the most promising in 
embedded-cloud applications where the stable conver-
gence pattern and sensitivity to continuous state space 
and reduced variance are constant. To balance between 
exploration and exploitation in training, a ε-greedy or 
entropy-regularised exploration strategy is used. Before 
the DRR model is deployed in the real world, it must 
undergo offline training in a simulated mobile learning 
environment to learn faster and minimise overheads in 
the real world. The trained model is further executed 
on the embedded device without the need to download 
additional inference mechanisms, and adapts online to 
real-time learning conditions at low computation cost 
because conceptually depicted in (Fig. 2).

Smart Mobile Learning Application Model

The smart mobile learning applications usually contain 
several functional modules which help to deliver the 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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content, interact with learners, evaluate them, and give 
them learning analytics. The learning application process 
within the proposed framework starts with educational 
content delivery i.e. video lectures, interactive 
simulation, and digital reading content to an embedded 
device on the learner. The interactions of learners, such 
as quiz answers, completing activities, and behavioural 
feedback, are also constantly gathered and processed to 
assist in individualised learning experiences. The results 
of assessment and usage data are sent to the backend 
systems to be evaluated and generate feedback to 
permit the real-time and adaptive learning services to 
be provided as conceptually shown in (Fig. 3).

The computational problems associated with these 
learning applications have a wide range of resource needs 
and nature of computational activities. Lightweight 
jobs e.g. user interface and simple display of content 
can be effectively addressed by local processing using 
the embedded device. Conversely, tasks that are 
computation-intensive, such as video processing and 
real-time learning analytics in high-resolution, and 
creation of a personalized suggestions, demand large 
processing capabilities and memory. Such functions can 
result in high latencies and high energy usage (when 
implemented locally) and would therefore be good 
candidates to be offloaded to edge/cloud servers. The 
dissimilarity of these tasks makes it necessary to have a 

smart architecture of the dynamic execution decision-
making mechanism in the learning system as illustrated 
in (Fig. 3).

To overcome this demand, the suggested smart 
mobile learning framework will pair learning-related 
computational tasks with Deep Reinforcement Learning 
(DRL)-based offloading choices. Depending on the state 
of the system, such as the battery of the device, the 
bandwidth of the network, task size, and urgency of its 
execution, the DRL agent decides whether the task could 
be executed locally, offloaded to an edge server, or 
processed in cloud. Interactive assessment tasks, which 
are latency-sensitive, are exposed to the edge with 
other resource-demanding analytics and model training 
tasks being offloaded to the cloud. Such adaptive task 
mapping will allow effective resource use and facilitated 
learning processes that are smooth and responsive as 
shown in (Fig. 3).

The proposed application model will have a smooth 
integration with the existing Learning Management 
Systems (LMS) (like Moodle or cloud-based educational 
platforms). The exchange of learning content, learner 
and performance measure between mobile learning 
application and LMS backend are conducted by the use 
of standardised application programming interfaces 
(APIs). This deployment enables institutions to utilise the 
suggested DRL based embedded-cloud platform without 
altering the current learning systems. The proposed 
model will lead to higher scalability, adaptability, and 
effectiveness of intelligent mobile learning systems by 
integrating intelligent offloading and LMS interoperability 
as summarised in (Fig. 3).

Experimental Setup and Implementation

The experimental analysis of the proposed DRL-based 
embedded-cloud offloading framework is executed in the 
form of the representative mobile learning system that 
consists of the mobile embedded devices, edge servers, 

Fig. 2: Deep Reinforcement Learning (DRL) Agent–
Environment Interaction Model for Embedded–Cloud 

Based Smart Mobile Learning Systems.

