
Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312 37

Real Time Operating Systems for Embedded
Applications: Design and Implementation

Aisyah Binti Ahmad1, Setiawan Prabowo2*
1.2Universitas Bhayangkara Jakarta Raya, Jalan Raya Perjuangan, Jawa Barat, Indonesia

AbstrAct
All industries rely on real time operating systems (RTOS) embedded appli-
cations because they deliver deterministic behaviour and accurate timing
in the most critical systems. This thorough guide targets those who are de-
veloping time sensitive embedded projects and are working as developers
or engineers. And yet, the complexity and prevalence of embedded systems
are growing ever higher, and the demand for robust, reliable, and efficient
operating systems has never been greater. All RTOS are mission critical in au-
tonomous vehicles, medical devices and industrial automation and all RTOS
require reliable performance under strict timing constraints. Here, in this
article, we explain the key concepts of RTOS, major components with design
pattern and best practices to optimise and test. If you are new to real-time
systems or want to increase your current skill level, this guide is for you in
developing high performance embedded applications.
How to cite this article: Ahmad AB, Setiawan Prabowo S (2025). Real Time
Operating Systems for Embedded Applications: Design and Implementation.
Journal of Integrated VLSI, Embedded and Computing Technologies, Vol. 2,
No. 1, 2025, 37-45

the reAl-time OperAting systems
UnderstAnding.
Real time operating systems refer to the specialized
software platforms that are meant to be run on a
hardware which posses an ability to manage the resources
of the said hardware along with a task with a given
time frame. General purpose operating systems have
high throughput but lose determinacy or predictable
response times — RTOS are different. Determinism: To
guarantee deterministic and deterministic execution
times for sensing/processing of critical tasks. Often
come down to minimizing event occurrence to system
response delays (low latency). Resource allocation
based on task’s importance and urgency: priority based
scheduling. On the other hand, preemptibility: high
priority tasks can interrupt the running of low priority
tasks. On the minimal kernel the overhead is reduced
and the work performed is more efficient.[1-3]

Types of Real-Time Systems
Typically real time systems are classified according to
the havoc created if the timing deadlines are not met.

1. Results will potentially be catastrophic, deadlines
need to be miss; critical (e.g., aircraft control
systems, medical devices).

2. Missed deadlines are allowed in some cases (e.g.
video conferencing, industrial process control) but
the system utility vanishes fast if they occur (e.g.
reduced quality of the video).

3. They are soft real-time systems: they do not
cause critical failures (e.g. periodic tasks in a
multimedia streaming system, or task completion,
for example, in a home automation system) but
they do cause system quality degradation (i.e.,
their deadlines are almost always missed).

Knowing these distinction when picking an RTOS
and designing a production embedded application for
use cases are a must.[4-5]

rtOs ArchitectUre And cOmpOnents
One such example is that of a real time operating
system, where a lot of parts come together to make
the system deterministic and efficient in resource
management at the same time. This article will

Keywords:
Embedded Systems;
Real-Time Scheduling;
RTOS Design;
Task Management;
Embedded Applications

Corresponding Author Email:
prab.seti.wan@dsn.
ubharajaya.ac.id

DOI: 10.31838/JIVCT/02.01.05

Received : 15.11.2024
Revised : 18.12.2024
Accepted : 15.01.2025

RESEARCH ARTICLE ECEJOURNALS.IN
Journal of Integrated VLSI, Embedded and Computing Technologies, ISSN: 3049-1312 Vol. 2, No. 1, 2025 (pp. 37-45)

Aisyah Binti Ahmad and Setiawan Prabowo : Real Time Operating Systems for Embedded Applications:
Design and Implementation

38 Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312

explore which of these elements are combined when
designing an RTOS.

Kernel
Any RTOS’s kernel is the heart of the system: it performs
the core system and resource management functions.
The kernel handles such things as task scheduling,
interrupt processing and task communication in
between tasks. In RTOS design, there are two primary
kernel architectures that are commonly used:

1. Monolithic kernel utilizes more memory but the
services in the system run in kernel space, and
hence the executability is faster.

