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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
This leads to the fact that the development of edge applications in autonomous systems, 
healthcare, and smart environments requires very efficient and scalable computing 
frameworks. The paper gives an overview of the state-of-the-art of AI-integrated 
System-on-Chip (SoC) architectures being tailor-made to satisfy performance, energy, 
and latency requirements of the modern edge computing. This is aimed at examining 
how the embedded AI accelerators (e.g. neural processing units (NPUs) and digital 
signal processors (DSPs)) may be easily implemented in heterogeneous SoC platform. 
Methodologically, the research analyzes the progress of the last few years in the field 
of hardware-software co-design, dataflow and memory hierarchies. It also looks into 
heterogeneous core coupling plans, thermally conscious floor planning, and energy-
conscious task scheduling. Comparative lessons based on commercially available 
SoCs such as Apple ANE, Google Edge TPU, and NVIDIA Jetson are given in an attempt 
to highlight trade-offs in the real world. Indicators demonstrate that AI-tailored 
accelerations--including systolic array-based accelerators, near-memory computing 
and quantization-aware processing--are representative of multi-seemingly magnified 
inference acceleration and power efficiency. But the problems encountered are scaling 
the memory bandwidth, real-time workload scheduling, as well as thermal dissipation. 
It is observed in conclusion of the paper that the future AI-SoC architectures should 
focus on being modular, reconfigurable, and secure with runtime and power profiles that 
allow them to be used at the edge. This overview lays out helpful design considerations 
and outlines every major research area of projected work on the next-generation SoCs 
with a means to sustain, intelligent computing at the edge.
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Introduction
One of the areas where edge computing is changing the 
world is autonomous vehicles, smart manufacturing, 
the industrial IoT and digital healthcare because it 
upends traditional ways of doing big things with real-
time, real-time localized data processing and minimal 
latency and marginal reliance on cloud infrastructure. 
Edge computing can relieve the piggyback effect on the 
bandwidth and increase the privacy and responsiveness 
of mission-sensitive applications by placing intelligence 
closer to the data sources themselves. Nevertheless, 
modern artificial intelligence (AI) workloads, particularly 
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deep learning models, are computationally very greedy 
and are a very challenging load to the older edge devices, 
which are limited by power, area, thermal design limits.

In order to satisfy those needs, System-on-Chip (SoC) 
architectures are in the process of paradigm shift focusing 
on heterogeneous integration of Accelerators AI, perhaps 
by incorporating Neural Processing Unit (NPU), Digital 
Signal Processors (DSP) and reconfigurable logic .[16]  
These united platforms are predictable to deliver high-
performance inference, low-power consumption, and 
small enclosures to be set up at the edge. In this paper 
the new design techniques and optimization issues in 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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integrating AI cores with SoCs are discussed with focus 
on progress in hardware-software codesign, memory 
hierarchy control and AI-specific dataflow designs.

Although previous studies have paid attention to the 
acceleration of AI scenarios in data centers and mobile 
platforms, current research tends to be narrow in terms 
of viewpoint specific to edge computing peculiarities, 
including fluctuating workloads, thermal pressure, and 
on-demand scheduling of tasks. Moreover, little has been 
accomplished in harmonising architectural patterns 
across commercial AI-SoCs and determine design trade-
offs in terms applicable to high-performance edge-
computing applications .[1, 2]

In this paper the gaps will be filled by:

• Surveying a state of the art in AI-integrated SoC 
designs;

• Interpreting their performance, power and 
scalability properties;

• Calling attention to the important issues of AI-
core and memory access as well as thermal-
aware layout;

• Giving Design ideas and trend of next-generation 
edge AI hardware.

Background and Related Work
This rapid increase in the artificial intelligence (AI) 
apps at the edge, including object detection, speech 
recognition, and anomaly classification, has put 
extraordinary pressure on on-device computation [17]. 
The Deep Neural Networks (DNNs) such as convolutional 
neural networks (CNNs), recurrent neural networks 
(RNNs), and transformer-based networks are considered 
to be high compute-intensive and memory bandwidth-
demanding, which do not get easily captured by the 
traditional SoC architectures initially.

