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ABSTRACT

Real-time biomedical signal processing has used a lot of energy-efficient applications,
and with the increasing number of wearable, implantable, and portable healthcare
instruments, the necessity willincrease. The traditional von Neumann-based architectures
provide high flexibility but with memory bottleneck and power consumption they are
inapplicable in continuous monitoring anomalies in resource-constrained systems. In
that regard, a new solution can be considered in bio-inspired computing architectures
that reproduce the general features of the parallel, event-based, and low-power human
brain. In this paper we present a neuromorphic computing architecture of the biomedical
signal processing on-chip by spiking neural networks (SNNs) and analog-digital mixed-
signal integrations. The architecture consists of an analog front-end consuming very
low power to perform real-time acquisition of biosignals and coding of the spikes, and
a digital SNN core to perform the sparse and asynchronous processing. The system
was designed and simulated using a 65nm CMOS technology that makes it very energy
efficient and latency efficient. In particular, it can realize up to 65 percent of energy
savings per inference count and up to 40 percent low-latency processing over traditional
biomedical processors using DSPs. It is tested with benchmark biosignal data such as ECG
(MIT-BIH), EEG (Bonn university), and EMG (Ninapro) with use cases such as arrhythmia
detection, epileptic seizure prediction, and gesture recognition that can be utilized in
the prosthesis control. They include on-chip learning and high noise resistance of the
spike-based representation and adaptive SNN classification, which makes the overall
architecture more reliable in the environment where it would be used in practice in
the biomedical setting. Due to the vast simulation efforts and comparison studies, the
suggested structure shows a great possibility of providing a feasible architecture to
the next-generation edge medical devices which requires ultra-low-power and real-
time. The fact that it is reconfigurable and can be compatible with contemporary CMOS
processes opens up the possibility of scalable applications of the same on a broad range
of biomedical monitoring systems. The contribution of this work is the progress of
neuromorphic engineering in the field of healthcare, where the biological efficiency
and low power consumption found in nature are achieved and enter the device silicon
domain in which personalized and continuous health monitoring can be delivered.
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INTRODUCTION

The rise in popularity of wearable and implantable
healthcare devices has led to the need of real-
time biomedical signal processing system which
is energy-efficient and could support low latency
requirements imposed. Real-time applications like
continuous electrocardiogram (ECG) monitoring,
electroencephalogram (EEG) detection of seizures,
and control of a prosthetic through electromyogram

(EMG)-driven control demand not only high-precision
signal processing, but must also, by necessity, demand
extremely low power consumption so that they can
operate all day long in battery-constrained systems.
Such scenarios are not served well by traditional types
of digital signal processing (DSP) platforms which are
commonly built on the von Neumann architecture
and come with intrinsic memory bottlenecks, energy-
intensive computations, and the inability to suit the
sparse, asynchronous properties of biosignals.
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In addressing these weaknesses, researchers are finding
it increasingly interesting to investigate the so-called
bio-inspired computing architectures, especially those
taking advantage of neuromorphic concepts. Such
architectures emulate the human brain that has an
operational efficiency at the event-driven level, spiking
neural, and the large-scale parallel levels. Spiking
Neural Network (SNN) is the approach that is informed
by how real neurons operate in the time domain and
is an effective tool to process biosignals of high time
resolution and low energy consumption. Moreover, the
combination of SNNs with low-power analog front-end
circuitry has allowed the real time acquisition and
processing of data on a single chip, which lowers latency
and energy consumption due to off-chip communication
and duplicate processing.

Classification

Output

Fig. 1. System-Level Overview of the Proposed
Bio-Inspired Neuromorphic Architecture for Energy-
Efficient Biomedical Signal Processing

In this paper, we introduce a bio inspired i.e. bio-inspired
neuromorphic architecture describing the develop of
a neuromorphic on-chip architecture. It is constructed
using a low power analog-mixed signal front-end to
noise-tolerant signal capture and spike encoding, and a
digital SNN core where classification can be performed in
real-time. The implementation is made in a 65nm CMOS
process and tailored to operate on physiological signals
such as the ECG, EEG, and EMG and can be applied to
various applications such as arrhythmia detection,
seizure prediction, and control of a prosthesis. The
proposed solution is tailored to biomedical workloads, in
contrast to general-purpose neuromorphic chips; thus, it
is possible to optimize this solution to a specific task and
achieve better energy efficiency.

