
8 Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312

AI Hardware Accelerators: Architectures and
Implementation Strategies

K. S. Hyun1, P. J Min2, L. H Won3*
1-3School of Electrical Engineering, Korea Advanced Institute of Science and Technology,

Daejeon 34141, South Korea

AbstrAct
Artificial Intelligence also has achieved very rapid advancement, with com-
putational power demands of the kind never before seen. However, contin-
ued demand on the specialized hardware has kept right on pace with how
complex AI models have gotten. In this article, we dive into AI hardware ac-
celerators architecture, the implementation strategy, and the amazing shift
the world of AI got into. That burgeoning field has forced traditional com-
puting architectures to their limit. General purpose processors are generally
powerful in many ways other than dealing with the extremely difficult com-
putational demands that AI algorithms require. As a result of this challenge,
there is such a new class of hardware: AI accelerators. To enable breakdowns
on areas such as computer vision or natural language processing, these are
purpose built devices designed to reduce the time and energy required for
computing with the AI significantly. To set AI hardware accelerator explora-
tion in the space, we’ll evaluate the principles that govern their design, the
type of accelerators that currently exist, and how to harness them to their
largest deployment. Additionally we will also be envisioning future AI hard-
ware, as well as some emerging trends we believe will define it. If you are a
seasoned AI practitioner or just interested to know about the technology of
the AI revolution, this detailed guide provides you some insights to the world
of AI acceleration.

How to cite this article: Hyun KS, Min PJ, Won LH (2025). AI Hardware Accelera
tors: Architectures and Implementation Strategies. Journal of Integrated
VLSI, Embedded and Computing Technologies, Vol. 2, No. 1, 2025, 819

the need for AI hArdwAre AccelerAtIon
In spite of the tremendous increase in applications, AI
applications, across industries, the old ways of doing
computer have failed when it comes to handling AI
workloads. While general compute tasks are in the
realm of general compute, AI algorithms are extremely
general and thus different, and traditional central
processor units (CPUs) often fall short when asked to
handle this domain. This section explores the relevance
and problems that create the requirement and stimuli
for specialized AI hardware accelerators .[1-3]

AI Workloads Computational Intensity
AI models have very high computational requirements,
and deep learning architectures of AI models
particularly so. Because these models have millions

or even billions of parameters, it takes hundreds or
thousands of mathematical operations to train and
to do inference. Specifically, my applications have
many matrix multiplications and convolutions, which
is the meat and bones of AIs. At large scale, general
purpose processors are not capable of performing
these computations, and their performance is sluggish
and their energy consumption is high.

On top of that, AI workloads are usually inherently
parallel, and traditional CPUs are not particularly well
suited for taking advantage of that parallelism. It is
because AI algorithms lack efficiency in between were
unconsumed by computing processes are naturally
parallel, and the CPU architecture leaves a lack of
number of process for utilization of the computing
resources that consequently makes suboptimal

Keywords:
AI Hardware Accelerators;
Hardware Architecture;
Neural Network Processing;
Parallel Computing;
Implementation Strategies

Corresponding Author Email:
Lehw4on@kaist.ac.kr

DOI: 10.31838/JIVCT/02.01.02

Received : 05.11.2024
Revised : 07.12.2024
Accepted : 05.01.2025

RESEARCH ARTICLE ECEJOURNALS.IN
Journal of Integrated VLSI, Embedded and Computing Technologies, ISSN: 3049-1312 Vol. 2, No. 1, 2025 (pp. 8-19)

K. S. Hyun et al. : AI Hardware Accelerators: Architectures and Implementation Strategies

Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312 9

utilization of computing power and very small total
performance.[4-6]

Memory Bandwidth Bottleneck
In the same vein, there is a problem of memory
bandwidth bottleneck in the AI processing. The demand
to have heavy access to huge quantities of data puts
heavy stress on the memory system of AI models.
However, speed of data transfer between memory and
processing units has often been a speed barrier that
plagues performance of AI. In particular, this problem
is of grave importance when the size of the AI model is
significantly larger than the on chip memory, as data
transfer between slower off chip memory is necessary
quite frequently.

With faster computational capability growing
faster than the memory bandwidth, the problem of
memory bandwidth is magnified. Although we have
seen increases in processing power that have grown
rapidly, so too is the memory bandwidth increase
has trailed behind the growing gap in the improving
efficiency of computing in AI as the relative increase in
memory bandwidth has fallen far behind.[7-11]

Energy Efficiency Concerns
Now that energy efficiency is an issue with AI
applications everywhere, the desire is to understand
MD within the limitations of the energy available on
a board. The workloads of AI are power hungry since
they run not for the most optimal solution, but for
the one that is good enough, resulting in non specific
hardware. Both it is a huge source of operational cost
as well as the resource constrain to execute AI in
energetically constrained environments like edge or
mobile devices (Figure 1).