In a bid to overcome these constraints, more recent 
generations of System-on-Chip (SoC) there, alternatively 
perform a heterogeneous architecture which integrates 
dedicated AI accelerators in their systems. Typical ways 
to go about integration are:

• Neural Processing Units (NPUs): NPU-style: 
Designed to do significant amounts of matrix 
operations typical of DNN inference workloads 
(eg. Apple ANE, Huawei Ascend);

• Digital Signal Processors (DSPs): Best used in 
fixed-point, low latency signal processing real-
time applications;

• GPUs: Very parallel processing cores that can be 
used in training and inference of deep networks;

• Reconfigurable FPGA fabric: Linkages that allow 
flexibility of application specific acceleration 
and hardware control of low-level.

They have relatively high performance by using dataflow-
related architecture (e.g., systolic arrays), hardware-
adapted quantization, and tiling to minimize the DRAM 
access and enhance on-board usage of memory.[3, 4]

In spite of these developments, a number of challenges 
are still to Deploy AI workloads efficiently at the edge:

• Memory Bottlenecks: Large DNN models refer to 
the case when the capacity of on-chip memory 
becomes inadequate, which in turn gives rise to 
extensive memory access happening on off-chip 
and the energy penalties.[5]

• Thermal Limits: Computational density in small 
edge devices means that there is a local hot 
spot, which impacts reliability and performance 
limiting.[6]

• Heterogeneous Resource Management: Compu-
tation near different CPUs, NPUs and GPUs re-
quires run time task scheduling and data coher-
ence protocols which are in their infancy.[7]

• Disunity of Toolchains: Cross-compiler support 
and other software that are AI specific (e.g., 
TensorFlow Lite, ONNX Runtime) have to be 
specific to each SoC, making them more difficult 
to develop and less portable.

Additionally, most of the existing research is usually 
concerned with the benchmarking of performance and 
this has neglected some important design trade-offs 
which include reconfigurability, power gating, modular 
AI core engineering, secure AI execution. These factors 
make the image in the edge of AI scalable and secured.

This paper overcomes these gaps by discussing the 
cross-layer optimization strategies, by looking at 
their commercially deployed AI-SoCs, and show future 
research directions to bridge these gaps.

AI-Integrated SoC Architecture Overview

The design of AI-enabled System-on-Chip (SoC) systems 
is locally adapting quickly to the requirements of low 
delay, precise time, and power-based edge processing. 
The standard AI-SoC architecture involved very closely 
coupled components which combined to support control 
logic, deep learning inference, memory management, 
and communication. The section explains the basic 
building blocks and how they are integrated to achieve 
performance of AI processing on-chip.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:

KEYWORDS: 
 comparator,  
gain,  
offset voltage,  
cadence, 
spectre.

ARTICLE HISTORY: 
Received xxxxxxxxxxxx
Accepted xxxxxxxxxxxx
Published xxxxxxxxxxxx

DOI:
https://doi.org/10.31838/jvcs/06.01. 03 
 
 
 
 
 
 
 
 

 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Core Components

AI-SoCs are heterogeneous platforms, which means that 
they consist of several specialized processing units, 
optimized to different computational tasks (Figure 1:  
Core Components of AI-Integrated System-on-Chip 
(SoC) Architectures). These usually involve control 
logic and system coordination consisting of general-
purpose CPUs; high-throughput deep learning processing 
(AI accelerators) comprising NPUs or TPUs; memory 
hierarchy to support low-latency access to data; and 
high-bandwidth interconnects, like Network-on-Chip 
(NoC) to support efficient movement of data among 
components.[15]

• General-purpose CPUs: These cores (usually 
of the ARM Cortex-A/R families or, RISC-V) 
handle the control flow, system coordination, 
lightweight preprocessing and task scheduling. 
Although they are not yet optimized in regard 
to large-scale matrix operations, flexibility and 
support of instruction make them an excellent 
choice in terms of running operating system 
kernels, input/output drivers, and non-parallel 
workloads.

• AI Accelerators (e.g., NPUs, TPUs): the key 
components to run AI workloads are: Neural 
Processing Units (NPUs), or Tensor Processing 
Units (TPUs). They are also designed to support 
inequality gates, high throughput matrix multiply 
(e.g. systolic arrays), low precision arithmetic 
(e.g. INT8, bfloat16), and parallel convolution 
layers. Their instruction set can typically be AI 
focused and enable direct execution of deep 
neural network (DNN) functions like convolutions, 
activations and normalization.