The major contributions of work can be highlighted as
follows:

> In this paper, the architecture of a small, pro-
grammable, biomedical-signal-oriented neuro-
morphic processor is described;

» Energy efficient, and real-time computation of
SNN processing closely coupled with the analog
front end circuitry;

» Demonstration of system validation with bench-
mark biosignal dataset (MIT-BIH ECG, Bonn EEG
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and Ninapro EMG) and metrics of system perfor-
mances;

» The post- layout simulation results obtained on a
65nm CMOS process that validates the possibility
of low- power hardware implementation in
fabrication in the future.

Through the power of bio-inspired computing with its
inherent strengths, the work provides the foundation
to the next generation of biomedical systems that
are compact intelligent and can be used in the edge
environment to survive over time and work under
extended autonomous conditions. The suggested system
is an example of the kind of interaction between
neuroscience-inspired algorithms and hardware design
at the VLSI level, which encourages innovation in their
services, committed to individuals and continuous
monitoring of their health.

LITERATURE REVIEW
Computing Using Classical dsp Algorithm

Variants of traditional digital signal processing (DSP)
methods had been always considered to be the core
of biomedical signal processing because of their
mathematical formulation and precision. Examples of
such processors are the ARM CortexM series and the TI
DSPs which are currently widely deployed in clinical
and research devices being applied to ECG, EEG, and
EMG processing. Fourier transforms,[10] wavelet
decomposition and subsequent use of feature extractor
and classifiers using machine learning are common in
these platforms. Such systems also consume too much
power and have a long latency although they are more
accurate. This is why they should not be used on always-
on, resource-constrained edge devices like wearable and
implantable biomedical monitors.["

Computational Models Bio-Inspired

Bio-inspired computing involves taking the functionality
of real-life biological neurons and biological synapses
in order to offer energy-efficient and robust model
paradigms. Of these, Spiking Neural Networks (SNNs)
now form the 3rd generation ofl'! neural networks,
where the information is stored in a temporal sequence
of spike trains as opposed to continuous activation
levels. SNNs utilize the biologically possible models such
as Leaky Integrate and-Fire (LIF) neurons that accept
spikes as input and generate spikes as output after
being integrated upto a threshold level. Such networks
can typically have unsupervised learning processes as
determined by Hebbian rules, and a frequently used
learning rule is Spike-Timing-Dependent Plasticity
(STDP), a rule that depends on the relative timings
of pre- and post-synaptic spikes to alter the synaptic
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strength.[2] These properties allow SNNs to be sparsely,
event-driven, computationally inexpensive, which is
much more energy economical than the traditional ANN-
based systems.

Neuromorphic Hardware

There is also the development of several neuromorphic
chips to facilitate event-driven computation in ultra-
low power profiles. An alternative is IBM TrueNorth
with 1 million programmable neurons and pattern
recognition consuming only 70 mW.B! Intel Loihi has
a chip that incorporates” asynchronous, parallel
computing with digital spiking neural networks and ['2
these networks are performed with!'?! on-chip learning
through STDP. Heidelberg University developed the
BrainScaleS system, which allows accelerated analog
neuron emulation to perform large-scale simulation®™
and the University of Manchester developed SpiNNaker
which uses ARM cores to simulate spiking networks in
real time.l! Such platforms exemplify the feasibility
of neuromorphic computation although they do not
necessarily have the necessary customization that an
application in biomedical signal processing would have
resulting in inefficiency in thought throughput when
applied in these areas.

Biomedical Signal Processing Neuromorphic Applica-
tions

Recently, neuromorphic systems have been tried in
health tasks like seizure-related identification of EEG,
heart arrhythmial™ recognition of ECG, and gesture
classification using EMG. As an example, ECG feature
extraction was realized in TrueNorth-based fashion
with power operation below mW.!' EEG anomaly
detection on-chip learning using Loihi-based systems
have been employed.® There has also been the use of
custom SNN implementation on FPGAs to use low-power
seizure prediction.” In these works, the potential of
neuromorphic systems in a biomedicall'! application is
pointed out but lack the specific hardware customized to
the end requirements of a bio-signal, i.e., non-stationary,
noise-sensitivity, and cross-subject variability.

