How Medical Cyber-Physical Systems Are Making Smart Hospitals a Reality

R. Thompson¹, L. Sonntag^{2*}

^{1,2}Wolverhampton Cyber Research Institute (WCRI), University of Wolverhampton, UK

Keywords:

Medical Cyber-Physical Systems (MCPS); Smart Hospitals; Healthcare IoT; Real-Time Patient Monitoring; Integrated Healthcare Systems

Corresponding Author Email: sont.leo8@wlv.ac.uk

DOI: 10.31838/JIVCT/02.01.03

Received: 07.11.2024 **Revised**: 09.12.2024 **Accepted**: 09.01.2025

ABSTRACT

Cyber medical systems, first developed in 2006, had up to this point been an experimental concept but have evolved into a basic requirement of modern healthcare delivery. These systems became seen as significant when the U.S. President's Council of Science and Technology designated them as the top research priority in 2008. Cloud based solutions as well as intelligent monitoring capabilities are significantly reshaping healthcare as a medical cyber physical system. These systems prove very accurate in detecting early Alzheimer's disease with 98.20% precision. Additionally, there has been patient safety and treatment efficacy in various healthcare scenarios such as high risk pregnancy, and respiratory diseases. The examples of medical cyber physical systems have become part of the healthcare revolution that went past basic monitoring. Smart grids, autonomous systems and a stream of other technologies are tackling a global lack of medical professionals as well as improving access to quality healthcare. Looking towards 2025, with the trend of artificial intelligence and cyber physical systems being integrated, we will be able to detect disease and deliver patient care even better.

How to cite this article: Thompson R, Sonntag L (2025). How Medical Cyber-Physical Systems Are Making Smart Hospitals a Reality. Journal of Integrated VLSI, Embedded and Computing Technologies, Vol. 2, No. 1, 2025, 20-29

EVOLUTION OF HOSPITAL CARE DELIVERY

A marked transformation has been brought to healthcare delivery from a disease treatment in hospitals to management of health by active participation of patients. Among the leading edge of this revolution are medical cyber-physical systems (MCPS), as hospitals look to fill the projected gap in doctors from 46,000 to 90,000 by 2025. [1-3]

Traditional vs Smart Hospital Models

The traditional hospitals had mainly been concerned with administrative workflow automation for improvement of productivity and prevention of errors. But, modern smart hospitals have integrated much more than the above functions, it has adopted artificial intelligence, robotics, and sophisticated patient monitoring systems. These facilities have now become capable of performing complex medical tasks such as diagnostic imaging, surgical procedures and individualized patient care. Based on decentralization

business philosophy, smart hospitals are connected but not centralized networks of patients' care that go beyond physical premises. Data analytics and AI are used by these facilities to enable decision making at each step of the patient journey. Furthermore, natural language processing models quickly process intricate pathology reports to facilitate a speedier delivery of cancer care. [4-6]

Key Drivers of Change

Multiple factors are rapidly moving us to a smart hospital model. According to the first, widespread shortage of healthcare workforce has augmented pressure on the healthcare systems extraordinarily. As a response, hospitals have adopted the team based care models where each provider is responsible for up to five exam rooms in order to remain efficient. Despite a reduction in inpatient bed counts, patient acuity (an indicator of nursing care intensity) continues to rise. In addition, there now is more urgent demand for

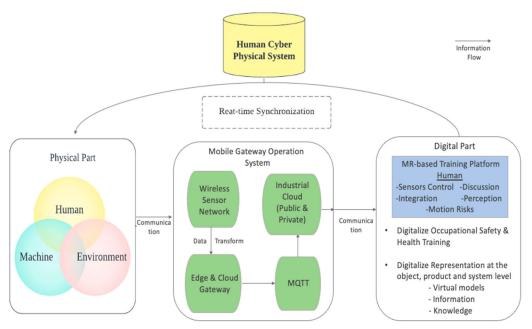


Fig. 1. Traditional vs Smart Hospital Models

mental health beds than medical surgical beds. Shifts need sophisticated monitoring systems and ways of resource allocation (Figure 1).