Fig.3: Workflow of Smart Mobile Learning Application.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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and cloud infrastructure. The mobile learner device is 
designed upon the model of embedded platform that 
has few computational and energy resources, which is 
based on the nature of modern smartphones and tablets 
in application in mobile learning. Some of the important 
parameters are CPU frequency, available memory, 
battery capacity, and energy consumption rates in which 
to calculate and communicate. The specifications of 
these devices are presented in the (Table 2) that gives 
the base configuration obtained in the experiments. 
The cloud infrastructure and edge is constructed in 
the manner so as to represent a realistic hierarchical 
computing environment. Edge servers are configured to 
have moderate computing power and are deployed near 
mobile users to enable learning tasks which have latency 
constraint whereas cloud servers have high-performance 
computing and extensive storage so that computation 
intensive analytics and model training can occur. 
There are several edge servers, which are assumed to 
contend resources among users. The network connexions 
between mobile devices and edge servers and the cloud 
are modelled using heterogeneous values of bandwidth 
and latency relating to Wi-Fi and 4G/5G connexions. 
The specifics of the infrastructure parameters such as 
server processing capabilities and network properties 
are presented in (Table 2).

An evaluation methodology using simulation is used to 
train and test the DRL model in the case of dynamic 
situations. The simulated environment supports the 
mobility of the user, the undulating network bandwidth, 
and the intermittent workloads of the user in smart 
learning scenarios of the mobile learning process. 
Learning tasks are created in accordance with realistic 
application profiles such as video content processing, 
assessment evaluation and learning analytics. Workload 
traces and synthetic datasets are used to simulate 
the various learning behaviours and system loads. The 
DRL agent is first trained in offline in this simulated 
world, the agent is then tested in unseen sequences 
of tasks to determine its generalisation and flexibility. 
In order to understand the performance of the system 
fully, there are several assessment metrics that are 
taken into account. Task latency is calculated as 
the duration of execution of the tasks between the 
occurrence of the task and the delivery of the results. 
The energy consumption is computed depending on the 
calculation and communication energy expenses spent 
by the mobile device. System throughput represents 
the number of learning operations passively handled in 
one time interval, whereby User Quality of Experience 
(QoE) depends on a composite measure consisting of 
a latency, service reliability, and task success. Such 

performance indicators offer a global assessment of the 
suggested structure and the foundation of comparative 
analysis that will be offered in the next Results and 
Discussion section, where the definitions of metrics and 
measurement parameters were summed up in (Table 2).

Table 2: Simulation Parameters and System Configuration

Parameter Configuration

Mobile Device CPU Quad-core, 2.0 GHz

Mobile Device RAM 4 GB

Battery Capacity 3500 mAh

Edge Server Capacity 8–16 cores, 16 GB RAM

Cloud Server Capacity 32+ cores, 64 GB RAM

Network Technology Wi-Fi / 4G / 5G

Bandwidth Range 5–100 Mbps

Task Data Size 1–20 MB

Task Deadline 0.5–2.5 s

DRL Algorithm DQN / PPO / Actor–Critic

Discount Factor (γ) 0.98

Training Episodes 2000

Results and Discussion

The validity of the proposed DRL-based embedded-cloud 
offloading framework can also be measured through its 
comparison with three base methods: local execution 
alone, cloud-only offloading and heuristic-based 
offloading. The quantitative performance comparison 
done in (Table 3) is based on task latency, energy 
consumption, throughput and user Quality of Experience 
(QoE). The findings indicate that a local execution 
has a high power consumption and a large latency 
because embedded devices have inadequate resources 
and cloud-only offloading has undue dependence on 
varying network factors. The methods that are based 
on heuristics provide average enhancements but are 
not adaptable. Conversely, the suggested DRA-oriented 
model has significantly lower latency and power usage, 
and better QoE in dynamic mobile learning systems, 
which validates the approach of smart decision-making 
to dynamic mobile learning.

In order to further study the learning effectiveness of the 
proposed model, convergence behaviour of the DRL agent 
is studied. As the cumulative reward is increasing until 
training stabilises, as demonstrated in (Fig. 4), there is 
effective learning in the policy and convergence occurs 
at the adequate number of episodes. The first stage of 
exploration has variations in its performance because the 
agent interacts between exploration and exploitation. 
In the long term, the agent is informed about the most 
effective offloading behaviour that maximises long-term 
payoffs through simultaneous optimization of latency, 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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energy consumption, and the quality of services. Such 
convergence behaviour illustrates the stability and 
strength of the DRM model with respect to applying it 
to the issue of offloading computation to the embedded-
cloud learning systems.