Gap Analysis

Neuromorphic systems have many attractive advantages,
and there is a serious lack of design and development in
lightweight application-specific neuromorphic processors
to address biomedical signals. Existing solutions are
either based on generic hardware or extensive extra
preprocessing which destroys the advantage of having
on-chip intelligence. In addition, the majority of
available systems are tuned on vision or speech data,

and biomedical signals have their own distinctive time
and frequential features. Hence, it is highly desirable to
have compact, bio-inspired VLSI structures that closely
integrate the functions of signal acquirement and spike-
based processing to allow on-chip real time, low power
and precise biomedical inference. In this work, it fills
such a gap by suggesting a co-designed analog-SNN
architecture that is optimized to perform classification
of biosignals.

PROPOSED ARCHITECTURE
Introduction tothe system

The given bio-inspired computing scheme is to enable
real-time, power efficient biomedical signal processing
with much closer processing information style by
following the information processing style of a human
brain. The system has four large parts at its high level,
consisting of an analog front-end, a spike encoder,
a digital spiking neural network (SNN) processor, a
classification output unit. Analog front-end correlates
to acquiring and filtering low-noise signal, ECG, EEG, or
EMG. It has chip components like low noise amplifiers
(LNAs), tunable bandpass filters suitable to match the
frequency range of the related physiological signal, or
gain control blocks to adjust the signal level in order
to perform the digitization. The analogue signals after
preprocessing are passed to a spike encoder that
encodes the continuous-time biosignal to a spike train
through level-crossing or threshold based techniques.
Such encoding emulates event-driven characteristic
of the neural signalling process, in the manner that
spikes reflect notable changes or aspects within the
input signal as opposed to data sampling at periodic
intervals which wastes power and data bandwidth. The
spike train is later fed into the SNN processor that uses
neuromorphic core of Leaky Integrate-and-Fire (LIF)
neurons and Leaky Integrate-and-Fire (LIF) synapses
which follow Spike-Timing-Dependent Plasticity (STDP)
to alter their adaptive learning. The SNN layer also does
anti-correlation computation on an asynchronous, very
parallel basis, and does the temporal pattern detection
and classification of the encoded spikes, all with minimal
computational latency and energy cost overhead. The
output of the SNN then undergoes a classification output
mechanism, usually a winner-take-all (WTA) network or
threshold-based decoder that identifies the most likely
class of the input signal segment, an example of which
is a particular heart rhythm or an instance of out-of-
control seizures. The whole system is compatible with
integrated tight devices on the chip that allows minimal
energy utilization, less data transport, Figure 2 and real-
time in edge biomedical equipment. This is a modular
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and hierarchical design that facilitates customizations
to the specific tasks and scalability as well as providing
a compact silicon layout that would fit 65nm CMOS
implementation.

Analog Front-End
 Low-noise amplification
* Filtering
» Gain control

A
Spike Encoder

 Spike trains
Spike-endoerning

v

SNN Processor

* LIF Neurons
« STDP-based learning

Classification Output

Fig 2. Functional Block Diagram of the Proposed
Bio-Inspired Neuromorphic Architecture for On-Chip
Biomedical Signal Processing

Design of Analog Front-End

The proposed system has an analog front-end (AFE), which
is very important in ensuring high fidelity biomedical
signal acquisition and pre-processing that are usually of
low amplitude and are prone to noise and other forms
of interference. On this, the AFE starts with a low-noise
amplifier (LNA) which operates with a high common-
mode rejection ratio (CMRR) and low input-referred
noise so that if ECG (typically 0.52 mV), EEG (tens of pV),
and EMG (up to a few mV) are weak bio-signals which
cannot be amplified with noise and distortion or even
be overloaded due to the high common-mode rejection
ratio and minimal input-referred noise of the amplifier.
This LNA output signal is then fed into a programmable
band-pass filter block, which suppressed undesired
signal components, (e.g. 0.5 Hz; > 500 Hz) by selectively
attenuating them, so that only the signal of interest is
left. As an example, the common passbands are 0.05-150
Hz of ECG, 0.5-100 Hz of EEG, and 10-500 Hz of an EMG
signal. Upstream of the level-crossing-based analog-to-
digital converter (LC-ADC) or a comparator-based spike

24 -

encoder, the filtered analog signal is then passed to
the quantizer that performs event-driven quantization
as an alternative to uniform-sampling analog-to-digital
converters. It is a module that produces a digital output
spike whenever the input signal reaches a predetermined
threshold level or exhibits a large change in slope and
hence replicates biological sensory neurons that only fire
in response to meaningful stimuli. This encoding scheme
is highly effective, because it minimizes data redundancy
and allows dynamic signal feature representation to be
sparse asynchronous. The spike stream output retains
the critical time data of the biosignal and is applicable
to downstream processing using the spiking neural
network cores. Figure 3 In general, the analog front-
end is designed with ultra-low power use in mind, signal
integrity, and ease of integration with the neuromorphic
processing pipeline that paves the way towards energy
efficient biomedical computing on a chip.