Another key driver, disregarded by a lot of people, has been the integration of Internet of Medical Things (IoMT) such as smart pills. This system is a means to combine multiple Medical equipment such as Heart rate monitors to Medicine Infusion Pumps into a Medical Cyber Physical System. According to the McKinsey Health report, there are a number of characteristics of smart hospitals, including: There are also significant data security and privacy concerns in this evolution. Al, big data analytics and IoT systems require substantial investment in infrastructure, software and devices from hospitals. However, some benefits of the technology based interventions in all aspects of healthcare services i.e. screening, diagnosis, treatment and rehabilitation can be seen.

Also changing, are patient expectations, which reflects the move towards smart hospitals. Increasingly, modern healthcare consumers are looking for service not status, which is reflected in the popularity of retail clinics and urgent care centers. As a result, esthetics and patient experience have become increasingly important in an increasingly competitive healthcare environment. With regards to implementation of smart hospital models, technology must be advanced continually and clinical protocols must be evaluated rigorously. The fact that we have moved from acute care to chronic disease management, with nearly half

of the US population suffering from chronic diseases is to be noted. To meet this transition, skills in patient monitoring and sophisticated data analytics are critical, in order to offer personalized, high quality care.^[7-9]

Patient Experience Transformation

Fundamentally, medical cyber physical systems are changing the interactions of the patients in the hospital environment. These advancements ensure the integration of sophisticated technology aimed at making human care delivery more human centric by adapting to individual patient need.^[10]

Automated Check-in Systems

Intelligent clinic check in terminal is now widely used in modern hospitals for clinic check in process. These systems show real time department information, which doctors are available and a list of patients waiting in the particular clinic room based on time. It allows patients to self identify with healthcare ID cards doing away with the old paperwork bottleneck. Multiple benefits can be availed from digital check-in solutions which are as mentioned below.

Smart Room Features

The hospital rooms of the past were sterile, impersonal, but now they are becoming sophisticated rooms with ambient intelligence. There are a few key technologies that are encompassed by these

Table	1.	Smart	Poom	Features

Challenge	Description	Impact
Data Privacy and Security	Ensuring patient data is secure from unauthorized access and cyber threats.	Breaches in data privacy can lead to legal and reputational consequences.
System Integration Complexity	Integrating various medical devices, sensors, and hospital IT systems poses technical challenges.	Poor integration can lead to inefficient workflows and data inconsistencies.
Real-Time Data Processing	Real-time processing of vast amounts of patient data to make timely decisions in critical situations.	Failure to process data in real time can jeopardize patient care and decision-making.
Scalability of Systems	Scaling the system to accommodate growing patient data and expand to new medical departments.	Inability to scale systems hinders the growth of healthcare facilities and system adaptability.
Reliability and Fault Tolerance	Ensuring continuous operation of critical systems in case of faults, failures, or system downtimes.	System failures or downtime can have serious consequences on patient care and hospital operations.

smart rooms. Smart room technology has found their implementation and they have measurable results. According to sources, organizations that incorporate personalization in their healthcare facilities can see 10 % better customer experience in 6-12 months and 5 - 10 % lesser administrative costs (Table 1).

Al has taken its places in smart rooms; today, vital signs are collected from patients through wearable devices, real-time data fed to patient portals. They are places where entertainment and educational resources are co utilized and disease management information and timelines of what to expect at the next required clinical visit are displayed on a central screen. [11-14]

Personalized Care Delivery

Medical cyber physical systems are integrated to achieve unprecedented personalization in healthcare delivery. Enhanced scheduling and self service portals are such an approach, they create a seamless 'digital front door' for Cleveland Clinic. These systems are shown to be effective in practice. More than 2,300 patient tablets and 1,300 Amazon Alexa smart speakers have been rolled out by Houston Methodist across its facilities. These devices support:

On the aspect of technological improvements is the automation in the adjustment of room settings during clinical visits. It is not just patient comfort that is an impact. Healthcare providers utilizing these systems have additionally noticed a 20 25% pick up in quality norms. With AI scribes, a patient provider conversation gets documented in real time, freeing up

the paperwork and allowing the physicians to be spent on the patient interactions.

However, with these advancements in medical cyber physical systems, we now have environments that are responsive to patient needs, and help support the healthcare staff in delivering the best of care. Integration of smart technologies has been particularly useful in chronic conditions management where coupling of patient counseling with technology enabled continual care widens patients knowledge, and skills, and motivates patients toward self care.

