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AbstrAct 
In this time, when HPC and AI are converging, we are witnessing the era of 
combining HPC with AI, i.e. data, which will bring to bear new scientific dis-
covery and innovation at unimagined speed. Computing approaches used in 
the past have been unable to keep up with growing datasets and increasingly 
sophisticated problems in research. With the combination of HPC systems 
and the power of analytic AI and machine learning, previously almost un-
solvable problems are being tackled in areas such as climate, drug discovery, 
materials science, and many other. This paper presents how these cutting 
edge HPC architectures and technologies can support these breakthroughs, 
describes the challenges of delivering AI on HPC systems and what can be 
done about it and provides a strategy for organizations seeking to maximize 
the value of these powerful tools.
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the Need for hPc cAtAlyzed by AI
As the data science problems grow more complex 
and the data grows exponentially, scientific users are 
reaching the limits of what traditional HPC systems 
can provide. Like genomics, climate science and 
particle physics, FIELDS have datasets that commonly 
exceed peta and exa byte scales. But on the other 
hand, researchers strive more and more on ever more 
complex multi scale, multi physics simulations, moving 
further away from any existing supercomputer. They 
are promising in analyzing and speeding up simulations 
with the help of AI and machine learning techniques 
with massive datasets. These purposes can be served 
by AI agents that intelligently explore the huge 
parameter space to optimize simulations, or deep 
learning models that can find insIdentable patterns in 
nois, experimental data. AI can help scientists make 
more sense of what they do have, but also speed up 
their solutions to problems which would otherwise be 
intractable.[1-3]

Nevertheless, it is hard to successfully 
intertwine HPC and AI architectures and their 
related software systems. As a matter of fact, 

computational characteristics and required resource 
of AI workloads are completely different from those 
of HPC applications. As we want to deploy AI at scale 
in an HPC environment, we need to determine the 
hard and soft stacks that address both paradigms. 
The high performance computing (HPC) systems are 
required owing to rapid development of artificial 
intelligence (AI) and machine learning (ML). For AI 
applications, HPC, i.e., the use of advanced computing 
architectures that can carry out the processing of the 
complex computation at scale, is imperative. Deep 
learning based AI algorithms require large amount of 
computational power, data processing and storage 
and traditional computing systems frequently lack the 
capability to provide this. These needs are well suited 
for being met with HPC systems, with their large 
parallel processing capabilities, which will speedup 
and efficiency train AI models (Figure 1).[4]-5]

Modern AI and ML algorithms that are used, 
especially in areas like Natural language processing, 
Computer vision, autonomous systems, has very 
complex demands for processing power. Processing 
large datasets while performing calculations that 
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require high level of processing power is an area of 
use for these algorithms. Taking the training of deep 
neural networks, for example, it is comprised of 
updating millions of parameters over a thousand of 
iterations and would take an unacceptable amount of 
time on standard computers. However, HPC systems 
can distribute these tasks amongst many processors, 
thereby greatly speeding up the training time.[6-7]

Another big reason why HPC in AI is used is in 
response to the amount of data an average AI model 
needs. Processing these big datasets use vast storage 
and computational capacity which is extensively needed 
by AI and ML applications. The ability of HPC platforms 
to handle and process large volumes of data in parallel 
makes them a very good fit to use to manage and 

analyze this information. Additional benefits of HPC in 
the area of real-time processing also enable AI models 
to come up with faster insights, which could prove to be 
extremely useful in industries like healthcare, finance 
and autonomous vehicles. The final conclusion is that 
the combination of AI and HPC is becoming a more 
important necessity to advance scientific discovery and 
innovation. Not only does the complexity of AI models 
require the need for HPC, also required is rapid speed 
of data processing and storage as well as real time 
analysis. With the evolution of the AI, the HPC will 
continue to be a fundamental component to achieve 
the full power of AI and machine learning.[8]

ArtIfIcIAl INtellIgeNce ANd Its ImPAct 
oN hPc bAsed oN Key ArchItecturAl 
coNsIderAtIoNs
Several key architectural considerations need to 
addressed to integrate AI capabilities into HPC systems.