: Low-Noise Band-Pass Spike
signal >
|ng ] Amplifier Filter Output
(Spike Encoder)
(LC-ADC)

Fig. 3. Signal Conditioning and Event-Driven Spike
Encoding in the Analog Front-End (AFE)

Core SNN

Spiking Neural Network (SNN) is the core of the proposed
neuromorphic architecture that computes at very low
energy consumption and is based on a snapshot of
the dynamics of biological neural circuits. This core
has the Leaky Integrate-and-Fire (LIF) neuron as its
fundamental processing unit, a long-established bio-
inspired model, which receives and integrates incoming
input spike (spike of amplitude, a unit of input current)
with time and emits an output spike when a threshold
on the membrane potential has been reached. Following
such firing, the neuron returns to its resting state and
goes into a refractory period where it becomes less
susceptible to additional inputs. The fact that this leaky
integration-based time-dependent feature of the neuron
enables it to encode significant events in biomedical
data flows like the ECG morphologies or the EEGs shapes
itself. Spikes in the input are passed through circuitry of
synapses each of which has a weight that can be adjusted
resulting in the adjustment of how much influence input
has on the post-synaptic neuron. Such synapses have
Spike-Timing-Dependent Plasticity (STDP) learning rules
that learn by making changes in the weighting of the
same synapses due to the timing of the pre- or post-
synaptic spikes. When a post-synaptic spike occurs, after
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and within a small period, a few milliseconds following
a pre-synaptic spike, then the synapse is strengthened
(potentiated); otherwise, it is weakened (depressed).
Such a biologically plausible form of learning allows
the SNN to learn adaptively, in an unsupervised or
semi-supervised fashion, the temporal aspects of the
encoded biomedical signals. After the propagation of
spikes across the whole network, the output of the last
set of neurons are then passed into a Winner-Take-All
(WTA) network acting as a module of decision making.
Under WTA circuit, the most highly activated neuron
becomes the winner, which inhibits the activity of other
neurons. Figure 4 through this mechanism is carried out
in such a way that it guarantees sparseness as well as
a deterministic classification delivery just as finding a
certain heart rhythm category or an epileptic pattern of
seizures. In summary, the SNN core is a high performance,
low power signal classification neural network that has
inherent temporal processing, and is therefore well
suited to a variety of biomedical signal processing tasks
that are to be performed on edge devices, and in real
time.

LIF _| Synapse LF |
Neuron STDP Neuron
Input > P ‘Synapse_J LIF | »| Winner- | Output
Spikes Neuron STDP Neuron || Take-All | Spikes
—
LIF Synapse LIF ||
Neuron STDP 1 Neuron
|

Fig. 4. Internal Architecture of the SNN Core
Featuring LIF Neurons, STDP Synapses, and WTA
Output Module

On-Chip Learning Mechanism

The proposed architecture has an efficient on-chip
learning mechanism which is proposed to make use of
biologically inspired principles to enable an adaptive
and personalized classification of biomedical signals
without need of external retrain or connectivity to cloud.
This mechanism involves the use of the Hebbian learning
rule that states that the synaptic connection between two
neurons will be strengthened in the event that they are
repeatedly activated within close inverse time intervals
with the result often expressed as the expression “cells
that fire together, wire together” This type of local,
unsupervised learning technique is especially suited to
resource-limited edge devices due to its elimination

of the complex backpropagation and training large
datasets requirements. Hebbian learning in hardware
architecture is implemented as a simple weight update
circuit embedded in the synapse array in such a way that
every single synapse dynamically changes its strength
as a function of correlation between inputs spikes
and neuron excitement. This architecture also allows
flexible, patient-specific initialization and learning of
synapse weights, which can be configured according to
a given network state, or specific signal patterns per
patient, or configured by a clinician. This is crucial with
biomedical application where physiological signals are
widely different in different subjects as a consequence of
anatomical, pathologies or environmental aspects. The
system can learn and adjust its classification accuracy
on the fly by being able to perform real-time synaptic
plasticity and adaptive threshold changes on biosignals
it sees, so when gradual changes in signal happened over
time, the artificial analyzer adjusts its performance
accordingly without any reprogramming. The learning
engine is asynchronous, so it does not consume much
overhead in latency or energy compared with the rest of
SNN processing pipeline. Figure 5 In general, the on-chip
learning mechanism brings the neuromorphic processor
towards intelligent, self-adaptive entity capable of
personalized biomedical inference at the edge which is
essential in settings like seizure prediction, arrhythmia
detection, or prosthetic control where sustained learning
and tolerance to signal changeability is critical.

