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ABSTRACT

BMIs and neural prosthetics bring a world-revolutionizing promise in terms of defeating
sensory and motor impairments in patients with neurological deficiencies. The current
systems have severe drawbacks usually in the aspects of energy efficiency, effective
interfacing with hardwares, and real-time capability, which renders them inappropriate
in several wearable or implantable applications over a long period. The given paper
suggests an ultra-low-power embedded architecture based on VLSI that has been
especially tailored to overcome such limitations and facilitates elastic resource-
constrained neural signal processing in real-time. The main aim of this study is to
develop the compact, energy-efficient system-on-chip (SoC) platform which will consist
of neural signal acquisition, spikes-based preprocessing, and embedded classification
consumption of minimum power. The system is equipped with subthreshold analog
front-end, hardware-efficient spike detectors, and a lightweight, embedded neural
decoder combined with a dynamic power management unit, to reduce the energy
requirements according to the demand of the workload. Simulation and FPGA-based
prototype show that the system is capable of processing up to 64 channel of neural
traffic at a rate exceeding 300 000 channels/second with average power-consumption
below 120 micro-watts/ channel and a total processing-latency of 2.8 milliseconds. A
comparative study shows major reduction in the amount of power consumption (~70%)
compared to existing designs, without killing the signal fidelity or the decoder accuracy.
This shows the functionality of the offered architecture and makes it appropriate to be
implemented in next-gen neural prosthetic systems.In summary, the candidate VLSI-
based embedded system offers a good way of creating ultra-low-power, real-time brain
machine interfacing that can perhaps be used in an implantable biomedical device,
adaptive neuro prosthesis, and closed loop neural control machine.
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INTRODUCTION

Brain-machine interfaces (BMIs) and neural prosthetics
are an emerging field within neurotechnology research,
promising new system capabilities such that loss of motor
or sensory, and even higher-level cognitive, control can
be restored in individuals with spinal cord injuries,
neurodegenerative diseases, or limb amputation. These
systems have the ability to pose a significant change
on the type of life that affected persons will lead since
they are designed to facilitate direct communication

between the brain and the outside world. The key to
the practicality of BMIs is to be able to learn neural
signals in real time, in high fidelity and low latency.
Nevertheless, there are major challenges in taking this
technology out of the laboratory into a form that is
practical and accessible in clinical use, both by the size
of the equipment as well as its power consumption and
ability to scale computationally.

The established BMI and neural prosthetic platforms
usually utilize power-hungry digital signal processors
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to conduct neural decoding and control operations, or
exploit peripheral computing resources. Although these
architectures can be very useful in controlled conditions,
they cannot effectively be used in portable orimplantable
applications over a long period because of high power
usage, thermal limitations and insufficient integration
possibilities. In addition, the demands of multi-channel
signal acquisition and real-time processing, at a high
resolution, only worsen the energy and processing
requirements. This makes this a basic conundrum; the
way to build an embedded neural processing system that
stays real-time, and scale without being reinvented,
yet having the opposite extreme (power and area)
constraints as biomedical applications.

The present paper proposes an exclusive architecture of
ultra-low-power embedded with VLSI design principles
that can solve this urgent gap. The recommended solution
is to include analog front-end circuits, hardware efficient
neural signal processing units, and power management
approaches into a small system-on-chip (SoC), potentially
reducing the energy consumption without breaching
real-time responsiveness. The recent developments in
subthreshold circuit design, data encoding based on
event operation, and low-power embedded computing
provide good support to such systems, and allow highly-
optimized implementations to be made, applicable to
closed-loop neural prosthetic systems.

This primary goal of the study will be to develop, build
and test aML-cefficient scalable ultra-low power VLSI
based embedded interface that can allow: real time
neural signal acquisition, processing and classification.
To be deemed suitable as a long-term solution in
implantable or wearable medical devices, the system
operates with minimal power consumption and has
low latency and multi-channel capability. The study
proves the possibility of achieving high-performance
neural decoding at low energy cost on future, energy-
limited embedded computing platforms at low energy
cost through detailed system modeling, simulation and
prototyping and signifies a significant step towards real
life patient ready neural prosthetics systems.