Fig. 1: Real Time Processing Requirements

Since hardware accelerators catering for high
performance and low power consumption are being

developed, they are designed specifically for the ever
demanding requirements of AI processing which needs
to provide higher throughput with reduced energy.
However, energy effcientiy is crucial to the adoption
of AI in a whole range of applications and deployment
modes for wide spread deployment.[12-14]

Real Time Processing Requirements
In many of (now) listed AI applications: autonomous
driving, robotics, and realtime analytics — low latency
processing is a must. Ultimately, these AI models need
to make really quick decisions (under a millisecond or
two) on the data that comes in (usually). However, the
harder the AI model, the more challenging it becomes
to work with such stringent latency requirements by
using general purpose hardware.

Specifically built hardware accelerators for AI
workloads offer dramatic reduction in processing
times and thus, near real time or real time
performance as required for such line of application.
This capability is critical to establishing time critical
domain as the playing field where AI can really power
up.[15-17]

Scalability and Flexibility
As they get more complicated, AI models need more
important scalable and flexible computing solutions
in order to improve. First of all, the hardware
accelerators have to be capable of quickly serving a
range of existing and emerging architectural styles of
the AI models, from the edge token execution times to
massive language models high throughput in the top of
racks of servers (Table 1).

It also ensures that hardware can respond to a
new model architecture and computational pattern
at the pace of AI innovation in algorithmic space.
Flexible accelerator platforms are a hard problem
in accelerator design and arise from the need for
AI accelerator platforms to be more versatile and
programmable.[18-19]

Types of AI Hardware Accelerators
However, unlike the mostly homogeneous world of
cloud computing, AI hardware accelerators span a wide
range of architectures that have different priorities for
different parts of the AI computation. First of all, we
will expose some of the major features of major types
AI accelerators to provide an overview of what are the
strongest points and what are the main applications of
the given components.

K. S. Hyun et al. : AI Hardware Accelerators: Architectures and Implementation Strategies

10 Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312

GrAphIcs processInG UnIts (GpUs) Is
GpUs for these pUrpose.
Given how GPUs were once created to handle the
complex graphics rendering, it is not surprising that
GPUs have quickly become engines to speed up AI.
They are optimised at paralleling the processing of
large data sets, which, more or less, corresponds to
how many of the AI algorithms are computationally
patterned.[20]

Architecture and Strengths
The thousands of tiny, highly efficient cores in a GPU
can work in parallel. Particularly well suited to the
matrix operations that dominate most AI workloads,
it is. Specifically, modern GPUs include support for
specialized tensor cores, which are cores that exist
solely for handling the kind of math, in this case deep
learning math, but generally. In GPUs, due to the high
bandwidth memory and large caches, a reasonable
memory usage efficiency in AI processing is allowed
by the GPUs memory architecture. The combination
of power of parallel processing with power of memory
access available in GPUs makes this a very powerful
way to perform deep learning, both in training and
inference work. Tensor Processing Unit is a customized
ASIC (Application Specific Integrated Circuit) on
market that targets performing tensor operation in
machine learning workload.[21-22]

Architecture and Strengths
Because of their use of the systolic array architecture,
TPs apply very well to matrix multiplication and

convolution. This design supports high throughput and
low latency in the computations performed in an AI. In
TPU, the on chip memory reduces huge off chip memory
accesses and bandwidth bottlenecks. This means that
TPU provides extremely special way of being, that are
optimized to work on very common AI operations yet
with orders of magnitude better performance as well
as orders of magnitude better energy efficiency than
typical more general purpose processors.[23]

Use Cases and Limitations
TPUs (on large scale machine learning tasks, especially
when scale involves a neural network inference)
are especially good for. They use them everywhere
on their data centers to run various AI services.
Main limitation of TPUs is spesificiy of them. On the
upside, they aren’t as versatile as GPUs generally
and the bonus is incredibly efficient for some types of
AI workload. Another uniqueness of the FPGA lies in
their full capabilities to acceleration from the field of
the AI. These are also devices which have an array of
programmable logic block, which can be reconfigured
to implement custom digital circuit. Like in the case
of FPGAs, they also inherit the reconfigurable nature
that allows to design custom accelerator that will be
specifically dedicated to the AI algorithms and models
targeted. This type of flexibility allows for optimizing
AI tasks at collection points, and in principle is very
beneficial to performance and energy efficiency.
The right AI operations with FPGAs can achieve
low latency and high throughput at the expense of
performance and in a good fit for real time processing

Table 1: Scalability and Flexibility

Component Role in AI Hardware Application in AI

Custom AI Processors Dedicated processors designed specifi-
cally for AI workloads, enhancing com-
putation speed.

Optimizes computation for deep
learning, reinforcement learning, and
other AI applications.

Parallel Processing Units Units that execute multiple operations
simultaneously, speeding up AI model
training and inference.

Enables faster data processing for real-
time AI inference in applications like
autonomous vehicles.

Memory Hierarchy and Bandwidth Efficient memory systems and high
bandwidth ensure that data is available
quickly for processing.

