
Journal of Integrated VLSI, Embedded and ComputingTechnologies | May - August | ISSN: 3049-1312	 1

FPGA Hardware-Software Co-Design for Real-Time
Embedded Systems

M.A. Erdoğan1, F.N. Demir2*

1.2Department of Computer Engineering, Bogazici University, Istanbul, Turkey

Abstract
Image processing, robotics, remote-sensing are many embedded systems
which have critical real time performance requirement. Hence, such ap-
plications generally demand constraints on size, weight and power of a
computing solution, for which traditional computing solutions fail to work.
Field Programmable Gate Array (FPGAs) have emerged as a powerful plat-
form to tackle these challenges through the hardware so software co design.
Though this provides development people much more software flexibility,
it allows one to do much higher performance work with custom hardware
as well. In this paper we intend to venture the territory of HW/SW co plan
based on FPGA for genuine time inserted frameworks and its favorable cir-
cumstances, strategy and genuine application. This will demonstrate that
this approach drives a large improvement of embedded system perfor-
mance while preserving the tradeoff between development time and system
efficiency.
How to cite this article: Erdoğan MA, Demir FN (2025). FPGA Hardware-Soft-
ware Co-Design for Real-Time Embedded Systems. Journal of Integrated
VLSI, Embedded and Computing Technologies, Vol. 2, No. 2, 2025, 1-8

Introduction
Thus, Field Programmable Gate Array (FPGA)
consists of a matrix composed of a configurable
gate array matrix (CLB) interconnected through a
programmable interconnect. FPGAs are programmable
after manufacturing meaning logic circuit design
can be achieved and the ability to almost infinite
flexibility. Usually, the architecture of an FPGA
includes: Elements that are configurable to perform
the combinational and sequential logic functions.
Routing resources such as interconnects that are
programmable and connect logic blocks. Interfaces
is a communication between external devices via I/O
Blocks. Data storage and processing functions on chip
RAM FPGAs are very good for prototyping and for small
to medium production quantities because devices with
this structure exist. The use of FPGAs in Embedded
System has many benefits. Such embedded systems
are good candidates for use in FPGAs as they are
generally high performance, low power consumption,
and capable of continual adaptation to changing
requirements.[1-4]

Hardware Software Co Design
Methodology
Hardware software co design implies that we must
design the system in which the hardware and software
are considered at the same time. The purpose of this
methodology is to determine the amount of hardware
and software implementation that provides the highest
system performance.

Key principles for hardware-software co--
design are: Using these principles, designers can
successfully marry the attributes of the hardware side
implementation to the software side implementation
of embedded systems. The process of hardware-
software co-design usually involves these following
steps: The process enables designers to utilize benefits
of both hardware and software implementations in the
presence of the embedded system design problems.
To support automatic synthesis of the hardware,
hardware description languages (HDLs) must describe
it with sufficient accuracy.[5-6]

Hardware Description Languages are such
languages that are used with descriptions of digital

Keywords:
FPGA Co-Design;
Real-Time Systems;
Embedded Systems;
Hardware-Software Integra-
tion;
Parallel Processing

Corresponding Author Email:
fatmadem.ir@boun.edu.tr

DOI: 10.31838/JIVCT/02.02.01

Received	 :	 05.12.2024
Revised 	 :	 07.01.2025
Accepted	 :	 03.03.2025

RESEARCH ARTICLE	 ECEJOURNALS.IN
Journal of Integrated VLSI, Embedded and Computing Technologies, ISSN: 3049-1312 Vol. 2, No. 2, 2025 (pp. 1-8)

M.A. Erdoğan and F. N. Demir : FPGA Hardware-Software Co-Design for Real-Time Embedded Systems

2		 Journal of Integrated VLSI, Embedded and ComputingTechnologies | May - August | ISSN: 3049-1312

circuits. Among them, the two most popular HDLs for
FIFA design are: VHSIC Hardware Description Language
(VHDL): VHDL is an example of having strong typing
and verbose syntax and is widely used in Europe and in
the defense industry area. Verilog: As its C like syntax
makes it a popular language among users, especially
in the United States and Asia, semiconductor industry
uses this language verilog. Now these two languages
have the capability of describing hardware at various
level of abstraction starting from low level of gate
level description to the high level of behavioural
description. This gap is overcome by high level so
called synthesis tools; we want to have our developers
describe hardware functionality on high level instead
on low level bit by bit. Using Mentor Graphics
Catapult HLSCo-Design for Real-Time Embedded
Systems. Many embedded systems applications have
real time performance as a critical requirement,
image processing, robotics and remote sensing is
just a few examples. This leads to requirements of
these applications in terms of size, weight and power
consumption that are beyond the scope of traditional
computing solutions. The challenges mentioned
above have been addressed by Field-Programmable
Gate Arrays (FPGAs) as a powerful platform for
hardware-software co-design. By using this approach,
developers create embedded solutions that use
the speed of custom hardware and the flexibility of
software.