Healthcare Staff Empowerment. Several advanced medical cyber physical systems are transforming the nature of roles of the healthcare professionals by having innovative tools and technologies. These improve clinical decision making capabilities, and smooth workflows of the hospitals, enabling efficient healthcare. [15-18]

Decision Support Tools

Clinical decision support (CDS) tools are tools that provide timely, contextual information at the point of care to inform medical teams of the best current information on treatment of their patients. These handle routine things, and give important warnings of complications that could develop. Thus, the implementation of CDS has improved healthcare delivery considerably through: The modern CDS systems scan and monitor 500 medical journals using a rigid seven step approach toward selecting and evaluating articles. These platforms are updated daily so that the health care providers can utilize the most current medical information when making decisions.

Workflow Optimization

Clinical and IT system integration are essential to modern healthcare delivery. Electronic health records, point-of care solutions and collaboration platforms are connected to provide patients information in real time thus decreasing the chances for medical errors. These days, clinical teams use mobility workshops to figure out and put in place workflows that are more efficient for these item. Real-time location services (RTLS) have greatly improved staff efficiency as it has been integrated. Previously, the hospital staff spent a large amount of time looking for medical equipment which was now returned to patient care. Status tags now instantly reveal .^[19-21]

REMOTE MONITORING CAPABILITIES

RPM is an important achievement for medical cyber physical systems. Digital device networks that collect and share health information are now giving healthcare providers the capability to manage both acute and chronic conditions. This technology enables: Multiple benefits have been garnered by healthcare staffs who implemented RPM. These technologies report have allowed practitioners to identify health deterioration earlier and thus facilitate more timely interventions. In addition, remote monitoring offers a better representation of patient vitals, free of the 'white coat syndrome' observed during in person visits (Table 2). [22-24].

These days, healthcare teams are using advanced data governance structures to deal with incoming

patient's information. Data can be accepted directly into a medical record, or as clinician review protocols to data integration. Advanced information systems quickly transmit abnormal findings and prioritize urgent cases while setting up efficient workflows.

Proper patient education and clear communication expectation in effective remote monitoring of initiatives are extremely important; and failure in these areas leads to poor adherence and treatment adherence with all the associated bad clinical outcomes. While these systems send data immediately, clinicians would rather react to someone else as the signs of a climb trended as opposed to individual data points. This allows healthcare providers to handle large patient populations with good quality of care. Yet those implementing remote monitoring have found it of special value in austere environments with limited medical access, such as a ship at sea. Now, healthcare teams have access to multiple communication pathways such as satellite phones and video telemedicine systems through which the care can be given. This provides a high level of flexibility such that patient care can continue uninterrupted practically anywhere and in any environment (Figure 2).

Clinical Outcome Improvements

Finally, Medical Cyber Physical Systems, which have been integrated to some great extent have led to improved clinical outcomes by enhancing error prevention and monitoring capabilities. Combining real time data analysis along with automated response mechanisms, these are the most sophisticated systems

Table 2. Solutions and Strategies for Medi	cal Cyber-Physical Systems in Hospitals
--	---

Solution	Description	Benefit	
Advanced Encryption and Security Protocols	Utilizing strong encryption and security measures to protect sensitive patient data.	Enhances data privacy and compliance with healthcare regulations.	
Interoperability Standards	Implementing common standards and protocols for seamless integration of devices and systems.	Improves data exchange, system compatibility, and workflow efficiency across departments.	
Edge Computing for Real-Time Processing	Using edge computing to process patient data at the source, reducing latency and improving response time.	Enables faster decision-making and reduces delays in patient care through real-time analysis.	
Modular Healthcare System Designs	Designing modular systems that can easily be expanded or adapted to changing healthcare needs.	Allows for easier upgrades, scalability, and adaptation to new technologies.	
Redundant Systems and Backup Solutions	Incorporating redundant components and backup systems to ensure continuous operation of critical services.	Minimizes downtime and ensures reliability, even during failures or system disruptions.	

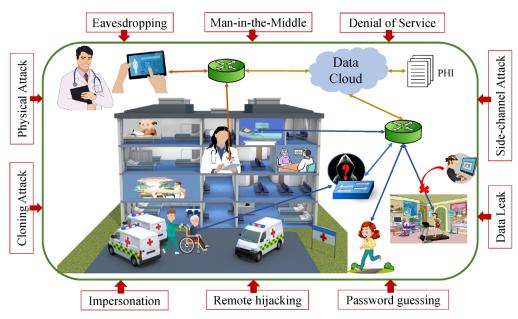


Fig. 2: Remote Monitoring Capabilities

to date that substantially improve patient safety protocols.