Minimizes memory bottlenecks, im-
proving AI system performance and
scalability.

Interconnects and Communication Net-
works

Ensuring efficient communication be-
tween processing units and peripheral
devices in AI systems.

Reduces latency and increases through-
put, supporting faster AI training cy-
cles.

Energy Efficiency Techniques Techniques like dynamic voltage scaling
and lowpower components to reduce
energy consumption in AI tasks.

Improves the operational efficiency of
AI systems, reducing power consump-
tion while maintaining performance.

K. S. Hyun et al. : AI Hardware Accelerators: Architectures and Implementation Strategies

Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312 11

applications. In addition, they can be keyed to new
AI algorithms and model architectures without new
hardware.[24]

Use Cases and Limitations
For edge computing scenarios, often FPGAs tend to
be high in use on either execution time or energy
efficiency. The technology is also useful in rapidly
changing fields of AI, in which the capability to change
hardware on the fly is an advantage. While programming
FPGAs is certainly complex, if FPGAs are to be used,
programming skills in hardware description languages
need to be in place somehow. In addition, FPGAs are
also flexible, however they do not necessarily achieve
this raw performance for a given well defined task as
well as ASICs do.[25]

Application specific Integrated Circuits
(ASICs)
The pinnacle of specialization in AI hardware
accelerators pertains to hardware acceleration of
AI at the ASIC level. These are chips designed for
specific AI tasks or for specific models. As such, the
architecture of such an ASIC is entirely customized to
AI application. This extreme specialization makes it
possible for best performance and energy efficiency.
ASICs provide the unique features and optimizations
for which it is not possible to be included in general
purpose accelerators. ASICs take the elements of a
chip not needed for the work they are designed to do
and eliminate them or optimize every single aspect

of chip design for the specialized work it will be
performing (Figure 2).[26]

With more complex and more energy consuming
CPUs, ASICs are more and more interesting for
precisely defined, stable, on demand AI workloads
requiring highest performance and efficiency. They are
popular as they are used in high volume products such
as those in data centers while having an outstanding
energy efficiency such as in mobile devices. ASICs
drawback is they are not flexible. After doing an ASIC,
it is impossible to reconfigure the ASIC for another
task. First, this inflexibility plus high development
costs leads ASICs to not be suited to fast evolving AI
applications and low volume of deployment.[27]

Neuromorphic Processors
A paradigm shift in AI hardware is neuromorphic
processors based on a neural network like structure
and function. They are spiking neural networks (SNN)
processors, which process information in the manner
of the human brain. This type of computation can be
significantly energy efficient because the only neurons
that ‘fire’ and computation ‘happens’ in the case that
it does. One specific consideration for neuromorphic
architectures which are an important problem is
the von Neumann’s bottleneck, and in particular, if
novel memory technologies that store and process
information on the same physical location are added
— memristors for example.[28]

Such realtime processing of sensory data is a real
need for applications like robotics or autonomous

Fig. 2: Application specific Integrated Circuits (ASICs)

K. S. Hyun et al. : AI Hardware Accelerators: Architectures and Implementation Strategies

12 Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312

vehicles and neuromorphic processors are a good
means to address that need. For use in the scenarios
of edge computing, they are also evaluated for
their energy efficiency. Nevertheless, the field of
neuromorphic computing is in its infancy. However,
programming models and tools for these processors are
less developed than those for traditional computing
paradigms and that may thus impede their usage. As
AI workloads come in a wide variety of shapes and
form, so does landscape of hardware accelerators for
AI workload. The hardware must consider the type of
acceleration required and therefore requires different
types of accelerators, depending on the application of
AI such as performance demands, energy limitations,
flexibility demands, etc. Great work at AI will lead
to advancement of the design of accelerator and
combine elements from different approaches to make
more powerful and effective AI computing platform.[29]

AI ArchItectUrAl prIncIples of
AccelerAtors
Architectural principles leading to AI hardware
accelerator designs focus on its performances,
energy efficiency and flexibility of AI workloads. We
explore these key principles, and how they define the
architecture of modern AI accelerators in this section.

Parallelism and Vectorization
The design of AI accelerator is at the core of massive
parallelism. Just as with other algorithms of AI, deep
learning algorithms have a lot of inherent parallelism:

the independent thirds can all be processed in parallel.
In principle, they usually have many processing
elements or cores running in parallel, thus defining an AI
accelerator. This architecture achieves the capability of
sequential execution of multiple computations resulting
into improved throughput over sequential processing.
Here for example, the GPU has a CUDA core which is
thousands of parallel floating point operations in a
core and the number of the cores in a GPU is so large.
Similarly, systolic arrays — a grid of processing elements
capable of high parallelized matrix multiplication — are
used within TPUs (Table 2).[30]

Many of the AI accelerators use Single Instruction,
Multiple Data (SIMD) or Single Instruction, Multiple
Thread (SIMT). When the data that needs to be
processed is such that a single instruction can
be applied to many of them (i.e vector or matrix
operations which are commonplace in AI workloads),
these approaches are well suited. NVIDIA’s GPU
architecture is an example of a simt value like they
can parallelize AI computations by running multiple
threads on the same instruction at different data
elements.[31]

Memory Hierachy and Bandwidth
Optimization
As the memory intense nature of AI workloads demands
that AI accelerators are very efficient at memory
access, we derive the cost model for onchip and off
chip IO data movement using Simplex caching strategy.
In the design of accelerators, many strategies are used

Table 2: AI hardware accelerators and their impacts

Strategy Focus Area Impact on AI Systems

Optimized HardwareSoft-
ware CoDesign

Integrating AI algorithms with hard-
ware design to maximize efficiency
and performance.