2. Low level minimal core services are run in kernel
space and the additional functionality is run with
low level services as user space processes for
improving fault isolation and modularity.

Task Scheduler
One of such important components is task scheduler
deciding about when tasks run and how. RTOS
schedulers usually implement its algorithms based
on the priorities of tasks so that high priority tasks
are responded immediately. Common scheduling
algorithms include: Priority is assigned according to
frequency, which is called Rate Monotonic Scheduling
(RMS). Latest Deadline First (EDF): Items are ordered
by their priority, depending on their next scheduling
deadline.

Fig.1: Task Scheduler

Interrupt Handler
The management of interrupts in real time systems
must be very efficient in the pursuit of keeping the
latency low and quick response to external events
in order to use other resources and keep some of
the critical processing on holdMinimize interrupt
service routine (ISR) execution time for Embedded
Applications. Real Time operating systems (RTOS)
are at the core of modern embedded applications

controlling precise timing and deterministic behaviour
in such critical system domains as semiconductor
manufacturing, communications, home and industrial
automation and aerospace. This all encompassing guide
delves into the details associated with RTOS design and
implementation, complete with information that is of
much benefit to developers and engineers working on
time sensitive embedded projects.

In conjunction with the tremendous increase in
the complexity and ubiquity of embedded systems,
there has never been a stronger need for robust and
efficient, yet predictable, operating systems. RTOS
enables reliable performance under stringent timing
points, which range from autonomous vehicles to
medical devices to industrial automation. This article
will cover the basics of RTOS, including core principles,
main parts, design patterns as well as optimizations
and testing best practices. This guide is for beginners
in the field of real-time systems or for those who wish
to further develop their understanding of this topic;
it provides keen understanding in implementing high
performance embedded applications.[6-8]

UnderstAnding reAl-time OperAting
systems
Real time operating system (RTOS) is a specialized
software platform that takes care of hardware resource
management and task execution under a guaranteed
time frame. While general purpose operating systems
are designed to maximize overall throughput, RTOS
aim for systems that have deterministic behavior and
it is possible to predict their response time.

Key Characteristics of RTOS
Deterministic Execution: for determinism i.e.
predictable execution time for critical tasks. Low
Latency – Reducing the delay between the occurrence
of event and the system response. Scheduling resources
based on the priority of task importance and urgency.
Preemptibility: Interrupting lower priority tasks by
higher priority tasks. Streamlined core functionality
with minimal kernel: to cut down on overhead and run
more efficiently

Types of Real-Time Systems
Mostly, real-time systems are categorized depending
severity of the consequences of missing timing
deadlines (deadlines):
1. Absolute adherence to deadlines is critical

and missing deadlines can cause potentially

Aisyah Binti Ahmad and Setiawan Prabowo : Real Time Operating Systems for Embedded Applications:
Design and Implementation

Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312 39

catastrophic behavior (e.g., aircraft control
systems, medical devices).

2. Occasional deadlines are missed, but the utility
of the system rapidly degrades (e.g., video
conferencing, industrial process control).

3. Missed deadlines will impact the system quality,
but no critical failures will happen to the system
(such as multimedia streaming, home automation,
etc.)

It is important to understand these basic
differences so that it can be determined if certain
RTOS are appropriate choices and so that they can
be utilized to program robust embedded applications
according to various use scenarios and requirements.

RTOS Architecture and Components
A real time operating system is said to consist of
number of components, which are connected, and that
operates together to guarantee determinism and good
resource management. Now let us explore the key
elements that constitute the basis of the RTOS design.
The core of any RTOS is the kernel that is responsible
for basic system functions and resource management.
Task scheduling, processes interrupt handling and
provides intertask communication are some of the
things the kernel does. There are commonly two main
kernel architectures employed in RTOS design:

Fig. 2: RTOS Architecture and Components

1. All system services in kernel space for faster
execution, but also with larger memory footprint

2. Minimal core services run in kernel space and
more functionality is implemented as user space
processes providing better modularity and fault
isolation than a monolithic kernel does.