Early Warning Systems

Early warning systems, or as they are also known 'track-and-trigger' systems, are vital in prevention of serious adverse events. It has been researched that 85% of serious adverse events occur after abnormal vital signs. These are the systems whereby the patient's condition is scored by very sophisticated scoring mechanisms. EWS implementation has been proven to be an effective management tool in various healthcare settings. At Yale New Haven Health System a comprehensive study of more than 360,000 patient encounters across five hospitals showed that machine learning based early warning tool performed better than a traditional scoring systems. In particular, the eCART was able to identify 300 more deteriorating patients over conventional tools while simultaneously reducing false alarms by 48,000. The automated systems of the smart hospitals have the ability to constantly monitor the vital signs and instantly alert whenever something abnormal is found. In particular, these systems are very effective when. [25]

Reduced Medical Errors

Medical errors are an important public health problem that is now recognized to be the third leading cause of death in the US. It is estimated that about 400,000 patients per year in U.S. hospitals and other care

settings experience preventable harm. Additionally, adverse events have a financial impact that is equally serious: the healthcare system incurs at cost of USD 20 billion per year.

Multiple safeguards introduced to minimise these errors are in Medical cyber physical systems:

- Implementation of e-prescribing and computerized provider order entry systems with decision support has improved Medication Safety dramatically. Valuable in the transitions of care, these systems also consist of medication reconciliation tools.
- IoT health care devices keep track of patient vitals continuously, automatically monitoring and notifying the medical staff if abnormalities are detected. For example, bed sensors are now able to detect falls and unusual movements of the patient quite effectively.
- 3. Unified platforms have centralized patient care information and thereby reduced errors, ensuring that all resources involved in patient care has better management of resources.

Besides these cases, Improved Wireless Medical Cyber Physical System (IWMCPS) already showed excellent error prevention implementation. Recent experimental findings demonstrate:

Medical cyber physical systems are effective beyond error prevention, to the betterment of overall healthcare quality. Their successful applications are confirmed by studies in various medical scenarios, such as. [26]

RESOURCE OPTIMIZATION THROUGH MCPS

Sophisticated medical cyberphysical systems allow smart hospitals to create medical systems for resource management, resulting in a significant improvement of operational efficiency in several domains. These help in doing resource allocation more precisely, be it on the availability of medical supplies and or scheduling of staffs.

Smart Inventory Management

A scheme of hospital inventory management has developed into a systematic process, a methodology for the tracking of medical supplies, consumables, and equipment by means of sophisticated tracking mechanisms. Today, RAIN RFID technology is used by modern MCPS implementations to support real-time inventory tracking. This system incorporates:

However, implementation of smart inventory systems has proven benefits in healthcare facilities. These solutions ensure the reduction of waste, avoiding stockouts, and the improvement of procurement procedure. Hospitals are able to get exact control on through automated tracking and real-time monitoring of.^[27]

Staff Allocation Efficiency

What has been proven is that predictive workforce technology is a sustainable solution for meeting challenges in the healthcare staffing industry. These systems employ sophisticated modeling techniques to forecast workloads on resources and patients demands. Artificial intelligence has been integrated into staff allocation and performed very well in various healthcare organizations. The Mayo Clinic and Cleveland Clinic have both deployed AI driven solutions to analyze data from electronic health records, scheduling systems, and patient feedback platforms. These are some advanced systems that optimize workforce distribution in the following ways. Al driven analytics platforms are used at NewYork-Presbyterian Hospital to continue to watch staffing metrics. By implementing this approach, healthcare facilities can cut their contingent labor premium costs by 33% and, in so doing, cut the premium from 1.8x W2 to 1.2x W2.[28]

Energy Conservation Measures

Although comprising only 4 billion square feet or 5 percent of commercial floorspace, healthcare facilities are responsible for 10 percent of the commercial

segment's energy consumption. Delivery of health services in hospitals is an example of high energy use intensity and nearly three times commercial average building. With the use of data for patient care, Mount Sinai Health System is an excellent example of resource optimization. Their system uses AI and analytics to collate a patient's information from many other sources to determine which resources to allocate to most effectively treat patients based on their actual needs and their acuity level.