Improves overall system efficiency by closely cou-
pling software and hardware.

FPGABased AI Accelerators Utilizing FPGAs to create program-
mable hardware solutions that can
be reconfigured for various AI tasks.

Provides flexibility to adapt to different AI tasks,
improving the system‚Äôs versatility and reconfig-
urability.

ASIC Development for AI Tasks Designing ApplicationSpecific Inte-
grated Circuits (ASICs) tailored for
specific AI workloads to maximize
performance.

Delivers high performance for specific AI applica-
tions with low power consumption and reduced la-
tency.

Custom AISpecific Machine
Learning Algorithms

Developing algorithms that are opti-
mized for AI accelerators to improve
data processing speeds.

Enables faster training and inference cycles, im-
proving AI model development and deployment.

Integration with CloudBased
AI Systems

Connecting AI hardware accelerators
with cloud systems to enhance com-
putational power and scalability.

Scales AI systems dynamically, ensuring high per-
formance across various computational loads.

K. S. Hyun et al. : AI Hardware Accelerators: Architectures and Implementation Strategies

Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312 13

to reduce memory bandwidth requirements and reduce
the effect of the memory access latency. As often used
data lies close to the processing units, large on chip
memory or caches typically appear on AI accelerators.
This allows to save time collecting, and off chip memory
accesses can be much slower and highly energy hungry.
For example, Google TPUs prominently include an ‘on
chip’ memory which we call the ‘Unified Buffer’ for
storing intermediate results and parameters, and so
ship them less frequently from the off chip memory.
Data transfer rate in many accelerators is increased
via the use of high bandwidth memory. People use HBM
or GDDR memory technologies commonly in GPUs (and
other AI accelerators) for the bandwidth they provide
to support the AI workload.

Memory Compression, Sparsity
Exploitation
Memory compression techniques are also used by
some accelerators to optimize memory usage even
further, or to use the sparsity in AI models. In practice,
the usage of these techniques for data compression
and skipping computation on zeros can increase the
memory bandwidth and reduce the energy consumed.
What is more important is functional units designed for
AI operations that are more popular in AI accelerators.
The operation currently does complex operation in an
efficient way versus the general purpose arithmetic
units.

NVIDIA’s GPUs have tensor cores for accelerating
multiply accumulate operations (typical to many
deep learning algorithms). These cores allow mixed
precision matrix operations to be much faster than
could be run with handling of the mix by traditional
floating point units. Matrix multiplications are the core
of Google’s TPUs capacity, and so they are particularly
well suited to systolic arrays. It computes some
fraction of the problem and electronics the results to
its neighbors; they compute a portion (passing results
down); and ultimately the results trickle down the end
of the systolic array. Some of the accelerators have
hardware units to compute the common activation
functions present in neural networks such as a ReLU,
a sigmoid and a tanh. Usually, these units are useful
as they can perform these operations faster than the
general purpose arithmetic unit.

Current focus of design for AI accelerators is
dataflow architectures. These architectures try to
optimize the flow of data through the processing
elements by giving large scale storage, high data

movement, and poor computational efficiency. Spatial
dataflow architectures are appropriate for many AI
algorithms, which regularly have regular computational
patterns. This is an expensive bottleneck of AI
processing and using this means will save the energy
and time spent on data movement. temporal dataflow
architectures are based on reusing the data over time,
and localizing the data in local memories and moving
algorithms over (or just with) data. This approach
can (especially) well serve to reduce off chip memory
accesses as well as energy efficiency.

Programmability and Flexibility
The operation of an AI accelerator requires some
sort of specialization, but there is some degree of
flexibility needed in order to support a variety of AI
model types and accommodate changing algorithms.
Configurable datapaths in other accelerators allow
them to configure to run different kinds of operations
or precision levels. This gives the accelerator, to switch
to different AI models or computational need. The aim
of software defined hardware is to strike a balance
between the systems with high intensity towards
tailoring hardware and those with high flexibility to
programming. By configuring positions of the above
hardware behavior using software, these designs can
be adapted to different AI workloads.