• Memory Hierarchies: High memory bandwidth 
and low latency are required to support the 
efficient processing done by AI. AI-SoCs have 
multiple layers of memory: on-chip SRAM as 
fast cache, L1/L2 caches to exploit temporal/
spatial locality and occasionally shared, unified 
memory between the CPU and accelerators. The 
burst-access DMA, compression and intelligent 
prefetching improves the memory bandwidth.

• Interconnects: Network-on-Chip (NoC) 
Architectures enable communication among 
the cores and the memory and give a degree 
of scalability, high bandwidth, and low latency. 
NoCs vary in topology and can be based on bus, 
crossbar, or mesh architecture, but they all aim 
at connecting the CPUs, NPUs, the memory, 
and peripherals in a very efficient manner.  

AI workloads receive priority by means of quality 
of service (QoS) mechanisms.

Fig. 1: Core Components of AI-Integrated System-on-
Chip (SoC) Architectures

The figure shows the four key building blocks of  
AI-integrated SoC platforms: General-Purpose CPUs are 
used to provide control logic as well as system-level 
coordination, AI Accelerators (e.g. NPUs, TPUs) enable 
parallel deep learning inference, hierarchical memory 
subsystems enable low-latency access (including SRAM 
and cache layers), and interconnection systems such 
as Network-on-Chip (NoC) are required to provide 
high-bandwidth, low-latency communications between 
cores.

Heterogeneous Integration Strategies

Modern AI-SoC systems utilize a variety of integration 
tactics to control energy, scalability and system intricacy 
as displayed in Figure 2: Heterogeneous Integration 
Strategies for AI-Integrated SoC Architectures. The 
featured strategies are a tightly coupled or laxly 
affiliated arrangement of accelerators and the advanced 
mixture of chiplets and co-packaged-memory as of 
further advancement, in addition to run-time response 
plans such as dynamic scaling of voltages and frequencies 
(DVFS).

• Tightly and Loosely Coupled Accelerators: In 
tightly coupled AI accelerators the accelerator 
is integrated into the same cache and memory 
hierarchy with the CPU (e.g. Apple Neural 
Engine), with very low-latency between the 
AA and the CPU. More loosely coupled designs 
correspond to embedded FPGA systems where 
AI cores are at least physically isolated by 
dedicated buses or DMA channels and may be 
more modular, but at the expense of a larger 
communication overhead.[14]
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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• Co-Packaged Memory vs. Chiplet-Based Modu-
larity: High-performance SoCs can also consist 
of co-packaged HBM (High Bandwidth Memory) 
based on 2.5D interposer or dimensionally mod-
ular chiplets (computing and memory tiles are 
integrated via high-performance advanced pack-
aging (e.g., Intel Foveros, AMD Infinity Fabric). 
This will allow scaling and yield increase and ac-
commodate large AI models.

• Dynamic Voltage and Frequency Scaling (DVFS): 
Dynamic scaling at run time is essential in 
edge settings in which workloads and thermal 
requirements vary. DVFS controllers are 
included in AI-SoC clusters and switch between 
voltage-frequency pairs of CPUs, AI sores and 
interconnects to balance power efficiency with 
application power requirements. Power gating/
clock gating is also deployed within more 
advanced SoCs to turn off the inactive modules.

By working together these architectural features allow AI-
integrated SoCs to provide intelligent edge applications 
with responsiveness in real-time and energy efficiency 
levels. The nature of edge applications is becoming 
more varied as users seek to identify new uses; with 
SoC architecture continuing to shift towards being more 
reconfigurable, domain specific optimized and secure 
designed structures.

Design Trends in AI-SoCs

Evolution of AI-incorporated SoC architectures is defined 
by a number of revolutionary design fads, which are 
intended to overcome the shortcomings of classic 
edge computing systems (Table 1). The trends are all 
centered towards easing compute efficiency, scalability, 
energy performance and model compatibility with 
resource constraints on compact and power-sensitive 
environments.

Optimization Challenges

In spite of the imposing competencies of AI-adapted 
SoC platforms, a series of core optimization problems 
interfere with their capabilities in edge settings. These 
issues cut across thermal management, structure of 

Table 1: Emerging Design Trends in AI-Integrated System-on-Chip (SoC) Architectures

Trend Description

Heterogeneous 
Computing

Modern AI-SoCs are designed with a diverse mix of processing units, including general-purpose CPUs, 
AI-specific NPUs, GPUs for parallel processing, and DSPs for signal-intensive tasks. This heterogeneous 
integration enables task-specific acceleration, improves overall throughput, and allows for concurrent 
processing of control, signal, and inference workloads within the same chip. It also supports modular 
system design for flexible deployment in varied edge applications [8].