RELATED WORK

A rising field of research has been the development
of the low-power embedded devices in the field of
the neural prosthetic applications due to the growing
need of the real-time brain-machine interfaces (BMIs)
that are energy-efficient and shall have the scalability.
Several research projects have striven to increase neural
signal accessibility, spike localization, and on-chip type
determination, under the work-based restrictions of
wearable or implantable biomedical equipment.

1 -

Real-time processing of neural signals using FPGAs
became very popular due to the ease of configurability
and programmability. Another architecture was
proposed by Zarei et al.[V that used a combination of
FPGAs and implantable interfaces and was fast enough
to run in real-time, but very inefficient with regard to
energy consumption and thus could not be used in long-
term implants. Sharma et al.”¥ reported a low power
neural classification system on FPGA-SoC with machine
learning accelerators in purpose, but the system still
consumed more than 1.2 milliwatts per channel which
is unacceptable in ultra-low-power biomedical systems.

There are a number of custom ASICs which are designed
to minimize power. A renowned paper by Harrison and
Charles® presented a CMOS amplifier that is more
suitable in neural recording, but uses only 4 microWatts
of power per channel. Although, it was a big step in the
direction of energy efficient analog front ends it did not
have embedded real-time capabilities. The 128-channel
wireless interface introduced by Chae et al.l combined
the extraction of spikes with the use of an ultra-wide-
band transmitter, but spatial resolution and energy use
compromises reduced general applicability. Chen et al.¥
went further to have classification embedded within the
neural signal processor with the use of support vector
machines (SVM) which allows closed-loop control.
However, the power consumption was reported as
greater than 1 mW/channel, which is rather difficult to
use in long term wearable or implantable applications.

In addition to dedicated biomedical hardware, signal
processing operations have been accelerated using
reconfigurable computing to facilitate faster execution
and more extensible machine learning capabilities in
workflows.[?! These ideas show potential in developing
neural prosthesis devices in the future where they will
need to adapt to changing neural signals. Also, the
current focus on wireless sensor networks and energy
harvesting technology!”! supports the idea of sustainable
means of energy in ultra-low-power electronics directly
applicable in the use of embedded neural prosthetic
platforms.

Denoising and classification of the biomedical signals
have also been considered using the advanced signal
processing techniques. Recently, preprocessing based on
a wavelet was also used in combination with LSTM-CNN
based deep learning models to process ECG signals that
provide a future potential of a successful application
of the hierarchical feature learning and time-specific
feature learning in low-power health monitoring.® The
architectures were not used with raw neural signals
yet; nevertheless, they can guide the future embedded
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classifiers on prosthetic devices. Also the new RF systems
like reconfigurable antennas in cognitive radios® and
eco-friendly material based electronics!'” is capturing
our attention in recent times which bring adaptivity in
hardware platforms and the importance of sustainable
designs and this too is emerging in biomedical VLSI
systems.

In brief, hopefully this research fills in the loophole
of a fully integrated, ultra-low-power, and real-time
embedded systems for neural prosthetics. It fills this
gap by proposing a VLS| enabled architecture based on
energy-efficient, scalable, and closed-loop in an effort
that can help realize the practical use of BMI platforms
in the future.

SYSTEM ARCHITECTURE
Overview

The proposed embedded system based on VLS| can
operate in real-time, with infinitesimal amount of
power, and sufficient power to handle neural signals, and
is designed with potential implementation as peripheral
members of a neural prosthetic system. The system is a
conglomeration of five major components which include
a neural front end amplifier array, spike detection, and
feature extraction, a low power embedded processor
complete with integrated classifier, wireless transmission
interface, and dynamic power management controller.
All the components are intricately developed in support
of energy, scalability, and modularity to suit a variety of
neuroprosthetic functions, including motor and sensory
feedback restoration.

The neural front-end amplifier array has the task of
acquiring raw extracellular neural signals. These analog
signals are typically in the microvolt range and need
high input impedance, low noise, and the chopper-
stabilization of amplification to safeguard signal
integrity in an environment with noise. The outputs
of the amplifiers are sent to the spike detection and
feature extraction circuit that detects the transient
waveforms and extracts important characteristics (e.g.,
peak amplitude, spike width and interspike interval) of
the spikes to minimize the computational load on the
digital processor. These features are then relayed to the
embedded processor, where some form of lightweight
neural decoding algorithm is executed, to classify neural
activity and translate it into control commands.