Energy efficiency optimizations
Since AI workloads are so vast, energy efficiency is
one of those important considerations in accelerator
design. Moreover, many accelerators change their
power consumption, dynamically based on dynamic
voltage and frequency scaling (DVFS) where their
frequency changes as a function of workload demands.
This technique can be used by the accelerator to save
power when computation intensity is low. To the extent
that this is possible, reducing power consumption
is to power gate part (or all) of the accelerator
with techniques that turn off segments that are not
required.[32-33]

MIxed-precIsIon coMpUtAtIon
Operating at mixed precision — accelerators can
use different levels of precision (e.g. 16bit or 8bit
on operations that need high precision but are not
crucially important in producing a result — differs
namely from the programmable accelerators which
allows all operations being predetermined and
deterministic.

K. S. Hyun et al. : AI Hardware Accelerators: Architectures and Implementation Strategies

14 Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312

On the higher level, we contrast the architectures
of GPGPUs and AI accelerators and demonstrate that
the architectural decisions which power AI accelerators
are a careful balance between specialization to run AI
workloads vs. open mindedness that retains flexibility
to run arbitrary applications. Resorting to massively
parallelism, improving memory access, and exploiting
specialized functional units enables such accelerators
to offer AI programs performance and efficiency to the
level needed for running. As the field of AI expands,
these architectural principles will be refined, new
ways of thought will be developed, and the march of
AI computation will be reversed further.

Hardware-Software Co-design
Hardware – Software Co Design : is one of the most
crucial strategies of how to implement AI accelerators.
That’s about doing hardware and software together
to operate correctly with the loads of AI. Specialized
compilers rely on translating high level AI models to
efficient code for given accelerator architectures.
They utilize different techniques of optimization to
exhaust what it has to offer in terms of its accelerator
resources to use. NVIDIA’s CUDA compiler for GPUs not
only provides optimizations built for deep learning
workloads such as kernel fusion and memory access
pattern optimization, but it also offers an embedding
strategy that flexibly adapts types to code target (GPU,

CPU, etc). Just as with the Google XLA (Accelerated
Linear Algebra) compiler, TensorFlow also optimizes on
computations onto all types of hardware platform from
TPUs to GPUs. One major part in hardware software co
design is developing language specific for AI (domain
specific languages). These languages help programming
the AL algorithm in a way that is easily translatable
to the underlying hardware. Nvidia has CUDA, Google
has JAX which define a high level way to write
accelerator friendly ai code. Balancing the energy and
performance of AI Accelerators requires an approach
like Quantization. This involves reductions of precision
that significantly reduce memory requirement and
computational complexity (Figure 3).[34]

Mixed Precision Train and Inference
Support of the many accelerators for mixed precision
operations will include operations using different levels
of precision in different portions of the model. Mixed
precision matrix multiplyaccumulate operations that
NASA supports are important as they allow training
and inference time to be drastically reduced with
only a small loss of model accuracy, thanks to NVIDIA;s
Tensor Cores. The process is quantized for a licensed
model, converting it from high to a lower precision
with out retraining as it is trained. this technique
can achieve dramatic size and run time reduction on
model size and inference latency with essentially no

Fig. 3: Mixed Precision Train and Inference

K. S. Hyun et al. : AI Hardware Accelerators: Architectures and Implementation Strategies

Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312 15

loss in accuracy compared to our baseline. For more
aggressive quantization, quantization aware training
takes care of quantization effects during its training
process. With this I am able to generate models that
still begin to have high accuracy, even for precisions
like 8 bit or even 4 bit.

But this alleviates the issue of deployment of the
AI models to hardware accelerators, by methods like
model compression that shrink size and computational
intensity of the models. Pruning finds the feat of
taking away unnecessary connections or neurons in
a neural network. Thus, this can significantly shrink
model size and reduce computational requirements
without hurting accuracy much. With sparsity, there
is an extra complication with accelerator support for
sparse tensor operations like Ampere from Nvidia,
which can be used as long as the model has been
pruned.

Knowledge distillation is a task of training a small,
small model which mimics that of a much large, large
model. As a result, these techniques produce compact
models that can be deployed on resource constrained
accelerator. One has to pay attention to different
strategies for distributed computing across different
accelerators or devices when the scale of the problem
is large enough, namely in cases with large scale AI
applications.[35-36]

MUltI tpUs And MUltI GpU trAInInG
The distributed FAI workloads can be supported by
frameworks like TensorFlow and PyTorch that provide
support for multiple GPUs or TPUs. Thus allowing us to
train very large (but maybe not large enough) models
on a single device or dramatically cut down training
times on smaller models. In federated learning devices
/ servers are trained with local sample data (also called
clients) while the model is trained jointly with respect
just to those local data. Specifically, we find that the
edge AI application and scenarios with data privacy
concern are most appropriate for this approach. It will
need to be in order to enable power management and
thermal optimization for AI accelerators.[37]

Dynamic Voltage and Frequency Scaling
(DVFS)
In DVFS techniques, accelerators have the ability to
adapt their clock speeds and voltage levels as required
to meet workload requirements without having too
much negative effect on performance. Workloads
can be scheduled using thermal aware scheduling

algorithms that will distribute the workloads to have
thermal load balance amongst devices and keep overall
performance consistent across devices. In cloud and
data center environment, AI accelerator acceleration
can be shared with other users or workloads due to
virtualization technologies.