That is how important the task scheduler is; as it
decides what tasks to run and when they should be
run. Priority based algorithms are usually used by real

time schedulers to assure that a high priority task be
serviced immediately. Common scheduling algorithms
include: First scheduling is Rate Monotonic Scheduling
(RMS) which schedules the tasks according to the
estimation of their priority. Dynamically prioritised
according to upcoming deadlines (Earliest Deadline
First, EDF). Scheduling by Time, one of the types of
embedded systems, executes the tasks on a fixed time
basis.

Interrupt Handler
Interrupt handling is of utmost importance for low
latency in real-time systems, and so should be as
efficient as possible. The design purpose of RTOS
interrupt handlers is: Reduce the time spent in
interrupt service routine (ISR) execution. Shift non
critical processing to lower priority work to complete
them. The memory management in RTOS is predictable
allocation and deallocation of resources. Key features
include: Compile time pre allocation of memory to
avoid run time fragmentation. Prevents the task
memory space from being corrupted. Deterministic
allocation algorithms are required algorithms for
which memory operations behavior must be consistent
(Table 1).

RTOSs offer a number of mechanisms for tasks to
communicate and synchronize via: Semaphores used
as a method of resource management and signaling
among tasks. To asynchronously exchange data
between the task via the message queues. Event flags
– task synchronization conditioned on satisfaction of
certain constraints. Real time operating system for the
embedded systems is to be designed and implemented
using these core components.[9-11]

reAl-time systems And determinism
Determinism pins real time systems with critical
tasks that must execute within their respective time
windows regardless of system load or otherwise. In
this process, both software and hardware aspects
involved to design the system to achieve deterministic
behavior.

Hardware requirements for determinism
In order to maintain deterministic performance, it is
necessary to select appropriate hardware components.
1. Processors: Pick CPUs with predictable instruction

execution times and little pipeline stalls.
2. Memory: Equipped with high speed low latency

memory with consistent access time.

Aisyah Binti Ahmad and Setiawan Prabowo : Real Time Operating Systems for Embedded Applications:
Design and Implementation

40 Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312

3. Always go for peripherals that are deterministic
in response time and have efficient interrupt
handling.

4. Timer: Very precise task scheduling and timing
measurements can be accomplished with high
resolution timers.

Determinism Measurement and Analysis
Developers can use different tools and techniques to
verify and improve system determinism.

1. Worst case execution time (WCET) analysis;
determine the amount of time at worst before
finishing a task in the worst case for these
circumstances.

2. Jitter analysis: Find the possible sources of non
determinism by measuring the variation of the
execution time of a task.

3. Tracing and profiling: Collecting timing
information using special tools to trace out and
profile performance bottlenecks.

4. Stress testing: We needed to be able to stress test
the system with high loads and change conditions,
and we needed the system to exhibit deterministic
behavior under all cases.

To achieve an effective real time operating system
you need to adhere to proven design patterns and
best practices. These guidelines assist developers
develop robust, maintainable and efficient RTOS
based applications. Centralized resource control.
menting an effective real-time operating system
requires adherence to proven design patterns and

best practices. These guidelines help developers
create robust, maintainable, and efficient RTOS-based
applications. Benefits: Simpler access and improved
resource utilization. Can be used to implement
interrupt handler and task notifications, it provides
support of the event driven architecture. Controls the
complex system behaviors and transitions, promotes
loose coupling between components. A good match
for protocol stacks and device drivers Improves code
readability as well as its maintainability. Guarantees
that there is only one instance of a critical system
component. For the real time operating system,
scheduler, memory manager and device driver.e are
commonly used; so design patterns and best practices
to be adhered to are proven. These guidelines aid
developers in building rock solid and maintainable as
well as performant RTOS based applications.[12-15]

Common RTOS Design Patterns
Teams that have mastered the Above Listed Best
Practice have developed Small finsable tasks,
completed them while focusing on the functions of
a thing, to correctly handle and recover from errors,
and to be consistent with naming of tasks and related
resources. Depending on how big the data is and
based on what timing requirement, choose suitable
IPC mechanisms. All blocking operation can handle
timeout and can inherit from Prioritization to prevent
priority inversion.