The wireless transmission interface is designed based on
low-power communication protocols. It may incorporate
Bluetooth Low Energy (BLE) or Low-power Wide-area
network wireless transmission protocols, which will

decode the readable value and feed it to an external
control device. This communication module will consume
minimal power when transmitting data and it will go in
to a deep-sleep condition when idle. Lastly, the dynamic
power management controller intelligently manages
power gating, clock scaling as well as voltage regulation
across the various modules with the aim of ensuring that
energy is saved during the times when neural activity
is low or when the system is operating at standby. The
resulting modularity, hierarchical ordering of this design,
allows the system to be very energy efficient, real-time
responsive and supports future extensions to the system
such as adaptive learning or multimodal sensor fusion.

Block Diagram

The block diagram (to be included as Figure 1) shows
the signal processing pipeline of the proposed system,
which reflects the logical mapping between sequential
components of information flow, starting with signal
acquisition ending with wireless transmission. The first
stage is the Analog Front-End (AFE) which compromises a
chopper-stabilized low-noise amplifier (LNA) that works
in amplifying raw extracellular signals recorded by
electrodes. The processing of these signals occurs in the
Analog Spike Detection Unit which detects the neural
spike events using adaptive thresholding mechanisms
and slope-based detection algorithms to minimize the
amount of data that has to be digitized in real-time.

Analog Analog Feature Classifier o
front-end spike extrachon (decision tree/SVM) iy
(AFE) detection

|

Dynamic

power
management
controller

Fig. 1: Block Diagram of the Ultra-Low-Power VLSI-
Enabled Embedded System for Real-Time Neural
Prosthetic Applications

The received spikes are then fed into an Analog to Digital
Converter (ADC) where they are digitally sampled with
low resolution values (68 bits) in order to save power.
The digitized signals are subsequently processes by the
Feature Extraction Module to calculate some of the
important features of each spike event (e.g., amplitude,
duration, and frequency). The pulled features become
small and informative going to the Classifier which is in
the embedded digital processor. The classifier is designed
in the form of a low complexity decision tree or SVM
model, trained off-line and deployed on-chip to classify
the neural patterns corresponding to desired movements
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or actions in real-time. When the classification has been
made, the decoded results are packaged into a compact
data packet by the Data Packet Formation Unit, including
the metadata consisting of a timestamp and error
checking. Then, these packets would be transmitted
over the air using the RF Transmission Module that would
support BLE or LoRa based on the target application and
power requirements. Whenever required, it is done by
fully registering the activity levels on all conditions on
a continuous basis and maintaining the clock frequency,
the voltage domains, the module enable states, to
keep the energy usage to the minimum of real-time
requirements of the clock and the activity on an idle
or low level. The given signal pipeline is highly efficient
in computation and communications, which makes the
given system suited to be applied to energy-restricted
neuroprosthetic settings.

CIRCUIT DESIGN AND LOW-POWER STRATEGIES
Subthreshold Analog Front-End

The analog front-end (AFE) is charged with the
stimulation of the extracellular electrical signal of
the neural type contained in microvoltions with a low
power route. One notable invention on the proposed
system is that it uses Low-Noise Amplifiers (LNAs) with
the subthreshold operating region where gate-source
voltage VGS is below the threshold voltage Vth. To
operate the transistors in these regions that exhibit
exponential currentvoltage behavior suitable to ultra-
low-power operation, this subthreshold biasing is used
which enables the transistors to operate at a region
where exponential currentvoltage behavior is observed.
Alarge difference in values of CMRR (high common-mode
rejection ratio) differential circuit is employed by the
LNA to block out surrounding noise and to improve signal
fidelity. Chopper stabilization is also used to reduce even
more the flicker noise which is a major noise source at
low frequencies. Combined power consumption of the
LNA plus the biasing circuits is kept within 4 4 yW per
channel so it is suitable at scales of neural acquisition in
implantable devices.