In the multitenant world, NVIDIA’s vGPU offers
the opportunity for additional virtual machines to
sit on the top of the same physical GPU, making
the numbers add up. Such accelerator management
plugins for containers orchestration platforms (such
as Kubernetes) can effectively deploy and scale AI
workloads in a cluster of accelerators. There are
special challenges to deployment of AI accelerators
at the edge. At the edge, there are also limited
computational resources and power available and
model quantization, pruning and architecture search
are very important for that use case.[38-42]

hArdwAre AwAre neUrAl ArchItectUre
seArch (nAs)
NA techniques can be used to specifically take
specific characteristics of edge AI accelerators into
consideration, and automatically design neural
network architectures efficient to deploy on such
devices. While benchmarking and continuesearching
for the best performance is very important for AI
accelerators, especially for it’s optimum effciency.

Standardized Benchmarks
Then, you end up with standardized benchmarks like
MLPerf, so that that you can compare the performance
of a certain type of accelerators for a specific task.
These benchmarks are needed to choose the best
hardware for these specialty AI workloads. Developers
can use vendor provided tools like NVIDIA’s Nsight
Compute or Intel VTune Profiler to do the analysis on
their AI workload performance on any accelerator and
pick up optimization opportunities.

There is a complex interaction between hardware
design, software optimisation and system level
strategies for AI accelerators. With such approaches
organizations can optimize their performance,
efficiency and flexibility of their AI infrastructure. As
the field of AI continues to progress, we will continue
to approach these implementation strategies with
these types of implementation strategies, which will
allow these implementation strategies for more and
more powerful and as efficient AI applications in yet
another domain.

K. S. Hyun et al. : AI Hardware Accelerators: Architectures and Implementation Strategies

16 Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312

Performance Evaluation and
Benchmarking.
Consequently, one would also need to be able to
evaluate performance of AI accelerators in order to
pick a hardware and optimize, and therefore compare,
alternatives, to fully understand the capabilities
of any given AI accelerator solution. In this section,
we describe evaluation of AI accelerators based
on the methods, metrics and challenges. Typically,
performance of AI accelerators is evaluated from a set
of important metrics. To really be able to compare
and analyze the performance, we need to know these
metrics. It is the amount of operations or inferences
an accelerator can perform within a time interval.
However, it’s normally phrased in OPS (operations
per second) or IPS (inferences per second). Image per
second or token per second, metric commonly used for
training workload. For example, metrics for inference
in video processing case might be frames per second
or queries per second. In the context of this work, we
make the definition of latency: the amount of time
taken to run a single operation or inference. Hence,
in such applications this metric will be very important
because real time applications cannot afford slow
response times.

In particular, the latency is expressed in terms of
milliseconds (ms) and microseconds (μs) as a function
of the model complexity and input data size. They
measure how much можна computation utilise for
per unit of consumed energy. These are the typical
metrics of operations per watt (OPS/W) or inferences
per watt (IPS/W). For example, these metrics are
especially important for edge AI applications and
large deployment with high power consumption. The
measurement of utilization of accelerator’s resources
helps to see how well an accelerator is being utilized.
In this context that can be metrics like compute
utilization (percent of active compute units) and
memory bandwidth utilization etc. Utilization is high
if it usually means that capabilities of the accelerator
have been utilized efficiently, and low utilization
could be an indication of scaling problems or problems
in implementation acceleration.

conclUsIon
By doing so following some low level design decisions
taken by Intel’s latest server product, we suggest it
would have been possible to remove the need for
updates to the hyperscalers’ specifications. A work
load based benchmarks is also another thing we

need to benchmark on, however, a good comparison
statement is that the standard benchmarks. One
of the benefits of KairosDB is that you can run your
custom metrics; while many companies build custom
benchmarks, which mimic the company’s workloads
for AI, to troubleshoot. This is the best way to know,
how exactly an accelerator would be used in a given
use case. It is needed to use the actual world data
from the datasets. The funny thing about it is maybe
you don’t have exactly these kind of easy patterns,
these kind of easy edge cases that maybe synthetic
data provides. In most of the cases however, you would
just want to benchmark the whole AI pipeline from
data preprocessing, inference to post processing. End
to end evaluation gives you a holistically view of how
system performs. And benchmark AI accelerators holds
a great potential but with challenges unique enough
to require careful thinking to benchmark accurately
and fairly.

references
1. Abdelfattah, M. S., Dudziak, Ł., Chau, T., Lee, R., Kim,

H., & Lane, N. D. (2020). Best of both worlds: AutoML
codesign of a CNN and its hardware accelerator. In Pro-
ceedings of the 57th ACM/IEEE Design Automation Con-
ference (DAC) (pp. 1–6).