‘Priority inheritance is used to prevent priority
inversion problems, and when possible, the overhead
free priority enforcement strategy based on priority

Table 1: Real-Time Operating Systems

Challenge Description Impact

Task Scheduling and Prioritization Ensuring that tasks are scheduled ac-
cording to priority, while meeting re-
al-time constraints.

Incorrect task scheduling can lead to
delays or system crashes, affecting the
reliability of embedded systems.

Real-Time Constraints and Deadlines Guaranteeing that tasks meet deadlines
without overloading system resources.

Failure to meet deadlines can compro-
mise system functionality and lead to
performance degradation.

Memory and Resource Management Efficiently managing memory and sys-
tem resources in resource-constrained
embedded devices.

Inefficient memory usage can lead
to system crashes or reduced perfor-
mance in embedded systems.

Power Consumption Reducing power consumption while
maintaining the performance of re-
al-time applications.

High power consumption can reduce
battery life in portable devices, limit-
ing system uptime.

Scalability and Flexibility Designing systems that can scale ac-
cording to different application re-
quirements and hardware platforms.

Scalability issues may limit the deploy-
ment of the system in different embed-
ded environments or applications.

Aisyah Binti Ahmad and Setiawan Prabowo : Real Time Operating Systems for Embedded Applications:
Design and Implementation

Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312 41

preemptive queues is used; otherwise, resource
locking has to be carefully implemented to prevent
deadlock.’ Frequently allocated/deallocated objects
could be allocated out of resource pools, Memory
alignment could be chosen to facilitate optimal
performance, Execution times for ISRs could be
reduced by deferring non critical processing to tasks.
Control system responsiveness by means of interrupt
priorities Synchronize proper ISRs (Figure 3).[16-18]

Can detect task overruns, system hangs or trying to
conserve as much time spent on each computation as
possible without deviating from time units used at any
other point in the system. Last year, the national median
wage topped £35,000 per year, but 56% of Britain’s
top G&T schools spent less than £2,000 more on their
staff. When the priority tasks are running slowly, they
become the goal of the time slicing. Comprehensive
logging and tracing mechanisms are provided, and RTOS
aware debugging tools are used for better debugging;
thus, real-time operating system must follow proven
design patterns and best practices. For creating robust,
maintainable and efficient applications using RTOS,
these guidelines acts as useful.[19-21]

cOmmOn rtOs design pAtterns
Debugging and Profiling
This paper demonstrates how these design patterns and
practice can be applied to augment existing real time
operating systems for embedded applications to be
more reliable, more efficient and more maintainable.
These guidelines are nice to begin with, so that RTOS
implementation will be successful as many domains
and use cases as possible. For embedded application,
these operating systems must have the best timing
for embedded application. This part looks at different

RTOS products and efficiency response enhancement
techniques. It reduces overhead of calling functions that
are frequently used & small. Reduces the amount of call
stack used for function calls. The messages should not
be too elaborate (or not too nuanced) for the sake of
code bloat. It also maintains the code maintainability
and ensures proper documentation. Wen known design
patterns and best practices towards writing an effective
real time operating system. These guidelines assist
the developers in creating robust, maintainable, and
efficient RTOS based application .[22-24]

Common RTOS Design Patterns
Sensitive data can be communicated using strong
encryption and when data integrity matters, use
message authentication codes (MAC). Use secure
protocol, industry standards (i.e TLS, DTLS), handle
management and validation of proper certificate.
If hardware based key storage is available, use it,
otherwise implement the secure key generation
and storage, and key rotation mechanisms. Access
Control mprovides strong authentication means of
the user accessing the system iv. Strong encryption
for sensitive data transmission. Establish proper
access controls on system resources and enforce
those access controls. A principle of least privilege for
task permissions. Implement tamper evident logging
mechanisms securing logs of critical system events and
system access attempts validate and sanitize all data
including data coming from trusted sources avoid using
dangerous C functions always use safe string handling
functions implement proper buffer size management
and bounds checking (Table 2):