Timing
correiation
l Configurable
Weights
] Synapse
Snike,
Weight Updale
Pre-synaptic Potentiation Post-synaptic
neuron Depression neuron
|
v
Configurable
Weights

Fig. 5: On-Chip Hebbian Learning and Adaptive
Synaptic Weight Update Mechanism for Personalized
Biomedical Inference

METHODOLOGY

Hardware Design and System Modeling

The given bio-inspired architecture is actually conceived
on the basis of a tied together analog-mixed-signal front-
end and digital neuromorphic processing core designed to
optimize biomedical signal processing capability on-chip
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unendingly and very low power and real-time compass
ability. The whole system is designed in a top-bottom
approach, with the analog sub-blocks being implemented
and simulated in Cadence Virtuoso and Spectre and the
digital neuromorphic core being in Verilog-HDL and
simulated with ModelSim. Raws biosignals Device to be
acquired and conditioned is referred to as Analog Front-
End (AFE), with the raw signals being ECG, EEG and EMG.
It is a combination of a low-noise amplifier (LNA) that is
a high gain-bandwidth product and low input-referred
noise amplifier and is used to amplify microvolt-level
signals, without distortion. The LNA output is then
filtered by tunable band-pass filter, whose passband can
change dynamically to adapt to the spectrum of various
physiological signals - usually set to 0.05 150 Hz in ECG
mode, 0.5 100 Hz in EEG mode and 10 500 Hz in EMG
mode. The conditioned signal is coded as a sparse and
asynchronous form in a Level-Crossing Analog-to-Digital
Converter (LC-ADC) in order to reduce data redundancy
and to make sampling energy minimal, where the LC-
ADC gives a digital spike only when the level of the input
signal exceeds amplitude thresholds, which has been
set. In this kind of encoding, all encoding is event-driven
and highly power-friendly as compared to conventional
Nyquist-rate ADCs, especially when biomedical signals
change slowly.

The resulting coded spikes are then inputted to the
neuromorphic processor that is realised using Leaky
Integrate-and-Fire (LIF) neuron circuits. These neurons
are implemented by using analog current mirror circuits
and capacitive integrators with characteristics that are
similar to bio-neurons in the way they accumulate and
threshold. The synapse is arrayed in event driven manner
onto shades of neurons composed of programmable
weights and built in logic implementing learning rule
Spike-Timing Dependent Plasticity (STDP). It is also the
property of this circuit that the synaptic strength can
also be adapted depending on the timing of input and
output spikes which allows unsupervised learning and
adaptive classification. In multi-class decision-making
the output layer has a Winner-Take-All (WTA) network
that determines the neuron that is most activated,
which is the predicted class of the biomedical input.

The entire architecture is synthesized with 65nm CMOS
process technology to be able to provide scalability and
readiness to fabrication as this technology is known to be
simple in terms of integration density as well as its low
leakage performance characteristics. The simulations
are performed after layout by HSPICE and parasitic
extraction using layout GDSII files, so it is possible to
provide precise power, timing and area estimation
under realistic process, voltage and temperature (PVT)

2 —

conditions. Figure 6 these simulations substantiates the
fact that the proposed design is of stringent energy and
latencies required in edge biomedical applications. It
is also modular and hierarchical in the design, which
enables the reuse and customization of functional
blocks across biosignal modalities and which means
that the architecture can be extended to more general
healthcare contexts.

Cadence Virtuoso '—

LIF
" Neuron
Verilog-HDL l

Band-
Pass Filter

Neuromorphic Processor

STDP
Synapse

Analog Front-End

[ Low-Noise Amplifier ]

‘ ] A 4
Band-Pass Filter J _ Process [ WIA ]

T Technology
LC-ADC ] 65nm CMOS

Fig. 6: Hardware Design Flow and System-Level
Architecture for Bio-Inspired On-Chip Biomedical
Signal Processing

Dataset Description and Signal Preprocessing

To test the performance, accuracy and overall
applicability of the forwarded bio-inspired neuromorphic
architecture precisely, three well known biomedical
signal databases were utilised- covering cardiac (ECG),
neurological (EEG) and muscular (EMG) sections. Such
datasets do not only reflect the variety of physiological
modalities but also reflect a variety of the signal
parameters like amplitude, frequency content, and
temporal dynamics and, therefore, allows the thorough
benchmarking of the system.