This article presents an outlook on FPGA based
hardware-software co-design for real time embedded
systems with its benefits, associated methodologies
and some real world applications. We will take a
closer look into the details of such an approach, and

how it can improve embedded system performance by
a large factor while also balancing development time
with efficiency of the system (Figure 1).[7-9]

Understanding FPGA Technology
Semiconductor device Field Programmable Gate Arrays
(FPGAs) are matrix of configurable logic blocks (CLB)
connected by programmable interconnects. In contrast
to Application Specific Integrated Circuits (ASICs),
FPGAs can be reprogrammed post manufacturing
giving design flexibility that is unmatched with
digital circuit design. Configurable elements that
can implement various combinational and sequential
logic functions are logic blocks. This makes FPGAs
ideally suitable for prototyping and small to medium
scale production runs as owing to unique structure
developers can implement custom hardware designs
to meet application criteria.[10]

Co-simulation tools allow the designer to validate
the functionality of the hardware software system
that has been designed from abstract view of actual
hardware. Some popular co-simulation environments
include: In addition to other things, these tools give a
more thorough test of the co designed system through
waveform viewing, assertion based verification, and
coverage analysis. Some problems with real time
image processing on embedded systems are:[11]

1.	 Therefore, invariably, image processing algorithms
involve a lot of computational powers on large
datasets.

2.	 Data Preprocessing for High Resolution Image: the
data is required to have large memory bandwidth
as well as resource efficient data management.

Fig. 1: Understanding FPGA Technology

M.A. Erdoğan and F. N. Demir : FPGA Hardware-Software Co-Design for Real-Time Embedded Systems

Journal of Integrated VLSI, Embedded and ComputingTechnologies | May - August | ISSN: 3049-1312	 3

3.	 Energy efficient implementations are important
because nowadays embedded systems have
limited power budget.

4.	 High Frame Rate: Processing at high frame rate is
required for many applications and extremely low
(or zero) latency.

5.	 Usually, Algorithms are updateable or different
processing modes are supported.

FPGA’s parallel processing capabilities, the
customizability of their memory hierarchies and the
reconfigurability make FPGAs well suited to solve
these problems. Acceleration of Image Processing
Algorithms on an FPGA. FPGA acceleration can provide
several image processing algorithms (Figure 2):

Convolution based filters like Gaussian blur or edge
detection can be written as filtering task, so engineers
can be sure that the implementation will be efficient
because convolutions are highly parallelizable on
FPGAs. Efficient Implementation of transformations
from RGB to YUV space in Hardware. The technology
accelerates Image Feature Algorithms such as SIFT or
SURF, therefore Custom Hardware can greatly speedup
feature extraction. JPEG or H.264 codecs can be used
to support real time encoding and decoding using
FPGA parallelism via compression/decompression.
Specialized hardware structures can be used to
perform erode, dilate and other morphological
operations. Hence, we demonstrate that FPGAs can
be pipelined to induce large speedups over software

only solutions and will provide real time performance
in embedded systems.[12-14]

Image Processing Memory Management
Consequently, high performance image processing on
FPGAs demands efficient memory These methods make
it possible to balance trade offs between how much on
chip memory is used, how much bandwidth is required
to main memory, and how fast the processing needs
to be. I then provide a case study in FPGA hardware
software co design for a robot localization system which
works in real time. The system processes the images
from a camera mounted on ceiling of the arena about
the positions and motions of multiple robots in the
arena. We can achieve up to 10 robots by simultaneous
detection and tracking and the position accuracy is
sub centimeter; we are able to run at 25 frames per
second on 1600x1200 pixel images. Furthermore, low
power consumption makes it possible to verify the
integrated hardware-software system in an embedded
form factor before implementation on the actual
hardware. Some popular co-simulation environments
include (Figure 3):[15]

The features of these tools often include waveform
viewing, assertion based verification and coverage
analysis to verify that the co-designed system has
been built properly and meets all requirements.
These challenges are well suited to be addressed
by using FPGAs, which provide parallel processing