These MCPS implementations have provided healthcare facilities with significant operational improvements. The synergistic effect from smart inventory management, efficient staff allocation, and energy conservation measures has overall positive effects on both the quality of patient care and operational efficiency. These systems keep on evolving and they inculcate new technologies and methodologies in order to deal with emerging healthcare challenges more efficiently (Figure 3).

EMERGENCY RESPONSE ENHANCEMENT

To improve their emergency response capabilities, modern healthcare facilities are seeking to exploit sophisticated medical cyber physical systems. Advanced systems of these allow better resource allocation and coordination of teams, ultimately improving patient outcomes in critical care situations.

Rapid Resource Mobilization

It is common for healthcare facilities to lack the agility to efficiently mobilize staff and resources when there are a high patient influx or emergencies. These challenges in medical cyberphysical systems are met by means of automated emergency communication protocols that jointly integrate. It is shows that smart healthcare resource mobilization is well implemented and greatly improved the operational efficiency. These systems have the capability to recognize who can serve for certain scenarios and bypass those already servicing or not the best fit for the job. Through dynamic features, hospitals achieve. Coordination is an effective factor in emergency care systems from the very early onset of symptoms. Medical cyber physical system allows seamless transition of care among different healthcare providers with accurate and timely information communication.

Structured team approaches have been implemented that have had significant positive outcome in managing behavioral emergencies. These systems

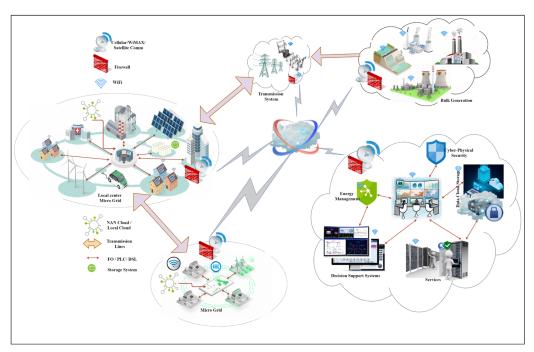


Fig. 3: Emergency Response Enhancement system

incorporate. These systems have shown significant improvements in effectiveness of emergency response from those health care facilities that implemented them. Coordination interventions minimize various risk factors in patient handovers by providing accurate and timely information communication. As such, these systems enable better use of resources and simplification of referral processes across several settings.

The success of emergency response enhancement depends greatly upon continuous system updates as well as training of supporting staff. Every emergency drill is practiced and the plans revised annually. Medical cyber physical systems, which are rather important in managing diverse emergency scenarios, are prepared by these. In other words, the integration of medical cyber physical systems improved healthcare delivery by mobilizing resource as well as coordinate team. These innovations help healthcare facilities provide better and faster responses to emergencies which result in better patient outcomes and higher level of operational efficiency.^[29]

DATA-DRIVEN HEALTHCARE DELIVERY

The treatment approach and the patient outcomes have been revolutionized by data analytics, which became a cornerstone of modern healthcare systems. Healthcare providers are leveraging billions of health data to provide personalized, precise care solutions by 2025.

Predictive Analytics Implementation

Now artificial intelligence and machine learning algorithms analyze a huge body of data to pick and find patterns and predict patient outcomes. They incorporate information from many sources, and can process this information very concretely.

In the healthcare settings, implementing predictive models has proved astonishing. Classification models, indeed, help improving patient health and reducing also insurance fraud, and cluster models are effective method to analyze individual characteristics - based on age and admission patterns. It facilitates hospital's month of emergency department visiting and year of amount spending.

Treatment Optimization

Medical cyber physical systems have greatly changed the way we make decision for treatment protocol using data driven approach. Now AI powered solutions are filling gaps in chronic condition management, which mainly includes heart failure, diabetes, and mental health. These systems have shown excellent performance at:

Integration of GenAl applications has accelerated the diagnosis process by cutting out errors.

Patient vitals, laboratory values, medication responses, and notes in the clinical notes are analyzed by treatment optimization platforms to predict adverse events. This is a proactive approach where the earlier care teams can intervene, the fewer ICU transfers and hospital stays.