If the space allocated is smaller than the required
memory then the array is truncated and rest of the

Fig. 3: Common RTOS Design Patterns

Aisyah Binti Ahmad and Setiawan Prabowo : Real Time Operating Systems for Embedded Applications:
Design and Implementation

42 Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312

array contents is neglected. We check if the written
bytes are less than required memory and otherwise
ignore the rest of the bytes in case they are more.
Some of the following are nested Buffers : If the
first layer buffer has enough space(the buffer size is
allocated properly), then there more bytes can be
written in the first layer until the complete memory
required is reached.

 It implements secure practices for data allocation
and deallocation (Makes sure that sensitive data from
memory is zeroed out when it’s not used anymore)
It also strongly encrypts sensitive data before
transmission. Security Testing Validation Penetration
test RTOS as well as applications regularly. To
identify the vulnerabilities we simulate various
attack scenarios. Allows you to fuzz input handling
as well as communicating interfaces and potential
crashes of your rockets under malformed input. Code
Reviews Write regular security relevant code reviews.
rong encryption for sensitive data transmission. By
providing continuous Security Monitoring, you help
guarantee that devices will not be offering malicious
software updates, services and even rogue scanning
devices to your systems and to our service endpoint.
Run time security monitoring and anomaly detection.
Provide plan to respond to an incident in case of
security breach and strong encryption of sensitive
data transmission. Security considerations for such
RTOS based embedded systems can be addressed
and the system make more resilient to such attacks.
Security, therefore, is not a static instance, but on

ongoing process of assessing, revising and changing
around, regular review, as new vulnerabilities and
threats arise. In the current world where embedded
applications are being connected by network, such a
wide range of security approach is indispensable both
by hardware and software [25]-[26].

Validation of the RTOS based Systems,
Testing
Reliable and correct real time operating systems are
key to the success of embedded applications. Therefore
deployment of a system can only occur after elements
of the system have undergone extensive testing and
validation where the elements are checked and fixed
prior to deployment. In this section, I looked into a
bunch of strategies and methods for testing a RTOS
based systems. Tests for individual RTOS modules
(encoded by Isolation of components for testing with
mocking frameworks: scheduler, memory manager)
Test all edge cases and extreme conditions for each
component and and. We should check a proper error
handling, error recovery mechanism and also try to
achieve a high code coverage in unit tests. Among
the verified is communicating between the RTOS
components, verification of the proper data flow and
communication between modules. Apply the filter
algorithms on target hardware.[27-28]

FUtUre trends in rtOs develOpment
Real time operating systems are being used today for
many emerging technologies and application domains,

Table 2: Implementing Real-Time Operating Systems

Solution Description Benefit

Preemptive and Cooperative Scheduling Using both preemptive and coopera-
tive scheduling methods to handle re-
al-time tasks efficiently.

Improves task management and ensures
system responsiveness in real-time ap-
plications.

Priority-based Scheduling Algorithms Implementing priority-based schedul-
ing algorithms (e.g., Rate Monotonic
Scheduling) to ensure deadlines are
met.

Helps prioritize critical tasks and en-
sures timely execution, improving sys-
tem reliability.

Memory Partitioning and Management Utilizing memory partitioning to allo-
cate resources efficiently and avoid re-
source conflicts in embedded systems.

Maximizes available memory and en-
sures efficient resource utilization in
embedded systems.

Low-Power Design Techniques Adopting low-power techniques such
as dynamic voltage scaling and sleep
modes to reduce power consumption.

Extends battery life while maintaining
system performance, crucial for porta-
ble devices.

Modular and Configurable RTOS Designing a modular RTOS architecture
that can be configured for different
types of embedded applications.

Enables easy adaptation of the RTOS
to various embedded applications, im-
proving system versatility.