Fig. 2: FPGA’s parallel processing

M.A. Erdoğan and F. N. Demir : FPGA Hardware-Software Co-Design for Real-Time Embedded Systems

4		 Journal of Integrated VLSI, Embedded and ComputingTechnologies | May - August | ISSN: 3049-1312

capabilities, user configurable memory hierarchies
and/or reconfigurability.. FPGA-Accelerated Image
Processing Algorithms. FPGA acceleration can be
applied to solve several image processing algorithms.
Filtering: Convolution based filters such as Gaussian
blur or edge detection can be parallelized very well
on FPGAs. Efficient Implementation of Color Space
Conversion: Transforming from the color space RGB
to YUV is fairly simple in hardware. Accelerating
algorithms like SIFT or SURF for Feature Extraction
since it is based on image features detection. Real
time encoding and decoding with FGPAs can be
taken advantage of using JPEG or H.264 Cocecs.
Morphological operations (Erosion, dilation and so on)
can be carried using specialized hardware structures.
With the implementation of these algorithms in the
hardware, FPGAs achieve significant speedups with
respect to the realizations of these algorithms in
the software thus allowing real time performance in
embedded systems.[16-18]

Memory Management for Image
Processing
High performance FPGA image processing requires
efficient memory management. Strategies include:
Storing a few lines of the image in on chip memory so
as to reduce the number of external memory access.

Dividing the image into smaller tiles that can be
independently and in parallel processed. Dual buffers
are utilized to overlap data transfer and processing
operations (Ping-Pong Buffers). Caching: Optimization
of both algorithm and basic data structures. Burst
Transfers: Making maximum use of available bandwidth
of external memory interfaces through burst modes.
The use of these techniques allows designers to
best balance the trade offs of bandwidth of external
memory, on chip memory usage, and processing
efficiency.

In the following, we discuss a case study on an FPGA
based hardware software co design for a real time robot
localization system. Images of robots in an arena can be
obtained from a ceiling mounted camera and passed for
tracking the position of multiple robots to the system.
Hardware-Software Partitioning. 3. Image acquisition
and pre processing. Binary image of greyscale image
generation by using color thresholding 4.The connected
component labeling 5. Detected blobs centroid
calculation 6. Robot identification and tracking 7.
Mapping and coordinate transformation 8.Robot and
external systems communication 9. System control,
user interface. Designers can use co simulation tools
to verify the functionality of the integrated hardware
software system before fabricated into the actual
hardware. Some popular co-simulation environments
include:[19]

Fig. 3: Image Processing Memory Management

M.A. Erdoğan and F. N. Demir : FPGA Hardware-Software Co-Design for Real-Time Embedded Systems

Journal of Integrated VLSI, Embedded and ComputingTechnologies | May - August | ISSN: 3049-1312	 5

These challenges can be addressed by using
FPGAs owing to their parallel processing capabilities,
customizable memory hierarchies and their
reconfigurability. FPGA-Accelerated Image Processing
Algorithms. Some of these algorithms may be
accelerated by using FPGA. Filtering: Convolution
based filtering such as Gaussian blur or edge detection
can be made highly parallel on CPU and FPGAs. Color
Space Conversion: We can perform fast hardware
computations in transforming color spaces (e.g., RGB
to YUV). Feature Extraction: It is possible to accelerate
algorithms such as SIFT or SURF to find image features
by using custom hardware. JPEG or H.264 codecs:
There is real time encoding and decoding capacity for
compression/decompression using FPGAs in parallel.
Morphological Operations: Specified hardware
structures can be used to implement Erosion, dilation
and other morphological operations. These algorithms
are implemented in hardware and by doing so they can
provide large speedups over software only solutions
which would allow for true real-time performance in
embedded systems. Memory management for high-
performance image processing on FPGAs is crucial.
Strategies include. Storing a couple of lines of the
image in on chip memory to reduce external memory
access (Line Buffers). Divide the image into small tiles
that can be processed independently and in parallel.
Dual Buffers: Overlapped data transfer and procesing
operations using dual buffers. Caching: writing custom
cache structures to achieve the access patterns of
a specific algorithm. Burst Transfers Policy: Making
use of burst modes of external memory interfaces to
ensure maximum bandwidth usage. These techniques

support the designer in the tradeoffs between on chip
memory usage, external memory bandwidth, and
processing efficiency (Fogure 4).