Dataflow Optimization With DNNs demanding high arithmetic intensity, AI-SoCs leverage systolic array architectures and SIMD 
(Single Instruction, Multiple Data) pipelines to minimize data movement and maximize throughput. 
These architectures exploit spatial data reuse and temporal parallelism, significantly improving 
inference efficiency in matrix-heavy operations such as convolutions and attention mechanisms [9].

Edge-AI Framework 
Compatibility

To support a wide range of real-time edge applications, AI-SoCs now offer native compatibility with 
popular inference frameworks like TensorFlow Lite, PyTorch Mobile, and ONNX Runtime. Moreover, 
these frameworks are often tightly integrated with real-time operating systems (RTOS) and vendor-
specific SDKs, enabling seamless deployment of optimized models on constrained hardware [10].

Hardware-Aware Neural 
Architecture Search (NAS)

Neural architecture search algorithms are increasingly being customized to account for SoC-level 
constraints such as memory hierarchy, compute bandwidth, and latency budgets. Hardware-aware 
NAS tools co-optimize model structure and deployment footprint, enabling the development of highly 
efficient, platform-specific AI models suitable for edge inference [11].

In-Memory and Near-
Memory Computing

A major bottleneck in AI inference is the energy cost associated with frequent memory access. 
Emerging SoC designs incorporate processing-in-memory (PIM) and near-memory compute engines 
that bring computation closer to data storage units. This trend reduces off-chip communication, 
lowers energy consumption, and supports higher model density within a compact silicon footprint.[12]

Fig. 2: Heterogeneous Integration Strategies for AI-In-
tegrated SoC Architectures
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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memory hierarchy, software infrastructure, and system 
security with the issue of the overall design that presents 
reliable, real-time, and energy-efficient AI computation 
(Figure 3: Optimization Challenges in AI-Integrated 
System-on-Chip (SoC) Architectures).

Thermal and Power Constraints

AI tasks are almost always compute-intensive and they 
tend to produce high thermal loads, particularly when 
running at the edge on small devices, such as wearables, 
drones, and self-driving robots. The edge devices do 
not have active cooling of server-grade systems and 
thermal management should be a priority. The reliability 
may be degraded after exposure to high temperatures, 
performance throttle may occur, and it hastens device 
aging.[13]

To handle this, contemporary AI-SoCs employ power 
gating and clock gating where the idle functional 
blocks are selectively disabled. As well, performance 
adaptation to thermal conditions is achieved by low-
leakage transistor technologies, dynamic voltage and 
frequency scaling (DVFS). Thermal-aware floorplanning 
and thermal sensors added during run-time also facilitate 
dealing with local hotspots.

Memory Bandwidth Bottlenecks

Large-scale CNNs and transformers based on AI models 
need extremely huge data transfer between compute 
units and memory. Conventional memory hierarchies built 
in SoC devices may not be able to support this bandwidth 
effectively leading to deteriorated performance and high 
power usage associated with a high number of accesses 
to off-chip memory.

In doing that, multi-bank on-chip SRAM, and high-
efficiency DMA (Direct Memory Access) engines and 
data compression solutions are used in reducing the 
memory latency and traffic congestion. Moreover, AI 
accelerator attributes such as tiling and buffer reuse 
strategies improve the benefit of spatial and temporal 
data locality. Nevertheless, the rise in model complexity 
still is exerting pressure on the design of the on-chip 
memory, necessitating new near-memory computing 
architectures.

Software Stack and Toolchain Support

Heterogeneous design of AI-SoCs, having more than 
one CPU, GPU, NPU, and DSP, necessitates a complex 
software stack that can effectively partition tasks, 
schedule resources, and coordinate cross-core 
synchronization. The limitations imposed on compilation-
level optimizations at the hardware level are availability 

of instruction set and memory bandwidth as well as 
parallel execution patterns.

But most toolchains are simply not mature and not 
platform-independent nowadays. Vendors experience 
difficulties deploying models that are optimized using 
TensorFlow Lite, ONNX or vendor-specific compiler 
tasks; especially in ones oriented around low-precision 
arithmetic (e.g. INT8, bfloat16). Moreover, AI-SoCs 
debugging and profiling are not unified, and they hinder 
model optimization and power-aware scheduling.