Network variability is also important to control how 
mobile learning applications perform. The experiments 
with dissimilar bandwidth and latency states show that 
the DRL-based framework is more flexible in response 
to network changes in comparison to the control 
techniques and strategies. In low-bandwidth or high-
latency conditions, the DRL agent simply adapts local 
execution or edge offloading in order to preserve a 
reasonable learning performance, whilst cloud-only and 
heuristics solutions severely degrade in performance. 
The resilience and stable QoE delivery are clear in the 
trends of the performance when the DRA policy is varied 
to different network conditions as the performance 
stays at a relatively high level across different network 
conditions (Fig. 4).

The high scale and flexibility a re essential in real-life 
applications of smart mobile learning systems that 
demand implementation at the large scale. It can be 
denoted by the experimental results that the suggested 
framework is efficient to scale with the rise in the 
rate of task arrival and the amount of users using the 
cloud resources that are distributed. In contrast to the 
offloading solutions addressed by adhering to a fixed 
policy, the proposed method based on DRL implements a 

dynamic reallocation of the tasks depending on the real-
time system conditions thus avoiding the performance 
bottlenecks and overconsumption of resources. As 
the discussion of the results in (Table 3) and (Fig. 4) 
confirms, the proposed approach delivers the scaled-
up and dynamic solution that can ensure the next-
generation smart mobile learning applications in the 
heterogeneous, dynamic, computing environments.

Practical Implications

The suggested embedded-cloud offloading framework 
is based on DRL, which exhibits a high potential to be 
deployed in a real-life smart mobile learning framework. 
The framework is able to be incorporated into existing 
learning systems without the need to make specific 
hardware changes by operating on standard mobile and 
embedded platforms and using existing edge and cloud 
infrastructures. The trained DRL model can be deployed 
on-device through lightweight inference requirements, 
and this allows the model to make decisions with low 
overhead costs, and thus such an approach can be used 
in the real-life applications of resource-constrained 
mobile learning settings.

In terms of the learner, the quality of the learning 
experience is greatly improved as proposed system 
ensures that there is less latency in performing the 
tasks and is not subjected to any form of dead air during 
interaction with learning applications. Activities like 
interactive quizzes, real-time feedback and multimedia 
content rendering are latency sensitive tasks that can be 
optimally offloaded through smart decisions when there 
is a change in network and device characteristics. This 
has led to increased speed, reliability and continuous 
provision of learning services to students, which in 
totality have resulted to increased engagement and 
satisfaction.

Schools will also have a lot to derive through the 
implementation of the proposed framework. Distribution 
of intelligent tasks amongst embedded devices, edge 
server and cloud resources results in a better use of the 
computational infrastructure to save on operational cost 
and unnecessary overprovisioning of cloud facilities.  

Fig.4: Performance Comparison of Different 
Computation Offloading Strategies in Smart Mobile 

Learning Systems.

Table 3: Performance Comparison of Different Offloading Strategies

Offloading Strategy Latency (ms) Energy Consumption (J) Throughput (tasks/s) QoE Score

Local Execution Only 420 9.8 3.1 0.71

Cloud-Only Offloading 360 7.6 3.8 0.78

Heuristic-Based 
Offloading

290 6.2 4.5 0.84

Proposed DRL-Based 
Offloading

210 4.9 5.7 0.91
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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The adaptability of the DRA-guided methodology 
allows the institutions to dynamically deal with the 
computational loads in high traffic seasons to sustain 
the service qualitatively and effectively to efficiently 
allocate resources.

The proposed framework can provide a versatile and 
adaptive control mechanism to the management of dy-
namic mobile learning settings by system designers and 
software developers. The decision model which was de-
veloped using DRL can be scaled or retrained to support 
new application needs, network technologies or hard-
ware platforms. In addition, the platform is entirely 
integrated with the current embedded systems, edge 
computing, and cloud platforms with uniform communi-
cation protocols and APIs. The compatibility guarantees 
a smooth integration with the existing infrastructures as 
it offered a scalable platform on which intelligent mo-
bile learning applications can be built in the future.