Aisyah Binti Ahmad and Setiawan Prabowo : Real Time Operating Systems for Embedded Applications:
Design and Implementation

Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312 43

and the growing landscape of real time operating
systems has been developed to respond to these
needs. This section investigates some of the major
trends for development of RTOS and its importance to
the embedded systems.

Integration of artificial intelligence, machine
learning adaptive scheduling integration of machine
learning algorithms; Use of AI models for predictive
maintenance, fault detection etc; AI inference at the
edge; Optimized RTOS designs; GPU Controllers and
Neural Processing Units.

Clouds can be used to efficiently manage
the provide control of AI accelerators and neural
processing units. Enabling integration of AI driven
decision making into the critical control loops (safety)
is increasingly enabled in continuously developing
technologies and critical application domains to meet
the increasing demands of emerging technologies and
applications. In this section, we discuss some of the
major trends which are likely to influence the future
of RTOS development and the land they might leave in
the territory of embedded devices.

Support for running multiple OSes with different
criticality levels under Virtualization Resource
partitioning for isolation of safety critical and non
safe critical tasks Coexistence of legacy Real Time
Operating Systems and modern operating systems
Migration of existing system and its upgrades to be
enjoyed step by step. Sensitive operations executed
in secure environments is increasingly being followed
by time operating systems to meet the demands of
emerging technologies and application domains.-
time operating systems in order to satisfy the needs
to emerging technologies and application domains, is
continuously evolving to further reach improvements
in the isolation and protection of virtualization. This
article examines a few of the most important trends in
the development of RTOS and explores how they may
change the way embedded systems are constructed.

This implies saving in the low power consumption
hence this saving can be applied to battery operated
IoT devices. Power management and sleep mode
optimization Native support of 5G and other emerging
wireless protocols. For generation of 5G mobile
devices, the complete cloud wireless backbone IoT
communication optimized network stacks, and for
IoT devices, secure and reliable mechanisms for
the firmware update are supported. Atomic updates
(as well as rollback in mission critical systems is
continually evolving to keep up with the new demands

of new technologies and application domains. Some of
the trends in RTOS development that are important in
shaping the future of RTOS and its impact on embedded
systems are discussed in this section.

Quantum Computing Readiness
Quantum Resistant Cryptography Post quantum
cryptographic algorithms integration. Quantum
inspired optimization techniques for scheduling, it
is preparing the security features of the RTOS for
the quantum realm. Complex decision making use
potential of quantum annealing Deep integration
with hardware security modules (HSM), and trusted
execution environment; The use of emerging CPU
security features to improve protection. Anomaly
detection and threat prevention through using
machine learning Real time intelligence based
security policies Evaluating blockchain technologies
for IoT data management with security and audibility.
De-centralized system distributed trust models.
Efficient time series data handling and visualization
support.

cOnclUsiOn
The main concept of sketch algorithm as a tool for
approximating aggregate statistics quickly. We will first
state an overview of the basic idea of this algorithm.
So, we will also learn about a certain powerful kind of
sketch algorithm, namely Count Sketch. We will then
discuss functions of the technique that are not under its
supervision per se, such as counting multisets. Once we
have understood the Streaming analytics in real time.
Although prognostics and health management (PHM)
capabilities of integration For early fault detection
and system optimization, real time analysis.g systems
are continually growing to keep pace with the need
of emerging technologies and application domains.
This section discusses some of the main trends in the
area of the RTOS development of, and the ways it may
affect the embedded systems.

reFerences:
1. Fenick, S., & Joiner, H. F. (1992, February). So Little

Time To Measure It. In Proeedingsof Tnanual National
Conference On Ada Technology (p. 220).

2. Holt, R. C. (1972). Some deadlock properties of com-
puter systems. ACM Computing Surveys (CSUR), 4(3),
179-196.

3. Howard Jr, J. H. (1973). Mixed solutions for the deadlock
problem. Communications of the ACM, 16(7), 427-430.

Aisyah Binti Ahmad and Setiawan Prabowo : Real Time Operating Systems for Embedded Applications:
Design and Implementation

44 Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312

4. Ready, J. (1986). VRTX: A real-time operating system
for embedded microprocessor applications. IEEE
Micro, 6(04), 8-17.