Security and Privacy

When the inference process AI shifts towards the edges, 
it is crucial to guarantee a safe execution process, in 
particular, in the healthcare, financial, and surveillance 
spheres. To outsmart malicious hacks, SoCs should 
include secure boot, hardware root-of-trust, and 
encrypted memory acess on chip.

Moreover, there should be logical separation of AI 
accelerators in order to reduce the toll of the side-
channel and adversarial attacks. Such methods as 
trusted execution environments (TEEs), hardware-level 
watermarking, access control enforcement are also 
becoming part of SoC design. But such trade-offs between 
security enforcement and real-time performance has been 
an ever-present challenge that necessitated co-design of 
both hardware and firmware layers with great care.

Fig. 3: Optimization Challenges in AI-Integrated 
System-on-Chip (SoC) Architectures

The four key bottlenecks in current AI-SoC designs 
are indicated in this diagram: thermal/power and 
power, memory bandwidth, software stack/toolchain, 
and security/privacy. Every challenge is graphically 
described with the focus on a central AI-SoC to show 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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their significance to performance, scalability and 
the ability to run in real-time in edge computing  
applications.

Case Studies

In-the-wild use of AI-integrated SoCs shows off the variety 
of architectural solutions that have gone into achieving 
performance-oriented, power-efficient, and application-
specific tradeoffs. Three of the typical platforms that 
have been described in Table 2: Comparison of AI- 
Integrated System-on- Chip (SoC) Architectures are 
presented in the section following a concise summary of 
each of them.

Google Edge TPU

Google Edge TPU is an ultra low power AI accelerator, 
optimized to run 8-bit quantized inference. On-chip 
in the Coral Dev Board, it provides high-performance 
CNNs with low power consumption, which fits in IoT 
enabled decision-making applications. It has low-latency 
execution because of its tightly coupled architecture 
with local memory that fits in power-constrained edge 
environments.

Apple Neural Engine (ANE)

The Apple ANE included in A-series and M-series SoCs 
provides high TOPS throughput on-device deep learning 
applications, such as Face ID, ARKit and camera AI. It 
allows smoothing the AI workloads as it shares memory 
with the CPU and GPU cores. Apple full-stack tool chain 
(e.g. Core ML) can be used to deploy and convert models 
that are optimized to the ANE.

NVIDIA Jetson Orin

Jetson Orin is based on an ARM Cortex-A based 
NVDLA accelerator and Ampere GPU to provide high-
performance edge AI in the range of up to 200 TOPS. It 
enables robotics and autonomous systems with support of 
mixed-precision inference (INT8 to FP32). Full support of 
software (JetPack, TensorRT) allows the implementation 
of AI applications in real-time multi-sensor scenarios to 
be efficient.

Discussion

Adding AI accelerators to the System-on-Chip (SoC) 
layout has transformed the edge compute computation 
paradigm by permitting reaction processing, energy-
efficient inference, and smaller scale deployment. This 
section is a synthesis of the insight in the architecture 
as well as the trade offs of current design and the 
deployment bottlenecks and emerging research problems 
that are important in the design of the next generation 
of edge AI platform.

Design Trade-offs and System Bottlenecks

0CPU and memory on the same silicon die plus AI 
acceleration core co-location delivers even higher 
performance/watt characteristics. Nonetheless, such 
degree of integration implies architectural trade-offs 
that should be properly balanced:

• Power vs. Performance: High-throughput AI 
cores, like NPUs and DSPs, provide a tremendous 
boost to inference latency and many tend to 
cause thermal hotspots and higher dynamic 
power in localized areas. To reduce the thermal 
effect, methods, such as dynamic voltage and 
frequency scaling (DVFS) and adaptive task 
scheduling, have been developed that reduce 
the thermal effect but enhance the complexity 
of system control and software stack reliance.

• Memory Bandwidth in Area Constrained 
Environments: AI loads mostly CNNs and 
transformers, can require sustained high 
bandwidth data transport. Off-chip SRAM doubling 
of on-chip SRAM or adding high-bandwidth 
memory (HBM) ameliorates the bottleneck, 
and causes extra chip area, leakage power, and 
routing overhead. To deal with this, current SoCs 
have incorporated systems of systolic arrays, 
loop tiling and on-chip data compression in order 
to minimize off-chip memory tasking.