Compute Architecture
However, the workloads of deep learning training are 
quite computational intensive, with low precision 
demand. This makes them ideal for such acceleration 
hardware like GPUs or TPUs. But even today many 
HPC applications are still sensitive to diversity of 
computational needs and hence rely on general 
purpose CPUs (Table 1).[9]

The HPC architecture based on such an AI also 
requires to balance for both these requirements. 

Fig. 1: HPC and AI architectures

Table 1

Challenge Description Impact

Scalability and Resource Management Managing large-scale resources and en-
suring the system scales with growing 
data and processing demands.

Scalability issues can result in ineffi-
cient use of resources and slowdowns 
in processing time.

Data Throughput and Bandwidth 
Limitations

Ensuring the system can handle large 
datasets efficiently without bottle-
necks in data transfer.

Data bottlenecks lead to system inef-
ficiency and increased computation 
time.

Power Consumption and Cooling Issues High-performance computing systems 
consume significant power and require 
advanced cooling solutions.

Excessive power consumption and poor 
cooling can lead to hardware failure 
and high operational costs.

Algorithm Optimization for HPC Optimizing AI/ML algorithms to lever-
age the full potential of HPC architec-
tures is a complex task.

Inadequately optimized algorithms can 
lead to suboptimal performance, limit-
ing the effectiveness of HPC systems.

Interconnect Latency and Communica-
tion Overheads

Reducing communication delays and 
improving data transfer between pro-
cessing units in multi-core or distribut-
ed systems.

Communication delays can significantly 
hinder overall performance, especially 
in parallel computing systems.
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Conversely to leading solutions that use heterogeneous 
computing techniques, combining general purpose CPUs 
with AI accelerators, the performance of the attack 
available on the different computing platforms has not 
fully been investigated. In the example of Perlmutter 
supercomputer from the Lawrence Berkeley National 
Laboratory, AMD EPYC CPUs connected to NVIDIA A100 
GPUs are utilized to run both traditional simulations 
and even huge training for AI.[10]

Memory and Storage
Now with the rise of AI in the areas such as natural language 
processing, the size of these AI models are now trillions 
or even billions of parameters. Training and deploying 
such models also requires enormous high band width 
memory. At the same time, massive scientific datasets 
are generated, and the storage systems for analysing 
them are also high capacity and high throughput. HBM 
is now being used in modern HPC systems to meet these 
requirements for HBM in AI accelerators and for NVM 
in large capacity low latency storage. Tiered memory 
architectures combining DRAM, NVM, and conventional 
storage in order offer to serve parallel streams of data 
over a set of sequences of lengths with low latency 
and high throughput, flexibly placing data on behalf of 
performance vs capacity trading.[11]

Memory and storage are two fundamental pieces of 
a computing system that accomplish two different, but 
interrelated, tasks with regard to data, both storage 
and software. Memory and storage are concerned 
primarily with fast temporary access of data while 
actively processed, and storage is also devoted to 
persistent data retention over time. RAM or Random 
Access Memory is what is called memory, which means 
it serves as a temporary location to store the data that 
is being used by the processor currently. It provides 
a fast read and write, the system will run programs 
effectively. Among the factors that determine system 
performance, speed and capacity of memory play a 
critical role. Memory is volatile, that is to say, it loses 
its data after the power turns off. This makes it good 
for short term data access like storing intermediate 
results of calculation or keeping the operating system 
and active running applications.[12-13]

However, storage is used to value devices that 
retain data during a long period of time, even when 
the system is powered off. Storage devices which 
are most commonly used in today’s computers are 
Hard Disk Drives (HDD) and Solid State Drives (SSD).  
Unlike memory, storage is non-volatile, which means it 

stores large amount of data, that is, operating systems, 
applications, documents, and media files. These are 
slaved to memory in general, but much faster, and 
much cheaper on a capacity basis, so are precisely 
where you want to do long term storage of data. This 
is the distinction between memory and storage fading 
due to the emergence of new forms of storage, such 
as NAND flash memory, which has fast access speeds 
similar to memory and the non volatile properties 
of traditional storage. As a result, memory/storage 
hybrids like non-volatile memory express (NVMe) have 
been developed that provide the speed of memory and 
storage persistence.[14]