ECG signal classification was validated with the help of
MIT-BIH Arrhythmia Database, which is hosted at the
PhysioNet. The data is two-channel ECG recordings of
47 different subjects recorded at 360 Hz and with 11-bit
resolution. It comprises different arrhythmic conditions
like premature contraction to ventricular rhythms,
atrial fibrillation, as well as normal sinus rhythms. Raw
EEG signals are subjected to removal of the baseline
wander using high-pass filter before low frequency
motion artefact (<0.5 Hz) is removed. After that, the
R-peak detection using a Pan-Tompkins-like algorithm
is performed to segment the heartbeat intervals. They
are then transformed into normalized spikes trains using
a level-crossing encoder that preserves most important
characteristics including, QRS morphology and timing.

The Bonn University EEG Dataset consists of 100 single-
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channel pieces of the EEG signal each of the 23.6 seconds
duration and 173.61 Hz sampling. These segments are
divided into five categories; these are healthy, interictal
and ictal (seizure) states. All the signals are filtered
before processing with the band-pass filter (0.5-40 Hz)
to separate the brain wave bands (delta, theta, alpha,
and beta) and minimize line noise. A spike encoding
algorithm is used that employs zero-crossing to give a
spike detected when the EEG signal passes a specified
line. This is a rather effective method of recording
oscillatory patterns and bursting activity, which is
representative of epileptic events.

The Ninapro Database was utilized to assess muscular
activity classification, which comprises high-resolution
EMG recordings of forearms muscles when different hand
gestures are being performed. Signals are sampled at
2 kHz and have a wide bandwidth of signal since there
is high rate of muscle contractions. The preprocessing
pipeline include a high-pass filter (cut-off 20 Hz) to reset
the motion- and baseline drift and use the amplitude-
threshold as a decoder of spikes. A spike is formed when
the signal surpasses a dynamically established threshold
singed to signal statistics (e.g., RMS value) and contains
the transitory muscle activities that characterize the
diverse motor behavior.

Linear models Python code used to test the
functionalities of spike encoding algorithms and
demonstrate performance in time encoding was initially
written in Python and run on all three datasets. They
were later exported as behavioral Verilog and placed
in the system-level simulation environment where they
were co-simulated with the SNN core through ModelSim.
It takes this hardware-validated spike stream as the
input to the spiking neural network classifier and this
provides consistency between algorithmic modeling
and hardware implementation. Figure 7 optimization of
preprocessing involves real-time operation and encoding
logic is implemented to be hardware friendly to maximize
the event-driven, asynchronous representation of the
downstream neuromorphic core. On the whole, such a
multi-modal dataset-driven design makes the proposed

Raw ECG High-Pass R-Peak Outout
ECG 1 g Fiter || Detection | | Spike Train

Raw EEG Band-Pass Zero- Qutput
EEG — Signd| Filter | Crossing 1 Spike Train

Raw EMG High-Pass Amplitude Output
EMG — “gigna [ Fier [ |Threshold-Based| | Spike Train

Fig. 7: Signal Preprocessing and Spike Encoding Flow
for ECG, EEG, and EMG Modalities

architecture very robust, versatile and relevant to
the biomedical domain in the wide range of potential
applications.

Evaluation Metrics and Experimental Setup

To evaluate the performance and usefulness of the
suggested bio-inspired neuromorphic architecture, an
overall experimental protocol was put in place, with
consideration of some of the relevant key metrics
that were critical to real-time edge biomedical signals
processing. Those are energy efficiency, inference latency
and classification accuracy parameters that define
overall suitability of the system to be used in wearable,
implantable and portable health-monitoring devices. It
was executed as an evaluation based on a combination
of analog, digital and co-simulation environments and
the complete signal path of an acquisition and through
the classification was accurately characterized.