• Usability: Flexibility vs. Specialization Flexible 
domain-general accelerators such as TPUs 
are designed to achieve the best possible 
performance but may be limited to the ability 

Table 2: Comparison of AI-Integrated System-on-Chip (SoC) Architectures

SoC Platform AI Performance AI Precision Memory Primary Use Case

Google Edge TPU 4 TOPS INT8 8 GB LPDDR4 Embedded Vision, IoT

Apple Neural Engine 11 TOPS INT8 / FP16 Unified (Shared) On-Device AI (Face ID, 
AR)

NVIDIA Jetson Orin Up to 200 TOPS INT8 / FP16 / FP32 32 GB LPDDR5 Robotics, Autonomous 
Systems



 K. Maidanov and Jeon Sungho : AI-Integrated System-on-Chip (SoC) Architectures for High-Performance Edge Computing:  
Design Trends and Optimization Challenges

Journal of Integrated VLSI, Embedded and Computing Technologies | Sep-Dec 2025  19Journal of VLSI circuits and systems, , ISSN 2582-1458 

RESEARCH ARTICLE WWW.VLSIJOURNAL.COM

 1.8-V Low Power, High-Resolution, High-Speed 
Comparator With Low Offset Voltage 

Implemented in 45nm CMOS Technology

 Ishrat Z. Mukti1, Ebadur R. Khan2. Koushik K. Biswas3

1-3Dept. of EEE, Independent University, Bangladesh, Dhaka, Bangladesh

AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.

Author’s e-mail: ishratzahanmukti16@gmail.com, ebad.eee.cuet@gmail.com, kou-
shikkumarbiswas13@gmail.com

How to cite this article:  Mukti IZ, Khan ER, Biswas KK. 1.8-V Low Power, High-Res-
olution, High-Speed Comparator With Low Offset Voltage Implemented in 
45nm CMOS Technology. Journal of VLSI Circuits and System Vol. 6, No. 1, 2024 (pp. 
19-24).

Journal of VLSI Circuits and Systems, ISSN: 2582-1458 Vol. 6, No. 1, 2024 (pp. 19-24) 

IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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to support changing AI model topologies. 
Conversely, reconfigurable-logic (e.g., FPGA 
overlays) based or chiplet modularity designs 
provide flexibility, but at an increased design 
burden and an increased resource cost.

AI Workload Diversity and Heterogeneity Management

Multitasking is also becoming more and more critical: 
Edge devices are expected to multimodal: vision, audio, 
control, sensor fusion, and often with fine latency 
constraints. This pushes the demand of a heterogenous 
computing building block in the SoCs, like a tightly 
integrated CPU+GPU+NPU complex. To distribute 
efficient workload, it is necessary:

• Task offloading that is aware of the workload, 
where the workload of high latency is allocated 
to NPUs, and low latency logic to this side is on 
CPUs.

• Homogeneous stacks such as TensorFlow Lite, 
ONNX Runtime and vendor SDKs (e.g. NVIDIA 
TensorRT, ARM Ethos-U) that allow models to be 
converted and scheduled, and parallel kernels to 
be optimized in the same way.

Inter-core data coherency, context switching latency, 
and symmetric memory access lag behind, although 
problems with latency in AI models are less threatening 
as they become more deep and branched.

Thermal and Reliability Considerations

Edge applications AI-SoCs are more likely to be applied 
in tight housing with no active thermal management, 
including wearable, drone and automotive applications. 
These are thermally constrained environments and they 
demand:

• Thermal-trained floorplanning to allocate blocks 
efficiently that are heat-sensitive.

• Connection of microfluidic channels or thermal 
through-silicon vias (TSVs) in 2.5D/3D SoC stacks 
in order to improve the vertical heat removal.

It is also major when it comes to long-term reliability. 
Thus, redundancy-aware accelerators, real-time fault 
detection and Error-Correcting Code (ECC) memory must 
be incorporated into the SoC to address environmental 
stress, wear-out, and soft errors.

Real-World Deployment Insights

The design of commercial AI-SoCs embodies design 
philosophies that are custom to the application they are 
built to suit:

• Apple Neural Engine (ANE) focuses on close work 

with the operating system and low-latency AI 
inference in on-device activities, such as Face ID 
and augmented reality programs.

• NVIDIA Jetson Orin is high-performance yet 
scalable compute, with mixed-precision and 
heterogeneous cores, optimized with robotics, 
edge server, and autonomous navigation in mind.

• Google Edge TPU is an example of ultra-low-power-
AI inference with stringent INT8 model support of 
machine vision use cases and always-on AI.