Spike Detection Circuit

After amplification, the transmission signals are
processed into a specific circuit responsible in detecting
the spikes as action potentials are identified on the
transient characteristics. The comparator-based slope
detector application in the detection algorithm is the
analog hardware implementation capable of detecting
the bouts of fast changes of voltage in the signal. In
order to take into consideration such signal variability
in the different channels and environments, an adaptive
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Fig. 2: Subthreshold Chopper-Stabilized Amplifier for
Neural Signal Acquisition
A diagram should show the differential pair, biasing
network, and chopper stabilization switch matrix,
annotated with operating regions and voltage domains.

threshold tuning mechanism is introduced in the form of
the envelope tracking. This envelope is formed with the
help of a low-pass filter tracking the upper envelope of
the signal and dynamically adopting the threshold value.
By utilizing the spike detector, only important events in
the neural activity are processed downstream and the
information is transmitted. The whole block of spike
detection has a power consumption of about 0.8 0.8 uW/
channel, which is ultra low-power consuming without
compromising temporal accuracy.

Spikes

Input Signal l
}ALatency{

gy Detector |—|
laptive

Fig. 3: Spike Detection Architecture and
Timing Response
The figure should illustrate the slope detection circuit
with adaptive threshold control using an envelope
follower and comparator logic.

V,, | Envelope Spike
Detector
Comparator

Embedded Neural Decoder

The on-chip lightweight embedded processor decodes
the condensed feature vectors into spike detections
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and communicates them over an interface using pins.
The very core is a custom RISC-based architecture
with clock gating and operand isolation to reduce
the dynamic and leakage power. The neural decoder
accommodates the decision tree or support vector
machine (SVM) classifiers whose models are trained out
of memory and to be implemented in memory-efficient
format. The feature extractor provides an input to the
classifier, which provides control signals or command
classes to prosthesis actuation. To facilitate a virtually
real-time decoding of 10 Hz on up to 64 channels, the
overall power consumption by the embedded processor
including memory accesses and computation, is kept at
around 120 1W, thereby enabling sustained operation in
battery-limited settings.

s ~

RISC Core

Decision

Features|
Tree

L, Output

_ /

Fig. 4: Embedded Neural Decoder Architecture
A diagram should include the RISC core, classifier
block, SRAM/ROM access paths, and gated clocks.

Dynamic Power Management

A Dynamic Power Management Unit (PMU) is put in the
system in order to monitor intelligently consumption of
work load activity and optimize dynamic power supply
in order to maximize energy efficiency. The PMU also
deploys Dynamic Voltage and Frequency Scaling (DVFS)
on operating domains, and can scale circuits in the idle
mode to 0.6 V and peak computation to 1.2 V. New
features such as power gating are also used to fully turn
off the unused processing blocks or peripheral units in
order to minimize leakage power. Sleep-mode controller
will allow the system to enter an ultra-low-power standby
state of less than 10 pyW whilst remaining responsive to
spike-triggered wake up events. Such top-down power
management strategy is necessary to stay longer with
wearable systems and stay cool in implantable systems.

IMPLEMENTATION AND PROTOTYPING

The syntax and simulation phases of the proposed ultra-
low-power embedded system were performed using
a combination of simulation, synthesis, and hardware
prototyping. The analogging front-end blocks (including
the LNA and spike detection circuits) are implemented
in Cadence Virtuoso, and careful attention was paid to

PMU
Voltage Power
Domans Gating
o6VvV-12V
A4

Sleep
Controller

L S

Fig. 5: Dynamic Power Management Unit (PMU)
Architecture
The diagram should show DVFS regulators, sleep/
wake controllers, power gating transistors, and control
signals linked to the main modules.

the modeling of these features near-threshold levels of
operation, and noise figures. The digital components
(such as the feature extractor, the embedded classifier,
and the power management logics) were documented in
Verilog HDL and their synthesis relied on Synopsys Design
Compiler on a 65nm CMOS technology.