In the case of analog front-end, Cadence Spectre has
been heavily used and exhaustive transistor level
simulation done with a 65nm CMOS process design kit
(PDK). This consisted of DC analysis, transient analysis
and AC noise characterization of low-noise amplifier
(LNA), band-pass filters and level-crossing ADC (LC-ADC).
Power consumption, gain linearity and noise parameter
were extenuated to review real time signal integrity
and power performance within the environment of
biosignals. Router Phase India The winning and dying
BNN The winning and dying BNN Router Phase India
Router Phase India Router Phase India Primetime PX
was used to perform Post-synthesis power and timing
analysis, and a power and timing profile such as energy
per spike operation, switching activity and critical path
delay could be accurately estimated.

All of the pipelines (spike encoding and dataset
preprocessing pipelines) are realized in Python, which
allows preprocessing of ECG, EEG, and EMG signals and
converting them into spike trains. The spike streams
were subsequently connected to the digital SNN via a
co-simulation environment that connected Python-
based input drivers with Verilog HDL models of the
neuromorphic core which were simulated in ModelSim.
This enabled concurrent analyzing of signals within
both the software and hardware dimensions, that is, an
approximation of the real running environment.

The system was tested in 3 main parameters:

» Energy per Inference (nJ): This is the quantity
of total energy used since the moment a biosignal
part is captured to the point that it generates
its classification label. It takes into account both
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analog front-end power and digital core energy
usage, measured over a quantity of inference
cycles to be comparable.

» Inference Latency (ms): Gauged as the total
end-to-end time lag in the encoding of the input
spike and the classification of output, as the
dynamics of neuron membranes, the integration
of synapses and propagation of the decision
are included. This parameter is essential in a
use-case such as seizure detection or cardiac
anomaly detection, where the response time is
essential.

» Classification Accuracy (%): The percentage of
the correctly classified biomedical patterns (e.g.,
types of arrhythmia, states of seizures, or hand
signals) during tests on sets of each data. The
standard metrics such as confusion matrices or
F1-scores were used to determine the accuracy.

Architecture performance was benchmarked against
three reference systems: (1) DSP-based implementation
of ARM Cortex-M4 running optimized floating-point
classifiers; (2) IBM (2) TrueNorth neuromorphic processor
providing a commercial analog power efficiency baselines
of implementing SNNs: (3) a baseline SNN implementation
with spike encoding that does not include on-chip analog
encoding of spikes, using standard ADC-based sampling.
On every single metric, the presented system ended up
being energy-efficient the battery-saving setting at best
a decrease in energy per inference of up to 65 percent,
a 40 percent decrease in latency, Figure 8 and slightly
increased accuracy spurred by decreased quantization
error and spike adaptability in real-time. These findings
confirm the usefulness of the described architecture to
conduct low-power, real-time inference of biomedical
applications at high levels of fidelity and reliability.

RESULTS AND ANALYSIS

DSP-Based IBM TrueNorth
(Cortex-M4) {No AFE)
Systems

Baseline SNN Proposed System

Fig. 8: Comparative Bar Chart of Energy, Latency,
and Accuracy across Neuromorphic and DSP-Based
Architectures for Biomedical Signal Processing

2 —

Performance Metrics

The presented bio-inspired neuromorphic architecture
was thoroughly tested based on three main performance
metrics, which include: energy per inference, latency of
inference, and accuracy of classification. These metrics
were based on co-simulation of the complete signal
processing chain with representative ECG, EEG and EMG
inputs. The neuromorphic system featured noticeable
increase compared to the reference system based on
DSP architecture implemented in an ARM Cortex-M4
chip. In particular, the energy per inference was reduced
by 65 percent i.e. 120 nJ to 42 nJ. This is because of
the event-driven properties of spike-based processing
and the removal of continuous sampling and calculation
cycles so common in DSP systems or processors. Using
a latency metric, the system performance was 1.9
ms inference time against 3.2 ms on the DSP-based
architecture, which equaled a 40.6 per cent reduction.
The resulting latency is lower because the spiking
neural network (SNN) core is parallel and asynchronous
in nature. Lastly, the system could attain 93.4 percent
classification performance, slightly better than the
baseline performance of DSP (91.5 percent), and proved
that bio-inspired computation could maintain accuracy
and prove to be even more accurate than the original
system with considerable energy savings.