Memory and storage need to be optimized in high 
performance computing (HPC) and data extensive 
applications to accommodate large datasets along with 
high processing speed. To enhance data processing 
performance efficiency and speed in fields that rely on 
AI, machine learning or scientific computing, memory 
supports, like high bandwidth memory (HBM) and 
storage solutions, like distributed storage system, 
become very crucial.[15] Finally, the memory and storage 
are the basis of the operation of modern computing 
systems. Storage makes sure your data keeps for a 
long time, while memory makes it easy to process and 
access it fast. Current memory and storage technology 
advancement drives the system performance, data 
handling and storage capacity to be pushed to its 
limits, and permit more sophisticated and resource 
demanding applications to be carried out (Figure 2).[16]

INtercoNNects
To achieve scaling AI workloads on top of large HPC 
cluster, high bandwidth low latency interconnect 
is necessary at training and inference. We would 
like to take the advantage of parallel work, so 
needs in high bandwidth, low latency interconnect. 
Such high speed communication between GPU’s is 
enabled by technologies like NVIDIA NVLink and AMD 
Infinity Fabric, and next gen fabrics will integrate 
the CPU with GPU closer using technologies such as 
CXL (Compute Express Link). At the system level, it 
provides efficient communication on a node for both 
traditional HPC workloads as well as AI workloads 
through high performance networks such as InfiniBand 
and Intel Omni Path.[17]

Power and Cooling
However, with the massive scale HPC systems, the full 
weight of massive scale is applied to AI workloads, 
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which have high computational intensity. Lately, 
direct to chip and immersion cooling technologies 
are becoming a necessity in address the thermal load 
being generated from AI accelerated supercomputers. 
Despite that, new ideas in AI chip design, such as 
domain specific Architecture as well as in memory 
Computing are foreseen to provide orders of magnitude 
reduction in energy consumption of AI workloads.[18]

Emerging HPC Architectures for AI 
Workloads
There are several emerging HPC architectures 
that address the unique requirements of AI and ML 
workloads. The de facto way to accelerate for deep 
learning workloads tends to be Graphics Processing 
Units (GPUs). In the contemporary HPC systems, 
GPUs are used in the large numbers to run AI 
applications alongside these traditional simulations. 
For example, Oak Ridge National Laboratory’s Summit 
supercomputer has more than 27,000 NVIDIA V100 
GPUs for such first-of-their kind research on fields 
such as materials science and fusion energy. Typically 
architected in a heterogeneous GPU trajectory 
systems, CPUs are employed for general purpose and 
I/O processing while specialized architectures of GPUs 
drive computationally costly AI and simulation kernels. 
NVIDIA NVLink is a high speed interconnect for CPU & 
GPU, GPU & GPU communication.[19-20]

A GPU accelerated system is one which takes 
advantage of the Graphics Processing Units (GPUs) to 
speed up computations done by a Central Processing 
Unit (CPU). Originally created to render graphics in 
video games, GPUs have since become highly powerful 
parallel processing units capable of running a wide 
variety of computationally intense tasks. This has 
been a shift that has allowed enormous step forward 
to applications in areas such as artificial intelligence 
(AI), machine learning (ML), scientific simulations and 
big data analytics.[21]

One characteristic of GPU accelerated system is 
that it can be parallel processing. In contrast to CPU 
that have one or two cores doing well on sequential 
operations (usually 4 to 16 cores on consumable 
systems), GPUs have thousands of simpler, smaller 
cores that execute multiple operations in parallel. 
This large amount of parallelism makes GPUs excel 
at applications where the same operation should be 
performed on many copies of the same data in parallel, 
e.g. matrix multiplications in AI training or pixel 
processing in pictures. GPU operates in conjunction 
with the CPU in such systems. The CPU performs tasks 
that need sequential processing or complex decisioning, 
while the GPU offloads and speeds things up for data 
parallel tasks. To name a few, in AI applications, the 
CPU might be responsible for orchestrating the flow of 
the whole workflow and preprocessing data, while the 