2. Zhang, S., Du, Z., Zhang, L., Lan, H., Liu, S., Li, L., Guo,
Q., Chen, T., & Chen, T. (2016). CambriconX: An accel-
erator for sparse neural networks. In Proceedings of the
49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO) (pp. 1–13).

3. Zhou, X., Du, Z., Guo, Q., Liu, S., Liu, C., Wang, C., Zhou,
X., Li, L., Chen, T., & Chen, Y. (2018). CambriconS: Ad-
dressing irregularity in sparse neural networks through
a cooperative software/hardware approach. In Proceed-
ings of the 51st Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO) (pp. 1–14).

4. Chandramoorthy, N., Swaminathan, K., Cochet, M.,
Paidimarri, A., Eldridge, S., Joshi, R. V., Ziegler, M. M.,
Buyuktosunoglu, A., & Bose, P. (2019). Resilient low
voltage accelerators for high energy efficiency. In Pro-
ceedings of the 2019 IEEE International Symposium on
High-Performance Computer Architecture (HPCA) (pp.
147–158). https://doi.org/10.1109/HPCA.2019.00034

5. Deng, C., Sun, F., Qian, X., Lin, J., Wang, Z., & Yuan,
B. (2019). TIE: Energyefficient tensor trainbased
inference engine for deep neural networks. In Pro-
ceedings of the 46th International Symposium on
Computer Architecture (pp. 264–278). https://doi.
org/10.1145/3307650.3322251

6. Jang, H., Kim, J., Jo, J. E., Lee, J., & Kim, J. (2019).
MnnFast: A fast and scalable system architecture for

K. S. Hyun et al. : AI Hardware Accelerators: Architectures and Implementation Strategies

Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312 17

memoryaugmented neural networks. In Proceedings
of the 46th International Symposium on Computer Ar-
chitecture (pp. 250–263). https://doi.org/10.1145/
3307650.3322250

7. Rim, D., Kwon, H., & Lee, Y. (2022). Algorithmhardware
cooptimization for costefficient MLbased ISP acceler-
ator. In Proceedings of the 2022 IEEE International Sym-
posium on Circuits and Systems (ISCAS). https://doi.
org/10.1109/ISCAS48785.2022.9937743

8. Dhilleswararao, P., Boppu, S., Manikandan, M. S., & Cen-
keramaddi, L. R. (2022). Efficient hardware architec-
tures for accelerating deep neural networks: Survey. IEEE
Access, 10, 131788–131828. https://doi.org/10.1109/
ACCESS.2022.3229767

9. Sze, V., Chen, Y.H., Yang, T.J., & Emer, J. S. (2017).
Efficient processing of deep neural networks: A tutorial
and survey. Proceedings of the IEEE, 105(12), 2295–2329.
https://doi.org/10.1109/JPROC.2017.2761740

10. Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li,
L., Chen, T., Xu, Z., Sun, N., et al. (2014). DaDianNao: A
machinelearning supercomputer. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (pp. 609–622).

11. Liu, D., Chen, T., Liu, S., Zhou, J., Zhou, S., Teman, O.,
Feng, X., Zhou, X., & Chen, Y. (2015). PuDianNao: A poly-
valent machine learning accelerator. ACM SIGARCH Com-
puter Architecture News, 43(3), 369–381.

12. Khadir, M., et al. (2022). QCAbased optimized arith-
metic models. In Proceedings of the 2021 4th Interna-
tional Conference on Recent Trends in Computer Sci-
ence and Technology (ICRTCST) (pp. 1–6). https://doi.
org/10.1109/ICRTCST52520.2021.9711545

13. Liu, S., Du, Z., Tao, J., Han, D., Luo, T., Xie, Y., Chen, Y.,
& Chen, T. (2016). Cambricon: An instruction set archi-
tecture for neural networks. In Proceedings of the ACM/
IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA) (pp. 1–13).

14. Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell,
J. D., Dean, M. E., Rose, G. S., & Plank, J. S. (2017). A
survey of neuromorphic computing and neural networks
in hardware. CoRR, abs/1705.06963, 1–4. Retrieved from
http://arxiv.org/abs/1705.06963

15. Chen, Y., Xie, Y., Song, L., Chen, F., & Tang, T. (2020).
A survey of accelerator architectures for deep neu-
ral networks. Engineering, 6(3), 264–274. https://doi.
org/10.1016/j.eng.2019.12.012

16. Deng, B. L., Li, G., Han, S., Shi, L., & Xie, Y. (2020).
Model compression and hardware acceleration for neu-
ral networks: A comprehensive survey. Proceedings of
the IEEE, 108(4), 485–532. https://doi.org/10.1109/
JPROC.2020.2978289

17. Nurvitadhi, E., Sim, J., Sheffield, D., Mishra, A., Krish-
nan, S., & Marr, D. (2016). Accelerating recurrent neu-
ral networks in analytics servers: Comparison of FPGA,

CPU, GPU, and ASIC. In Proceedings of the 26th Inter-
national Conference on Field Programmable Logic and
Applications (FPL) (pp. 1–4). https://doi.org/10.1109/
FPL.2016.7577353

18. Cho, K., Van Merrienboer, B., Bahdanau, D., & Bengio,
Y. (2014). On the properties of neural machine trans-
lation: Encoderdecoder approaches. arXiv preprint
arXiv:1409.1259. Retrieved from https://arxiv.org/
abs/1409.1259

19. Tao, J., Thakker, U., Dasika, G., & Beu, J. (2019). Skip-
ping RNN state updates without retraining the original
model. In Proceedings of the 1st Workshop on Machine
Learning on Edge in Sensor Systems (pp. 31–36).