Limitations and Future Work

Although the suggested DRL-based embedded-cloud 
offloading framework has shown a great performance, 
diverse limitations should be admitted. The first of 
these is the training overhead and convergence time of 
deep reinforcement learning models. Whereas offline 
training helps to reduce real-time computational costs, 
stable convergence can be very costly (in terms of 
training episodes and search together with exploration), 
especially in a highly dynamic environment. This 
complexity of training may become a difficulty where 
the system conditions or application requirements 
change very often and model retraining or fine tuning 
needs to be done.

The other critical weakness of the existing framework 
is scalability. Although experimental measures indicate 
that the system can perform effectively when used by 
moderate user numbers, and when used to perform 
moderate amounts of tasks, there is an increase in 
computational and communication overheads at the 
edge and at the cloud computing layer when scaling the 
system to support large-scale deployments containing 
thousands of users and tasks simultaneously. Contention 
of resources between users may affect optimality of 
decisions and responsiveness in the system. The next-
generation work should explore more hierarchical 
or distributed learning structures that can be more 
effectively applied to a huge multi-user system and 
sustain a low latency and energy consumption.

Other vulnerable issues include security and privacy 
in smart mobile learning systems, and especially when 
sensitive learner information is offloaded to an edge 

server or cloud server. Data confidentiality, integrity, 
and access control it is not explicitly mentioned in the 
current framework, which assumes a trusted execution 
environment. The privacy controlling mechanisms, 
secure mode of communications, and trusted execution 
technologies need to be included in future studies in 
order to safeguard the information of learners in the 
offloading and processing phases. These issues are 
critical to be addressed in the real world to be adopted 
in the educational settings where the data protection 
regulations need to be fulfilled.

A number of potential lines of research may be followed 
further on the proposed framework. Federated Deep 
reinforcement Learning can be investigated so that 
to allow joint learning of policies on different devices 
without transfer of raw data and to improve privacy. The 
offloading decisions can be coordinated among the users 
and edge servers using multi-agent DRA in a distributed 
fashion. Also, when introducing edge-cloud-IoT co-
optimization tactics, the system can be advanced even 
further through the introduction of the adaptability of 
contextual information obtained by the diverse devices 
of the IoT system. These extensions present good 
prospects to increase scalability, reliability and smarts 
of the future smart mobile learning systems.

Conclusion

In this article, the authors provided a Deep Reinforcement 
Learning-based embedded-cloud computing design 
of smart mobile learning applications to overcome 
the problem of computational, energy, and latency 
constraints of mobile and embedded devices working in 
isolation. The proposed framework provided by carrying 
out the intelligent planning of the execution of tasks 
revolving around embedded devices, edge servers, 
and cloud resources enables adaptive and efficient 
computation offloading in the dynamic conditions of 
the network and workload. Experimental evidence 
showed that there were major better outcomes than 
local execution, cloud-only offloading, and heuristic-
based solutions, resulting in a lower task latency, 
energy consumption, system throughput, and user 
Quality of Experience improvement. The results indicate 
the usefulness of DRL in synthesising the dynamics of 
complex systems and optimal offloading decisions under 
real-time conditions. On the whole, this paper highlights 
the opportunity of DRL-enabled embedded-cloud 
integration as a major enabler of the next-generation 
intelligent mobile learning platforms, a scalable and 
adaptable platform to support the educational systems 
in the future, which embrace edge intelligence, cloud 
scalability, and adaptive learning technologies.



Prerna Dusi : Embedded and Cloud Computing Integration for Smart Mobile Learning Applications  
Using Deep Reinforcement Learning

Journal of Integrated VLSI, Embedded and Computing Technologies |Jan - Apr 2026 19Journal of VLSI circuits and systems, , ISSN 2582-1458 

RESEARCH ARTICLE WWW.VLSIJOURNAL.COM
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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