Fig. 2:  High performance computing
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GPU acts as the core unit doing all the heavy lifting 
aspects of mathematical computations across model 
training. The combination of these leads to enormous 
speed ups, especially when the division of labor can be 
employed (parallel tasks (Figure 3).[22]

For the context of AI and machine learning, 
GPU accelerated systems have turned out to be 
a cornerstone of deep learning. Training deep 
neural networks that entail manipulating large and 
complex datasets through an array of computation, 
both together, is highly parallelizable and greatly 
benefits from GPU acceleration. Frameworks such as 
TensorFlow, PyTorch, and CUDA allow the developers 
incorporate GPU power which can significantly improve 
training times and allow to solve issues of larger, more 
complex datasets. What is more, GPU accelerated 
systems are also of paramount importance in scientific 
computing where the trickery of manipulating big 
datasets and intricate mathematical operations is 
required to perform a molecular dynamics simulation 
or atmospheric modeling (or just that notoriously 
time consuming finite elements analysis). Researcher 
can offload computationally expensive tasks to GPU, 
allowing them to save a huge amount of performance 
by reducing simulation times from days or weeks to 
hours or minutes.[23-24]

Along with GPU accelerated systems, specialised 
hardware architectures have also been developed 
to accelerate certain tasks. An example is Tensor 

Processing Units (TPUs), which were developed by 
Google specifically for machine learning workloads 
and custom accelerators of course. Built along the 
same lines of a parallel computation, these specialized 
processors offer even more optimized performance 
for AI workloads. Finally, GPU accelerated systems 
have changed the way we deal with computationally 
demanding tasks. This combination of parallel 
processing capabilities, high throughput, specialized 
architecture makes GPUs an essential and indispensable 
tool in fields such as AI, machine learning, and scientific 
research. GPU acceleration will likely be an important 
enabler for solving the increasingly complex problems 
of modern technology as the demand for faster, more 
powerful computing continues to grow.

AI-oPtImIzed cPus
Although deep learning GPUs are king of deep 
learning GPUs, even demanding non deep learning 
AI and ML workloads can find use out of traditional 
general purpose CPU architectures. Specialized CPU 
instructions and architectural features are being 
offered by the processor vendors that are further 
optimizing AI using their designed AI optimized CPU.

While in the context of AI workloads matrix 
multiplication and convolution are going to be huge 
speed ups with Intels latest Xeon processors with 
Advanced Matrix Extensions (AMX). Similarly, moving 
AI workloads onto CPU based super computers such as 

Fig. 3: NVIDIA V100 GPUs
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Japan’s Fugaku system, ARM similarly goes a long way 
towards the SVE.

Neuromorphic Computing
Inspired by the structure and function of a biological 
brain, the neuromorphic computing architectures 
aim at drastically improving the energy efficiency of 
AI workloads. The networks of artificial neurons and 
a synapses do the computing in possible ultra low 
power AI devices in systems that use Intel’s Loihi chip. 
Neuromorphic computing is still an emerging field, but 
it is, at the same time, extremely promising to bring 
advanced AI capabilities to the edge at the same time 
that massive scale AI training is reduced significantly 
in terms of energy consumption.

AI Enabled HPC: Software Frameworks
To realize these results, these complex AI tasks must 
be carried out in an HPC environment which requires 
the use of sophisticated software frameworks, but also 
requires HPCs to effectively utilize the heterogeneous 
compute resources in the clusters and to scale across 
the large clusters in the application. Key software 
technologies are supporting convergence of HPC and AI.

Distributed Deep Learning Frameworks
Horovod and DeepSpeed are these two frameworks 
which can achieve efficient distributed training of deep 
learning models in large HPC clusters. These tools are 
magical as they take over the data parallelism, model 
parallelism, and communication optimization for the 
researchers to train AI on thousands of GPUs.

HPC-AI Bridges
Typically, products that are bridging from the literature 
of HPC to say kinds of AI capabilities bringing them and 
integrating them within HPC workflows are now moving 
in and out of the traditional scientific computation 
library or the modern kind of frameworks of AI. Such 
high performance GPU accelerated RAPIDS and Dask 
alternatives enable easy flow of AI techniques in to 
HPC pipelines.