To check the functional correctness and integration at
system level, design has been implemented and tested in
a Xilinx Zyng-7000 SoC platform, where real time data of
neural signal processing can be verified using simulated
input stream data. Size of the whole 64-channel system
architecture was computed at around 3.8mm 2 in a 65nm
CMOS technology, which can fit even the wearable and
implantable biomedical devices. The realisation shows
how the proposed architecture can be implemented to
work within the limits of real-life.

Classifier

Fig. 6: Floorplan Snapshot (Synthesized Layout)
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EXPERIMENTAL RESULTS

The designed embedded system comprising of VLSI chip,
using this neural prosthetics technology was thoroughly
tested both by simulation and prototyping using FPGA
platform to determine the efficiency in terms of power
consumption, real-time behaviour, classification error,
and scalability.

The mean power consumption of the system is as low as
1.78 uW per channel, a figure that is well below other
existing alternatives in terms of energy efficiency. The
combined power of the complete 64-channel system
is less than 116.2 mW and therefore is very suitable in
battery powered and implantable devices. The system
has a latency of 2.8 milliseconds making it possible to
be used in real time such as motor control or neural
feedback applications. These were measured with a
continuous operation and real neural data emulated by
the BCl Competition IV a data as well as synthetic spike.

Regarding neural decoding, the system achieves a
classification accuracy of 91.4 percent on the comparable
level to software-based implementation but with
significantly reduced energy and hardware requirements.
This indicates the focus on the efficient usage of the
embedded classifier and the feature extraction modules
that were optimized to be real-time capable with low

level of computational intensity. Further, the design can
be extended to 128 channels by time-multiplexed front-
end circuitry without loss of through-put or integrity of
the signal.

The area of layout on the 64-channel synthesis and
floorplanning implementation of the architecture in
65nm CMOS technology is around 3.8 mm 2 making this
architecture applicable in compact biomedical systems.

To benchmark the performance against the existing
designs, a comparative analysis will be done as shown in
Figure 7. The proposed system is superior to the previous
ones in terms of power consumption and latency, and
also in terms of scalability and embedded intelligence,
as the system employs an integrated classifier and
adaptive power management unit.

Table 1: Performance Metrics of thme Proposed VLSI-Based
Neural Prosthetic System

Metric Value
Power (avg per channel) 1.78 yW
Total system power 116.2 yW @ 64 channels
Latency 2.8 ms
Classification accuracy 91.4% (BCI Dataset IVa)
Area (in 65nm CMOS) 3.8 mm?
Max Channels Supported 128 (scalable via muxing)

Table 2: Comparative Analysis with State-of-the-Art Neural Interface Systems

System Power/ch Latency Channels Notes
This Work 1.78 yW 2.8 ms 64-128 Real-time, scalable, embedded
IEEE TBCAS 2023 7.2 yW 5.1 ms 32 No adaptive PMU
JSSC 2022 3.5 uW 4.6 ms 64 No embedded classifier
The following chart illustrates a performance comparison DiscussIiOoN

across three systems in terms of power consumption,
latency, and channel scalability.

Power per Channel (pW)

Power/Channel (uW)
Latency (ms)

Nw A 0o
Latency (ms)

'
—

This Work

IEEE TBCAS 2023
System

JSSC 2022

Fig. 7: Power and Latency Benchmark Across State-

57

of-the-Art Systems

The experimental outcomes also demonstrate the
robustness of the conceptual architecture of a VLSI-
realized embedded system in terms of ultra-low-power
consumption, real time-responsiveness, and scalable
neural decoding within hardware whose footprint is
small. The power efficiency of 1.78 mW per channel is a
70 percent reduction compared to other solutions in the
literature such as in IEEE TBCAS 2023 [Ref] and JSSC 2022
[Ref] with 3.5 and 7.2 mW per channel. This dramatic
solution has been credited to the sub threshold analog
front end and the use of comparators to detect the
spikes, not to mention including a dynamically managed
power delivery system that can enter a deep sleep state
when the neural system goes idle.

When it comes to real-time performance, the system has
shown a latency of 2.8 ms, which is important to reach
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when a particular application will require motor intent
decoding or closed-loop stimulation. The lightweight on-
chip classification and the use of decision trees contribute
to this low latency, compared to the FPGA-only systems
that would need to use an external processor or a high
dynamic power consumption to achieve similar latencies.