Thus, we will consider FPGA based hardware-
software co-design case study of a real time robot
localization system. The system we describe tracks
the positions of several robots in an arena, where
images come from a ceiling mounted camera. The
FPGA parallel processing capability is exploited for
low level computationally intensive, but forced image
processing tasks, while the flexibility of software is used
for more higher level choices and system management.
Direct pixel streaming from an interface to custom
image sensor. Parallel processing pipelines for color
thresholding, and pipeline for generating a binary
image. Sometimes it is necessary to apply optimized
novel connected component labeling algorithm for
FPGA implementation. Ease of development and easy
connectivity with embedded Linux operating system
and a pipelined fixed point arithmetic along with a
centroid calculation (Table 1).[20-21]

Embedded to lessen the development and
connectivity is a simple embedded Linux operating
system. It is a multi threaded application for
running multiple tasks concurrently. An interfacing
communication protocol based on TCP/IP between
robots and external system An implementation of
the hardware-software system functionality before
actual hardware implementation. Some popular co-
simulation environments include: Such a package as
HDL simulation tool, ModelSim, works with both VHDL
and Verilog. Questa is an advanced verification tool
that can be used for mixed language simulation and

Fig. 4: Experimental set-up

M.A. Erdoğan and F. N. Demir : FPGA Hardware-Software Co-Design for Real-Time Embedded Systems

6		 Journal of Integrated VLSI, Embedded and ComputingTechnologies | May - August | ISSN: 3049-1312

formal verification. Xilinx Vivado Simulator: Integrated
simulator in the Xilinx Vivado Design Suite. Such tools
often also offer features such as waveform viewing,
assertion based verification and coverage analysis so
as to guarantee testing of the entire system that is co
designed ((Table 2).[22-25]

Challenges in Embedded Image
Processing
There are a few challenges imposed by real time
image processing on the embedded systems which are:

1.	 Image processing algorithms typically consist
of complex mathematical operations on large
dataset, thus image processing is computationally
expensive.

2.	 Data Bandwidth: This deals with the fact that you
have to deal with high resolution images which
means you are going to need a significant amount
of memory bandwidth as well as be able to manage
your data.

3.	 Given that Embedded systems usually have strict
power budgets, implementations are required to
be power efficient.

4.	 Many applications involve performing image
processing real time and at high frame rate with
low latency.

5.	 They also have to be adaptable in order to
update algorithms or be able to support multiple
processing modes.

These challenges are well suited to be addressed by
FPGAs, which are able to perform parallel processing,
customize memory hierarchies and have the ability to
reconfigure.

Conclusion
Based on hardware software co design process using
FPGA based hardware, it is a good method to develop
hardware software which is targeted for real time high
performance embedded system software. In conjuction
with the flexibility of software and the acceleration
properties of custom hardware, solution are created
that can be efficient to meet the stringent application
requirements in image processing, robotics and the
like. As a case study of a robot localization system, we
show that this approach can be applied practically, it
significantly outperforms software only solutions in all
aspects except power consumption, and the resulting
form factor remains compact and power efficient.
Embedding based on FPGA technology along with
new trends towards a heterogeneous computing, and
the emergence of the new technologies 3D FPGA and
adaptive computing, are increasingly embedding more
future proof embedded systems. However, in order to
achieve full potential from FPGA based co design, one
must cope with design complexity, energy efficiency
and productivity. Using the top end tools, optimizing
designs from low to high levels, and timely alert to
the trends of the surface, developers are enabled
to create breakthrough embedded systems for real

Table 1: FPGA Metrics

Metric Hardware (FPGA) Software (Processor-based)

Execution Time (Latency) Lower latency, faster execution Higher latency, slower execution

Power Consumption Low power usage due to parallelism Higher power consumption, CPU-bound

Throughput High throughput Lower throughput

Development Time Longer due to hardware design Shorter with high-level software

Flexibility/Adaptability Limited, fixed design Very flexible, adaptable code

Table 2: FPGA Contribution

Evaluation Metric FPGA Contribution Software Contribution

Deadline miss rate FPGA provides deterministic
performance

Software may introduce variability

System scalability, load balancing FPGA enables scalability by offloading
parallel tasks

Software adapts to different hardware set-
ups

Response time FPGA handles critical tasks quickly Software may add overhead in handling I/O

Resource usage percentage (CPU,
memory, FPGA LUTs)

FPGA reduces CPU resource load by
performing parallel tasks

Software requires CPU resources but can be
optimized

M.A. Erdoğan and F. N. Demir : FPGA Hardware-Software Co-Design for Real-Time Embedded Systems

Journal of Integrated VLSI, Embedded and ComputingTechnologies | May - August | ISSN: 3049-1312	 7

time processing and control. Embedded systems in
FPGA are poised for playing key roles to accelerate
technological advancements in crucial areas like
edge computing and 5G communications, autonomous
systems, and space applications. Engineers with
mastery of art and science of hardware software co
design have tremendous capability to unlock new
possibilities and drive innovation in rapidly expanding
world of embedded systems.