These deployments emphasize the value of model-
architecture co-designs, in which hardware is deliberately 
tailored to model properties (e.g. convolution-heavy 
networks vs. transformer-based networks).

Emerging Paradigms and Research Opportunities

AI-SoC development in the future will depend on how 
the new constraints will be discussed and how the 
adaptability will be widened. Potentially there might be 
developments in the following directions:

• In-Memory Computing (IMC) and Processingin 
Memory (PIM) to minimize latencies and power 
expenses of data flow between logic and storage.

• Hardware-Aware Neural Architecture Search 
(NAS) in order to automatically design models 
that take into account the constraints of the SoC 
(e.g. cache size, quantization boundaries).

• Real-time AI-Driven Reconfiguration, supporting 
the real-time optimisation of logic blocks in 
accordance with different tasks, work load, or 
temperature constraints.

• SoC architectures that put security first and 
incorporate the Trusted Execution Environment 
(TEE), hardware-based AI model watermarking 
and secure boot capabilities, to ensure inference 
integrity and IP ownership.

The examined literature on case studies and architecture 
trends show that AI-augmented SoCs are key to successful 
edge intelligence development, however, realizing 
scalable, safe, efficient architectures needs a top-down 
system-level approach. The combination of AI model 
complexity, flexibility in edge deployment scenarios 
and performance under real-time responsive use cases 
requires an integrated system that spans hardware 
architecture, software optimisation, and collection 
system control. Overcoming the described challenges 
and adopting the new paradigms of AI-SoC development 
will prove to be instrumental in determining the future 
generation of systems.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Conclusion and Future Directions

The paper provided a detailed overview of AI-
accommodating System-on-Chip (SoC) systems and focus 
on integration methodologies, design trends, optimization 
issues, and field adoption of edge computing systems. 
It described how co-integration of AI accelerators, like 
NPUs, GPUs and DSPs with general purpose CPUs, and 
the application of optimized memory hierarchies will 
deliver energy-efficient, inference performance in real 
time for a set of diverse edge workloads.

Among the most notable contributions of this paper, one 
should mention:

• Organised description of fundamental 
components of an AI-SoC, compute, memory, 
and connect components, and their position in 
context relevant to modern implementations of 
edge applications.

• An overview of design trends, e.g. dataflow 
optimization, in-memory computing and 
hardware-aware NAS that represent direction 
in the industry towards scalable, adaptive 
architectures.

• Complex study and discussion on optimization 
issues with regard to thermal constraints, 
bandwidth, the fragmentation of tools in the 
toolchain, and the security issues.

• Informative feedback of commercial platforms 
such as Google Edge TPU, Apple Neural Engine, 
and NVIDIA Jetson Orin, they are prominently 
featured in the case studies with distinct 
approaches in actual AI-SoC deployment.

Even as there are constant improvements, latest AI-
SoC platforms suffers restriction in memory bandwidth, 
power efficiency, and heterogeneous software stack 
heterogeneity. Closing these gaps would need cross-layer 
innovation, spanning architecture, compilers, system 
software, and model optimization pipeline.

Future Directions

In order to make the most out of intelligent edge 
systems, the following areas will be addressed in the 
future research and development:

• Chiplet-Based Modular SoCs: Suggesting 
scalability and flexibility of design due to the 
integration of chiplets that allow upgrades and 
specialization of AI workloads to cost effectively 
be upgraded in stages.

• Hardware Reliability with AI Enhancements: 
Dynamic machine learning models infused into 

failure analysis, dynamic thermal throttling and 
intelligent aging compensation to manage long 
term performance.

• Quantum-Inspired SoC Accelerators: Investigtar-
ion of quantum-inspired algorithms and anneal-
ing-based hardware to accelerate the execution 
of complex optimization problems in the edge 
with minimal energy costs.

• Unified AI-SoC Frameworks: Creation of end-to-
end application software ecosystems that are 
contiguously interconnected with compilers, 
tool chains, firmware and runtime schedulers to 
achieve maximum performance on heterogeneous 
compute engines.

With the ongoing increase in complexity and usages of 
AI workloads, the co-design of intelligent, secure and 
thermally-aware SoCs will be the key driver in defining the 
future of autonomous systems, healthcare diagnostics, 
industrial automation and so on. The combination of 
the architecture level and AI powered flexibility offer a 
great potential horizon to the next generation edge AI 
processor.
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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