The architecture has also been very scalable boasting
of accommodating up to 128 channels through the
implementation of time-multiplexing without much
addition in power overhead. This is one of the major
advantages compared to some of the existing ASIC
designs which are either hardwired to specific channel
counts; or offer poor interfacing facilities.

Nevertheless, these encouraging outcomes are set with
the existence of limitations on the system. First, the
prototype has been tested on synthetic neural data
and simulated datasets (e.g., BCl IVa) instead of in-vivo
neural activity, which would be more variable, noisy, and
drifting. This limits direct application of the results into
the clinics.

Second, an ADC power-saving strategy of moderate-
resolution devices (68 bits) can potentially reduce signal-
versus-noise ratio (SNR) when the noise is large or when
the signal changes are much smaller. Although this trade-
off is acceptable to perform binary spike detection and
classification, it can hardly meet the need to support
more complicated algorithms like spike sorting based on
waveforms or local field potentials.

Finally, the system does not have an on-chip adaptive
learning or retraining functionality, which will become
more important for long-term usage in neural prosthetics.
Changes in neural signals tend to be due to electrode
drift or physiological variability and static classifiers
tend to become inaccurate with time. Other spaces are
online learning architectures like the lightweight spiking
neural network (SNNs) or hardware-tuneable classifier
that could be implemented in the future versions to
have a better long-term robustness.

To conclude, the proposed system shows a promising,
high-efficiency, scalable and real-time solution to
the problem of neural processing, but further such
approaches as testing using real biological data, better
noisy-condition signal resolution and adaptability by
enabling embedded learning solutions are needed to
enable practical field applications of this approach in
clinical or wearable applications.

CONCLUSION

This paper gives the design and verification of an
ultra-low-power VLSI-enabled embedded system which

is adapted to the next-generation of neural prosthetics
problems. The efficient use of subthreshold analog
implementation, adaptive spike detection and
lightweight embedded classifiers enable a low power
consumption of 1.78 uW on average per channel which is
a remarkable breakthrough compared to other possible
solutions. The system has a high real-time sensitivity and
a processing latency of 2.8 ms, with scalability of up to
128 channels via multiplexing, thus it is helpful to the
challenging multi-site neural interfacing.

The combination of a dynamic power management and
event-driven cost-efficient calculation will maintain
the flexibility in the use across the spectrum of neural
activity levels, which has a long-term viability in the
use of the wearable or implanted biomedical devices.
In addition, the embedded decision-tree classifier
has a classification accuracy of 91.4% that indicates
that energy-efficient edge processing can be used
competitively, without the requirement of cloud-based
or power-intensive processors.

The results presented here indicate that VLSI-enabled
neuromorphic systems are promising to close the energy-
capability gap in brain-machine interfacing at real-time.
The presented system shows a way to a step closer
to feasibly clinically utilized battery-powered neural
prosthetics of thin form factor and large functional
concurrence.

FUTURE WORK

Although the suggested system results in significant
performance improvements in power efficiency and
functional integration, there are still a number of
chances to increase its applicability and robustness.
The next stages will involve direct fabrication of the
end-to-end system-on-chip (SoC) on a 65nm or lower
CMOS process with verification of functionality with
in-vivo neural recording, and thus an indication of the
device performance under natural biological variations
and signal noise. Lightweight on-chip learning modules
(e.g., spiking neural networks [SNNs] or edge adaptive
neural models) will be incorporated to process non
stationary neural signals and ensure classification
accuracy over time, to obtain better adaptability with
time. Moreover, the option of considering biocompatible
flexible substrates in system packaging can facilitate
conformal biocompatible integration with the curved or
mobilized body parts, both of which case would provide
a comfortable design with extended durability of the
system in case of implantable and wearable systems. The
combination of an ultra-low-power Al co-processor will
also allow high-level reading of neural intent enabling
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tasks such as control

of high-degrees-of-freedom,

recognizing gestures, and contextual interaction. Taken
together, these developments promise to make the
architecture more intelligent and adaptive and clinically
valid neural prosthetic platforms leading to the next-

generation

neurorehabilitation and bioelectronic

medicine systems.
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