Patient Flow Management

Patient flow management is a critical problem as indeed over 126 million patients see healthcare providers every year in the U.S.. Fluctuations in patient number are now handled by smart management systems that have been equipped with sophisticated software solutions to smoothen the whole process starting from scheduling to discharge. Patient flow parameters have shown great improvement within case management departments. Healthcare facilities introduce targeted intervention plans that are rolled out through biweekly meetings and constant monitoring using Plan Do Check Act cycle. This structured approach focuses on:

Bed management divisions have been implemented and have changed the coordination of patient flow. Now all admissions and transfers are handled by these centralized authorities in all healthcare facilities. Additionally, hospital-wide patterns are analyzed by bed management teams to expect volume variations and variations due to seasons.

Optimization of the patient journey starting from home environments is now supported by digital solutions. With mobile applications, patients can do pre-visit checks remotely and receive automated appointment reminders and real-time doctor's schedules updates. Upon patient arrival to a facility, these systems allow for self registration and provide the means to navigate a facility, with the means to alert staff who may be required to assist with the patient (s). Several of these data driven approaches depend upon proper implementation and staff training. This means establishing strong data governance structures in healthcare facilities to deal with incoming patient information properly. By focusing on this comprehensive approach, medical cyber physical systems remain as a means to advance healthcare delivery, among things by ensuring optimal use of the resources, and better patient outcomes.

Measuring Success in Smart Hospitals

Medical cyber physical systems operating in modern healthcare facilities should be evaluated based on quantifiable metrics to ascertain their effectiveness. To measure the progress hospitals are able to make towards their optimal care delivery of patients, hospitals undertake systematic measurement of key performance indicators.

Patient Satisfaction Metrics

Health care quality assessment has a history; however, patient satisfaction remains as reported by a fundamental measure, which directly affects the reputation of the hospital and patient retention. Two out of three patients report dissatisfaction of certain types of healthcare experiences. These challenges are met in medical cyber-physical systems using comprehensive monitoring tools that monitor multiple aspects of patient experience. A main tool of gauging patient loyalty is the Net Promoter Score (NPS) where clients are asked whether they would recommend services to others. Feedback about the smart hospital is collected through automated survey systems that gather; Service quality is governed by patient retention metrics. Service level agreement (SLA) rules to Medicaid companies now include client turnover rates to assure that client safety criteria are maintained. They also help to understand where there are improvements to be made in the patient journey itself.

Operational Efficiency Indicators

Various sophisticate tracking mechanisms are employed in smart hospitals to monitor operational performance. It has thereby allowed for the implementation of medical cyber physical systems, with exact measurement of resource utilization and workflow efficiency. Key performance indicators focus on. Healthcare facilities that have adopted these systems have reaped great amounts of reductions in greenhouse gas emissions - some institutions report a 30% decrease in carbon footprint. Hospitals optimize distribution of resources across different departments by using real time planning and monitoring frameworks. There are many dimensions through which the efficiency of healthcare systems can be standardized:

CLINICAL QUALITY MEASURES

Electronic Clinical Quality Measures (eCQMs) are electronic tools-for the assessment of healthcare quality drawn from electronic health records. The measures outlined in these 3 above evaluate various aspects of care for patients, usually focusing on. Healthcare providers are on the hook to report on

selected eCQMs using certified electronic health record technology for accurate data collection through the Centers for Medicare & Medicaid Services. These measurements aid in identifying areas for quality improvement and facilitating health disparities in care outcomes, when comparing people based on differences in demographics.

Implementation of such sophisticated monitoring systems in smart hospitals involve the tracking of clinical outcomes through. In the integration of Improved Wireless Medical Cyber-Physical Systems, the measurement accuracy was improved to 92% detection precision in identifying potential errors. There are three components you'd find in these systems helping them to thoroughly assess the quality which are as follows. Medical Cyber-Physical Systems continuously monitor and analyse to provide healthcare facilities with high standards of care at optimum resource allocation. These implementations work by providing improved healthcare service delivery, higher efficiency and more reliable cost effective services.