Domain-Specific AI Frameworks
In many scientific domains, specialized data types and 
specialized computational patterns have lead to the 
development of specialized AI frameworks dedicated 
to these scientific domains. DeepChem and the NVIDIA 
Clara framework for AI in health and life sciences are 
two examples of projects that provide deep learning 

tools for chemical and materials science, or for speed 
forward AI in health and life sciences.

Workflow Management and MLOps
However, managing the complete life cycle of ML 
models becomes increasingly important under 
ML in HPC environments as an element of the 
scientific workflow. However, when the focus is on 
HPC environments, there exist MLOps platforms, 
e.g. MLflow and Determined AI, which help models 
researchers tracking experiments, managing versions 
of models, and deplaying AI models at scale.

Challenges and Considerations for AI HPC 
Enabled
While the two are a good combined force, bringing 
them together can also present a variety of sometimes 
major obstacles that organizations will have to combat. 
Due to the massive datasets with which AI workloads 
such as scientific workloads must deal, traditional 
HPC storage systems are repeatedly pushed to their 
limits. For organizations to be able to train and infer 
AI at scale, it is critical that data management and I/O 
strategy are carefully specified.

Software Ecosystem Complexity
Lightning fast changes in AI frameworks and tools 
make it hard to ‘swim’ (think about zooming in a 
pool) in the space, especially if you are going to use 
traditional HPC software stack. Maintainability and 
compatibility with some of the widest variety of AI 
and HPC applications have to be assured by careful 
software engineering and continuous integration.

Skills Gap
For AI to work in HPC, one needs to be a good scientific 
computing genius and also had a set of good machine 
learning skills. Organizations have to invest in hiring 
and training to create interdisciplinary team. However, 
a lot of AI algorithms are stochastic in nature and to be 
sure results will come out the same as might be desired 
when doing scientific workflows is very difficult. In a 
sense, as the name implies, some AI models are ‘black 
box’ that makes explainability and interpretability 
pretty much impossible in scientific contexts.

future treNds to AI hPc
These are some of the several diverging trends for the 
future of AI enabled HPC: However, researchers are 
attempting to use the colossal computational power 
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in supercomputers that will reach the exascale (10^18 
floating point operations per second) for use in AI 
workloads. On exascale systems, such AI models will 
also be trained, using training techniques enabled by 
previously intractable science, where tools developed 
for scientific simulation, data analysis, and other fields 
have now advanced (Table 2).

Edge-to-Exascale Computing
Faced with the proliferation of IoT devices, it is now 
possible to create new workloads for distributed 
AI computation over a continuum of compute from 
low power edge to exascale supercomputers. The 
implementation of new applications in the fields of 
real time scientific instrumentation and autonomous 
systems will be performed through this distributed AI 
paradigm.

Scientific Discovery based on AI
As AI becomes smarter, researchers are now 
ponderering, whether machine learning can just 
increase the speed on some of the existing scientific 
ways of working, but it could also be the driving force 
for some new scientific products development. AI 
agents that autonomously design and run experiments 
based on science and hypothesis can revolutionize 
science.

coNclusIoN
Newman, who is director of fleet management for 
Chelsea Academy, has a passion for bringing the tech 

world together with local students in order to promote 
the convergence of high performance computing 
and artificial intelligence, marking the beginning 
of an era of accelerated scientific discovery and 
innovation. Combining HPC + AI and machine learning 
puts previously intractable challenges to address 
in a number of scientific domains. However, though 
integration of AI into HPC environments remains 
realistically important and inherently dependent 
on persuasive hardware architectures and software 
frameworks, along with intricate inter disciplinary 
knowledge, AI technology for HPC is a difficult and 
challenging goal and be very susceptible to failure and 
concerns. However, AI HPC will pose data management, 
software complexity, skills development challenges to 
organizations. On the way, exascale computing and 
edge to exascale AI will continue to push the front 
end of scientific computing. The scientific community 
can break new ground to capture unprecedented 
knowledge to solve some of our most urgent problems 
by embracing these technologies and the solutions of 
the associated challenges.
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