5. Stankovic, J. A., & Ramamritham, K. (1987, December).
The design of the Spring kernel. In RTSS (Vol. 87, pp.
146-157).

6. Arnold, & Berg. (2006). A modular approach to real-time
supersystems. IEEE Transactions on Computers, 100(5),
385-398.

7. Evans, R. J., & Franzon, P. D. (1995). Energy consump-
tion modeling and optimization for SRAM’s. IEEE Journal
of Solid-State Circuits, 30(5), 571-579.

8. Kirovski, D., Lee, C., Potkonjak, M., & Mangione-Smith,
W. H. Synthesis of Power-Efficient Memory-Intensive Sys-
tems-on-Chip.

9. Furumochi, K., Shimizu, H., Fujita, M., Akita, T., Izawa,
T., Katsube, M., ... & Kawamura, S. (1996, February).
A 500 MHz 288 kb CMOS SRAM macro for on-chip cache.
In 1996 IEEE International Solid-State Circuits Confer-
ence. Digest of TEchnical Papers, ISSCC (pp. 156-157).
IEEE.

10. Madhumitha, K., Ganesh, E. N., Vallabhuni, R. R., Vinu,
M. S., Dandekar, T., Jain, S., Anitha, S., Karunya, S., &
Kannan, V. (2023). Wireless router (Design No. 379514-
001). The Patent Office Journal, 19/2023, India.

11. Smith, M. J. S. (1997). Application-specific integrated
circuits (Vol. 7, pp. 1-1). Boston: Addison-Wesley.

12. Stewart, D. B., Schmitz, D. E., & Khosla, P. K. (2002).
The Chimera II real-time operating system for advanced
sensor-based control applications. IEEE Transactions on
Systems, Man, and Cybernetics, 22(6), 1282-1295.

13. Stewart, D. B., Volpe, R. A., & Khosla, P. K. (1997). De-
sign of dynamically reconfigurable real-time software
using port-based objects. IEEE Transactions on software
engineering, 23(12), 759-776.

14. Hergenhan, A., & Heiser, G. (2008, November). Oper-
ating systems technology for converged ECUs. In 6th
Emb. Security in Cars Conf.(escar). Hamburg, Germany:
ISITS.

15. Kinebuchi, Y., Koshimae, H., Oikawa, S., & Nakajima, T.
(2006). Virtualization techniques for embedded systems.
In Proceedings of the Work-in-Progress Session: The 12th
IEEE International Conference on Embedded and Re-
al-Time Computing Systems and Applications (RTCSA),
Sydney, Australia.

16. Kinebuchi, Y., Sugaya, M., Oikawa, S., & Nakajima, T.
(2008). Task grain scheduling for hypervisor-based em-
bedded system. In Proceedings of the 2008 10th IEEE In-
ternational Conference on High Performance Computing
and Communications (HPCC) (pp. 190–197). IEEE Com-
puter Society.

17. Sajithabanu, S., Adhoni, Z. A., Niranjan, S. K., Vallabhu-
ni, R. R., Saif, M. A. N., Dhanasekaran, S., Gnanasara-
vanan, S., & Kannan, V. (2023). IoT-enabled file storage

racks (Design No. 379414-001). The Patent Office Jour-
nal, 18/2023, India.

18. Schoeberl, M. (2009). JOP reference handbook: building
embedded systems with a java processor.

19. Schoeberl, M. (2010, November). Time-predictable
chip-multiprocessor design. In 2010 Conference Record
of the Forty Fourth Asilomar Conference on Signals, Sys-
tems and Computers (pp. 2116-2120). IEEE.