Conclusion

Throughout 2025 and beyond, healthcare delivery is undergoing an entirely new transformation in the field of medical cyber-physical systems. Some of these systems are so capable across so many domains that they can automate patient check ins or have sophisticated clinical decision support tools. Intelligent hospitals have become extremely efficient due to the integrated monitoring systems that reach a 98.20% accuracy in disease detection and cut cost of operations by 5-10 percent. It provides a more efficient way for him to document on the computer, as he's not having to look at a sheet chart for each patient. These advanced systems are implemented and produce their clinical outcome measureable improvements. The system identified 300 more deteriorating patients, whereas traditional methods only found 160. False alarms were reduced by 48,000 cases. RAIN RFID technology and Al-driven analytics provide perfect inventory management and staff allocation through resource optimization. The future of healthcare delivery is smart hospitals; smart hospitals are made up of sophisticated technology and human expertise. On all of the key metrics—patient satisfaction, capacity utilization, clinical quality measures—these facilities are outperforming other facilities. Medical cyber-physical systems are continuously developing environments in healthcare organizations that are adaptive to patients' needs and enable the provider to provide the optimized care.

References:

- Trapp, M., Schneider, D., & Liggesmeyer, P. (2013). A safety roadmap to cyber-physical systems. In J. Münch & K. Schmid (Eds.), Perspectives on the Future of Software Engineering: Essays in Honor of Dieter Rombach (pp. 81-94). Springer.
- Yang, Y., Boehm, B., & Port, D. (2005). A contextualized study of COTS-based e-service projects. In Proceedings of the 4th International Conference on COTS-based Software Systems (ICCBSS 2005). Springer.
- 3. Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805. https://doi.org/10.1016/j.comnet.2010.05.010
- Raj, M., Gupta, S., Chamola, V., Elhence, A., Garg, T., Atiquzzaman, M., & Niyato, D. (2021). A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0. Journal of Network and Computer Applications, 187, 103107. https://doi.org/10.1016/j. jnca.2021.103107
- Yang, C.-H., Lee, K.-C., & Li, S.-E. (2020). A mixed activity-based costing and resource constraint optimal decision model for IoT-oriented intelligent building management system portfolios. Sustainable Cities and Society, 60, 102142. https://doi.org/10.1016/j.scs.2020.102142
- Hogan, A., Blomqvist, E., Cochez, M., d'Amato, C., de Melo, G., Gutierrez, C., Gayo, J. E. L., Kirrane, S., Neumaier, S., Polleres, A., et al. (2021). Knowledge graphs. arXiv preprint arXiv:2003.02320. https://arxiv.org/ abs/2003.02320
- Swathi, S., et al. (2021). Implementation of an energy-efficient binary square rooter using reversible logic by applying the non-restoring algorithm. In Proceedings of the 2nd International Conference on Communication, Computing and Industry 4.0 (C2I4). IEEE. https://doi.org/10.1109/C2I454709.2021
- Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y.-C., Yang, Q., Niyato, D., & Miao, C. (2020). Federated learning in mobile edge networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 22(3), 2031–2063. https://doi.org/10.1109/COMST.2020.2986020
- Cicceri, G., Scaffidi, C., Benomar, Z., Distefano, S., Puliafito, A., Tricomi, G., & Merlino, G. (2020). Smart Healthy Intelligent Room: Headcount through air quality monitoring. In Proceedings of the SmartSys 2020 Workshop Held in Smartcomp 2020.
- Deng, M., Petkovic, M., Nalin, M., & Baroni, I. (2011). A home healthcare system in the cloud: Addressing security and privacy challenges. In Proceedings of the IEEE International Conference on Cloud Computing (CLOUD). https://doi.org/10.1109/ CLOUD.2011.35