References:
1.	 Bhattacharyya, S. S., Eker, J., Janneck, J. W., Lucarz,

C., Mattavelli, M., & Raulet, M. (2009). Overview of
the MPEG reconfigurable video coding framework. Jour-
nal of Signal Processing Systems, (July). https://doi.
org/10.1007/s11265-009-0399-3

2.	 Raulet, M., Urban, F., Nezan, J. F., Moy, C., Deforges, O.,
& Sorel, Y. (2006). Rapid prototyping for heterogeneous
multicomponent systems: An MPEG-4 stream over a UMTS
communication link. EURASIP Journal on Applied Signal
Processing, Article ID 64369.

3.	 Gund, A., et al. (2008). Design evaluation of a home-
based telecare system for chronic heart failure patients.
IEEE Engineering in Medicine and Biology Society, 5851–
5854.

4.	 Villalba, et al. (2009). Wearable and mobile system to
manage remotely heart failure. IEEE Transactions on In-
formation Technology in Biomedicine, 13(6), 990–996.

5.	 Yao, J., et al. (2005). A wearable point-of-care system
for home use that incorporates plug-and-play and wire-
less standards. IEEE Transactions on Information Technol-
ogy in Biomedicine, 9(3), 363–371.

6.	 Benini, L., Bruni, D., Drago, N., Fummi, F., & Poncino, M.
(2002). Virtual in-circuit emulation for timing accurate
system prototyping. ASIC/SOC Conference, 2002. 15th
Annual IEEE International, 49–53.

7.	 Pittala, C. S., et al. (2021). Novel methodology to val-
idate DUTs using single access structure. 2021 5th In-
ternational Conference on Electronics, Materials Engi-
neering & Nano-Technology (IEMENTech), Kolkata, India,
September 24–25, 1–5.

8.	 Koehler, C., Mayer, A., & Herkersdorf, A. (2008). Chip
hardware-in-the-loop simulation (CHILS) - Embedding
microcontroller hardware in simulation. Proceedings of
the 19th IASTED International Conference on Modelling
and Simulation.

9.	 Nageldinger, U., Pyttel, A., & Kleve, H. (2004). System
simulation speedup combining SystemC models and re-
configurable hardware. Retrieved from http://speac.fzi.
de/WORKSHOP2/SpeacParis2004_01.pdf

10.	Kuskin, J., et al. (1994). The Stanford FLASH multipro-
cessor. 21st Annual International Symposium on Comput-
er Architecture.

11.	Mok, A. K. (1984). The design of real-time programming
systems based on process models. Real-Time Systems
Symposium.

12.	Park, C. Y. (1992). Predicting deterministic execution
times of real-time programs (PhD thesis). University of
Washington, Technical Report 92-08-02, Department of
Computer Science & Engineering.

13.	Babu, P. A., Nagaraju, V. S., & Vallabhuni, R. R. (2022).
8-bit carry look ahead adder using MGDI technique. In IoT
and Analytics for Sensor Networks (pp. 243–253). Spring-
er, Singapore.

14.	Oniga, S., Tisan, A., Mic, D., Buchman, A., & Vida-Ratiu,
A. (2008). Optimizing FPGA implementation of feed-for-
ward neural networks. Proceedings of the 11th Inter-
national Conference on Optimization of Electrical and
Electronic Equipment (OPTIM 2008), Brasov, Romania,
May 22–23, 31–36.

15.	Tisan, A., Oniga, S., Buchman, A., & Gavrincea, C.
(2007). Architecture and algorithms for synthesizable
neural networks with on-chip learning. International
Symposium on Signals, Circuits and Systems (ISSCS 2007),
Iasi, Romania, July 12–13, 1, 265–268.

16.	Riccobene, E., & Scandurra, P. (2009). Weaving execut-
ability into UML class models at PIM level. First European
Workshop on Behaviour Modelling in Model Driven Archi-
tecture (BM-MDA), Enschede, The Netherlands, 10–28.