Visualization and Data Interpretation

The performance measurements are graphically repre-
sented by several figures to have a better understand-
ing. The entire system block schematic is shown in figure
1 with signals flowing through the analog front-end and
to the spike encoding stage then to the SNN processor
and to an output of the classification results. The lev-
el-crossing encoder tends to represent important fea-
tures of a signal using sparse temporal events as shown
in a spike raster plot (Figure 2) of a segment of the input
ECG signal. This picture shows that anatomical wave-
form designs (quality e.g. QRS sentiments) are held in
the activity area. Figure 3 is a comparative bar graph
that illustrates the energy consumption and the latency
of the proposed architecture, DSP baseline and commer-
cial neuromorphic system like the IBM TrueNorth. The
chart shows clearly that there is more power efficien-
cy and speed advantage with the proposed system, thus
making suitable always-on biomedical needs in ener-
gy-limited places like wearable and implants.

DiscussION

The experimental data confirms the hypothesis that bio-
inspired structures are much better positioned to surpass
conventional digital processors with respect to energy-
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consuming biomedical applications. Nevertheless,
critical trade-offs are involved. Although fixed-point
digital arithmetic may have greater precision in DSPs,
the sparsity of the event dynamics of the SNN gives a
more advantageous energy-accuracy trade off, especially
when biosignals of a temporal nature are being classified.
Architecture also horizontally scalable which means that
the arrays of the neurons and synapses can be expanded
to to handle higher or higher-dimensional or multi-modal
biosignals without linearly increasing power use. Also,
the on-chip learning of the system can be accomplished
using Hebbian or STDP rules, which facilitates long-term
adaptation to the signal patterns used by patients- an
important capability in personalized healthcare systems
where there is a broad variation in the baseline physiology
of people. This flexibility enables the system to maintain
its classification boundaries by adapting to physiological
variations, sensor drift or even the context and unlike
other approaches this significantly limits the need to
frequently retrain the system. Table 2 In general, results
have well proven that neuromorphic systems with co-
design with analog front-ends and bio-inspired learning
is a transformative solution to next-generation and ultra-
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100
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60

Metric Value

a0

20

—_—

0

DSP-Based IBM TrueNarth Baseline SNN
System Architecture

Proposed System

Fig. 9: Line Chart lllustrating Performance Trends
of Energy, Latency, and Accuracy across Biomedical
Signal Processing Architectures

Table 2. Performance Comparison across Biomedical
Processing Architectures

Energy per | Inference
Inference Latency Classification
Architecture (nJ) (ms) Accuracy (%)
DSP-Based 120 3.2 91.5
(ARM
Cortex-M4)
IBM TrueNorth | 89 2.7 92.1
Baseline SNN | 76 2.4 91.7
(No AFE)
Proposed 42 1.9 93.4
System

low-power biomedical signal processing on chip Table 2.

CONCLUSION

In this work, a bio-inspired computing architecture is
introduced which has the potential to perform energy-
efficient computation of bio-medical fast signals in real
timedirectlyin-chip due to the application of neuromorphic
engineering principles. Through a highly integrated low-
power analog front-end coupled with a spike-based
digital spiking neural network (SNN) processor, the
system achieves the energy efficiency of biological neural
systems and promises a significant energy reduction and
low latency in comparison to the traditional DSP-based
ones. It comprises event-driven spike encoding, the Leaky
Integrate-and-Fire (LIF) neurons, and adaptive Spike-
Timing Dependent Plasticity (STDP) learning, enabling
the system to adapt dynamically to the patterns of
biosignals in the system with a minuscule power profile.
Experimentation on real world data and validation
on applications: ECG (MIT-BIH), EEG (Bonn), and EMG
(Ninapro) showed that the proposed architecture can be
used to perform precise tasks of automatic classification
with over 65 percentage of energy savings and 40 percent
of latency reduction along with high robustness to signal
variation. Also, the presence of on-chip Hebbian learning
and tuneable synaptic plasticity enables adapted to the
personal needs of specific patients medical treatment,
which is essential in long-term monitoring scenarios. Its
fabricated-ready modular and scalable design is based on
a 65nm CMOS technology and can fit the next-generation
of wearables, implantables and portable health care
systems. Moving ahead in future, the extended version
of this work will be dedicated to understanding the
network complexity further towards advanced biomedical
inference, incorporation of secure wireless telemetry and
joining edge neuromorphic processor with analyst platform
on the cloud to make hybrid intelligence and remote
diagnostics. Innovative capabilities of neuromorphic
architectures, reassessing the possibilities of low-power,
real-time health monitoring, and opening perspectives of
smart self-adaptive and bio-integrated personal devices in
the realm of personalized digital health, are highlighted
by the findings.
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