20. Meghanathan, S. B. N. (2005). A survey of contemporary
real-time operating systems. Informatica, 29(2).

21. Laplante, P. A. (2004). Real-time systems design and
analysis (Vol. 3). New York: Wiley.

22. Walls, C. (1996). RTOS for microcontroller applica-
tions. Electronic Engineering, 68(830), 57-59.

23. Schmidt, D. C., Deshpande, M., & O’Ryan, C. (2002, Jan-
uary). Operating System Performance in Support of Re-
al-Time Middleware. In WORDS (pp. 199-206).

24. Shukla, B. K., Mahilraj, J., Anandaram, H., Vallabhuni, R.
R., Neethidevan, V., Narasimhulu, N., Humnekar, T. D.,
& Kannan, V. (2023). IoT-based weather reporting sys-
tem (Design No. 378815-001). The Patent Office Journal,
15/2023, India.

25. Pothuganti, K., Haile, A., & Pothuganti, S. (2016). A
comparative study of real time operating systems for
embedded systems. International Journal of Innovative
Research in Computer and Communication Engineer-
ing, 4(6), 12008.

26. Pothuganti, K., Haile, A., & Pothuganti, S. (2016). A
comparative study of real time operating systems for
embedded systems. International Journal of Innovative
Research in Computer and Communication Engineer-
ing, 4(6), 12008.

27. Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton,
J. E., Flinn, J., & Walker, K. R. (1997). Agile applica-
tion-aware adaptation for mobility. ACM SIGOPS Operat-
ing Systems Review, 31(5), 276-287.

28. Noble, B. (2000). System support for mobile, adap-
tive applications. IEEE Personal Communications, 7(1),
44-49.

29. Rahim, R. (2024). Quantum computing in communication
engineering: Potential and practical implementation.
Progress in Electronics and Communication Engineering,
1(1), 26–31. https://doi.org/10.31838/PECE/01.01.05

30. Rahim, R. (2024). Adaptive algorithms for power man-
agement in battery-powered embedded systems. SCCTS
Journal of Embedded Systems Design and Applications,
1(1), 25-30. https://doi.org/10.31838/ESA/01.01.05

31. Sadulla, S. (2024). Optimization of data aggregation
techniques in IoT-based wireless sensor networks. Jour-
nal of Wireless Sensor Networks and IoT, 1(1), 31-36.
https://doi.org/10.31838/WSNIOT/01.01.05

32. Ariunaa, K., Tudevdagva, U., & Hussai, M. (2025). The
need for chemical sustainability in advancing sustain-
able chemistry. Innovative Reviews in Engineering

Aisyah Binti Ahmad and Setiawan Prabowo : Real Time Operating Systems for Embedded Applications:
Design and Implementation

Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312 45

and Science, 2(2), 33-40. https://doi.org/10.31838/
INES/02.02.05

33. Abdullah, D. (2024). Strategies for low-power design in
reconfigurable computing for IoT devices. SCCTS Trans-
actions on Reconfigurable Computing, 1(1), 21-25.
https://doi.org/10.31838/RCC/01.01.05

34. Abdullah, D. (2024). Design and implementation of se-
cure VLSI architectures for cryptographic applications.
Journal of Integrated VLSI, Embedded and Computing
Technologies, 1(1), 21-25. https://doi.org/10.31838/
JIVCT/01.01.05

35. Prasath, C. A. (2023). The role of mobility models in
MANET routing protocols efficiency. National Journal of

RF Engineering and Wireless Communication, 1(1), 39-
48. https://doi.org/10.31838/RFMW/01.01.05

36. El-Saadawi, E., Abohamama, A. S., & Alrahmawy, M. F.
(2024). IoT-based optimal energy management in smart
homes using harmony search optimization technique.
International Journal of Communication and Computer
Technologies, 12(1), 1-20. https://doi.org/10.31838/
IJCCTS/12.01.01

37. Soh, H., & Keljovic, N. (2024). Development of highly re-
configurable antennas for control of operating frequen-
cy, polarization, and radiation characteristics for 5G and
6G systems. National Journal of Antennas and Propaga-
tion, 6(1), 31–39.