17.	Mallet, F., Andre, C., & DeAntoni, J. (2009). Executing
AADL models with UML/MARTE. International Conference
on Engineering of Complex Computer Systems, Germany,
371–376.

18.	Silva-Filho, A. G., et al. (2011). An ESL approach for
energy consumption analysis of cache memories in SoC
platforms. International Journal of Reconfigurable Com-
puting, 2011, 1–12.

19.	Bhargava, G. U., Midasala, V., & Vallabhuni, R. R. (2022).
FPGA implementation of hybrid recursive reversible box
filter-based fast adaptive bilateral filter for image de-
noising. Microprocessors and Microsystems, 90, 104520.

20.	Parno, B., & Perrig, A. (2005). Challenges in securing ve-
hicular networks. Proceedings of Workshop on Hot Topics
in Networks (HotNets-IV), November.

21.	Golle, P., Greene, D., & Staddon, J. (2004). Detecting
and correcting malicious data in VANETs. VANET ’04: Pro-
ceedings of the 1st ACM International Workshop on Vehic-
ular Ad Hoc Networks, 29–37.

22.	Jiang, K., Eles, P., & Peng, Z. (2011). Optimization of
message encryption for distributed embedded systems
with real-time constraints. 14th IEEE Symposium on De-
sign and Diagnostics of Electronic Circuits and Systems
(DDECS ’11), April, 243–248.

23.	Andrews, D., Niehaus, D., & Ashenden, P. (2004). Pro-
gramming models for hybrid FPGA/CPU computational
components. IEEE Computer, January.

24.	Bazargan, K., Kastner, R., Ogrenci, S., & Sarrafza-
deh, M. (2000). A C to hardware-software compiler.

M.A. Erdoğan and F. N. Demir : FPGA Hardware-Software Co-Design for Real-Time Embedded Systems

8		 Journal of Integrated VLSI, Embedded and ComputingTechnologies | May - August | ISSN: 3049-1312

Retrieved from http://www.ece.ucsb.edu/~kastner/pa-
pers/C_to_hardware_software_FCCM00

25.	Mejail, M., Nestares, B. K., & Gravano, L. (2024). The
evolution of telecommunications: Analog to digital. Prog-
ress in Electronics and Communication Engineering, 2(1),
16–26. https://doi.org/10.31838/PECE/02.01.02

26.	Muralidharan, J. (2024). Optimization techniques for
energy-efficient RF power amplifiers in wireless com-
munication systems. SCCTS Journal of Embedded Sys-
tems Design and Applications, 1(1), 1-6. https://doi.
org/10.31838/ESA/01.01.01

27.	Prasath, C. A. (2024). Energy-efficient routing protocols
for IoT-enabled wireless sensor networks. Journal of
Wireless Sensor Networks and IoT, 1(1), 1-7. https://doi.
org/10.31838/WSNIOT/01.01.01

28.	Muralidharan, J. (2024). Innovative materials for sustain-
able construction: A review of current research. Inno-
vative Reviews in Engineering and Science, 1(1), 16-20.
https://doi.org/10.31838/INES/01.01.04

29.	Rahim, R. (2024). Optimizing reconfigurable architec-
tures for enhanced performance in computing. SCCTS

Transactions on Reconfigurable Computing, 1(1), 11-15.
https://doi.org/10.31838/RCC/01.01.03

30.	Prasath, C. A. (2024). Optimization of FPGA architec-
tures for real-time signal processing in medical devices.
Journal of Integrated VLSI, Embedded and Computing
Technologies, 1(1), 11-15. https://doi.org/10.31838/
JIVCT/01.01.03

31.	Rahim, R. (2023). Effective 60 GHz signal propagation
in complex indoor settings. National Journal of RF En-
gineering and Wireless Communication, 1(1), 23-29.
https://doi.org/10.31838/RFMW/01.01.03

32.	Alnumay, W. S. (2024). Use of machine learning for the de-
tection, identification, and mitigation of cyber-attacks.
International Journal of Communication and Computer
Technologies, 12(1), 38-44. https://doi.org/10.31838/
IJCCTS/12.01.05

33.	Yeonjin, K., Hee-Seob, K., Hyunjae, L., & Sungho, J.
(2023). Venting the potential of wirelessly reconfig-
urable antennas: Innovations and future directions.
National Journal of Antennas and Propagation, 5(2),
1–6.