- Rohokale, V. M., Prasad, N. R., & Prasad, R. (2011). A cooperative Internet of Things (IoT) for rural healthcare monitoring and control. In Proceedings of the International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE). https://doi.org/10.1109/WIRELESSVITAE.2011.5940920
- 12. You, L., Liu, C., & Tong, S. (2011). Community medical network (CMN): Architecture and implementation. In Proceedings of the Global Mobile Congress (GMC).
- Ahmadi-Assalemi, G., al-Khateeb, H. M., Epiphaniou, G., Cosson, J., Jahankhani, H., & Pillai, P. (2019). Federated blockchain-based tracking and liability attribution framework for employees and cyber-physical objects in a smart workplace. Proceedings of the ICGS3. https://doi.org/10.1109/ ICGS3.2019.8688297
- 14. Cheh, C., Keefe, K., Feddersen, B., Chen, B., Temple, W. G., & Sanders, W. H. (2017). Developing models for physical attacks in cyber-physical systems. In Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and Privacy (pp. 49-55). https://doi.org/10.1145/3140241.3140249
- Venkateshwarlu, S. C., et al. (2022). Optimized design of power-efficient FIR filter using modified booth multiplier. In Proceedings of the 2021 4th International Conference on Recent Trends in Computer Science and Technology (ICRTCST). IEEE. https://doi.org/10.1109/ICRTCST52520.2021. 9711547
- European Union Agency for Network and Information Security (ENISA). (2017). Baseline security recommendations for IoT in the context of critical information infrastructures. https://doi. org/10.2824/03228
- Yang, L. T., Zhao, R., Liu, D., Lu, W., & Deng, X. (2023). Tensor-empowered federated learning for cyber-physical-social computing and communication systems. IEEE Communications Surveys & Tutorials, 25(3), 1909–1940. https://doi.org/10.1109/COMST.2023.3282264
- Lian, Z., et al. (2022). DEEP-FEL: Decentralized, efficient and privacy-enhanced federated edge learning for healthcare cyber-physical systems. IEEE Transactions on Network Science and Engineering, 9(5), 3558–3569. https://doi.org/10.1109/ TNSE.2022.3175945
- Cui, J., et al. (2023). Collaborative intrusion detection system for SDVN: A fairness federated deep learning approach. IEEE Transactions on Parallel and Distributed Systems, 34(9), 2512– 2528. https://doi.org/10.1109/TPDS.2023.3290650

- Modha, D. S., Ananthanarayanan, R., Esser, S. K., Ndirango, A., Sherbondy, A. J., & Singh, R. (2011). Cognitive computing. Communications of the ACM, 54(8), 62–71. https://doi. org/10.1145/1978542.1978559
- Jones, B., Carvalho, C., Dobra, A., Hans, C., Carter, C., & West, M. (2005). Experiments in stochastic computation for high-dimensional graphical models. Statistical Science, 20(4), 388– 400. https://doi.org/10.1214/088342305000000304
- 22. Alaghi, A., & Hayes, J. P. (2013). Survey of stochastic computing. ACM Transactions on Embedded Computing Systems (TECS), 12(2s), 92. https://doi.org/10.1145/2465787.2465794
- Sadulla, S. (2024). Next-generation semiconductor devices: Breakthroughs in materials and applications. *Progress in Electronics and Communication Engineering*, 1(1), 13–18. https://doi.org/10.31838/PECE/01.01.03
- 24. Sadulla, S. (2024). A comparative study of antenna design strategies for millimeter-wave wireless communication. SCCTS Journal of Embedded Systems Design and Applications, 1(1), 13-18. https://doi.org/10.31838/ESA/01.01.03
- Muralidharan, J. (2024). Machine learning techniques for anomaly detection in smart IoT sensor networks. *Journal of Wireless Sensor Networks and IoT, 1*(1), 15-22. https://doi. org/10.31838/WSNIOT/01.01.03
- Hoa, N. T., & Voznak, M. (2025). Critical review on understanding cyber security threats. *Innovative Reviews in Engineering and Science*, 2(2), 17-24. https://doi.org/10.31838/INES/02.02.03
- Rahim, R. (2024). Optimizing reconfigurable architectures for enhanced performance in computing. SCCTS Transactions on Reconfigurable Computing, 1(1), 11-15. https://doi. org/10.31838/RCC/01.01.03
- Prasath, C. A. (2024). Optimization of FPGA architectures for real-time signal processing in medical devices. *Journal of Inte*grated VLSI, Embedded and Computing Technologies, 1(1), 11-15. https://doi.org/10.31838/JIVCT/01.01.03
- Rahim, R. (2023). Effective 60 GHz signal propagation in complex indoor settings. *National Journal of RF Engineering and Wireless Communication*, 1(1), 23-29. https://doi.org/10.31838/ RFMW/01.01.03
- Dorofte, M., & Krein, K. (2024). Novel approaches in Al processing systems for their better reliability and function. *International Journal of Communication and Computer Technologies*, 12(2), 21-30. https://doi.org/10.31838/IJCCTS/12.02.03
- 31. Alnumay, W.S. (2024). The past and future trends in IoT research. *National Journal of Antennas and Propagation, 6*(1), 13–22.