20. Nurvitadhi, E., Sim, J., Sheffield, D., Mishra, A., Krish-
nan, S., & Marr, D. (2016). Accelerating recurrent neu-
ral networks in analytics servers: Comparison of FPGA,
CPU, GPU, and ASIC. In Proceedings of the 26th Inter-
national Conference on Field Programmable Logic and
Applications (FPL) (pp. 1–4). https://doi.org/10.1109/
FPL.2016.7577353

21. Cho, K., Van Merrienboer, B., Bahdanau, D., & Bengio,
Y. (2014). On the properties of neural machine trans-
lation: Encoderdecoder approaches. arXiv preprint
arXiv:1409.1259. Retrieved from https://arxiv.org/
abs/1409.1259

22. Tao, J., Thakker, U., Dasika, G., & Beu, J. (2019). Skip-
ping RNN state updates without retraining the original
model. In Proceedings of the 1st Workshop on Machine
Learning on Edge in Sensor Systems (pp. 31–36).

23. Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz,
J. (2016). Pruning convolutional neural networks
for resourceefficient inference. arXiv preprint arX-
iv:1611.06440. Retrieved from https://arxiv.org/
abs/1611.06440

24. Wu, J., Leng, C., Wang, Y., Hu, Q., & Cheng, J. (2016).
Quantized convolutional neural networks for mobile de-
vices. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (pp. 4820–4828).
https://doi.org/10.1109/CVPR.2016.522

25. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. In Proceedings of the International Con-
ference on Machine Learning (ICML) (pp. 448–456).

26. Malladhi, N., et al. (2023). Novel architecture of FFT im-
plementation for 5G module using machine learning al-
gorithms. International Journal of System Assurance En-
gineering and Management, 14(6), 2387–2394. https://
doi.org/10.1007/s13198023019045

27. Wan, D., et al. (2018). TBN: Convolutional neural net-
work with ternary inputs and binary weights. In Proceed-
ings of the European Conference on Computer Vision
(ECCV) (pp. 315–332). https://doi.org/10.1007/9783
030-01234-2_20

28. Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A.
(2016). XNORNet: ImageNet classification using binary

K. S. Hyun et al. : AI Hardware Accelerators: Architectures and Implementation Strategies

18 Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312

convolutional neural networks. In Proceedings of the
European Conference on Computer Vision (ECCV) (pp.
525–542). Springer. https://doi.org/10.1007/9783319
46493-0_32

29. Jin, J., Liang, C., Wu, T., Zou, L., & Gan, Z. (2021). KDLSQ-
BERT: A quantized BERT combining knowledge distilla-
tion with learned step size quantization. arXiv preprint arX-
iv:2101.05938. Retrieved from https://arxiv.org/abs/2101.05938

30. Tambe, T., Zhang, J., Hooper, C., Jia, T., Whatmough, P. N.,
Zuckerman, J., Santos, M. C. D., Loscalzo, E. J., Giri, D.,
Shepard, K., Carloni, L., Rush, A., Brooks, D., & Wei, G.-Y.
(2023). A 12nm 18.1TFLOPs/W sparse transformer processor
with entropy-based early exit, mixed-precision predication, and
fine-grained power management. In Proceedings of the 2023
IEEE International Solid-State Circuits Conference (ISSCC)
(pp. 342–344). https://doi.org/10.1109/ISSCC42613.2023.
10052649

31. Tang, W., Cho, S.-G., Hoang, T. T., Botimer, J., Zhu, W. Q.,
Chang, C.-C., Lu, C.-H., Zhu, J., Tao, Y., Wei, T., Motwani, N.
K., Yalamanchi, M., Yarlagadda, R., Kale, S. R., Flanigan, M.,
Chan, A., Tran, T., Shumarayev, S., & Zhang, Z. (2024). Arvon:
A heterogeneous system-in-package integrating FPGA and DSP
chiplets for versatile workload acceleration. IEEE Journal of
Solid-State Circuits, 59(4), 1235–1245. https://doi.org/10.1109/
JSSC.2024.3301234

32. Song, M., Zhang, J., Chen, H., & Li, T. (2018). Towards ef-
ficient microarchitectural design for accelerating unsupervised
GAN-based deep learning. In Proceedings of the 2018 IEEE
International Symposium on High-Performance Computer Ar-
chitecture (HPCA) (pp. 66–77). Vienna, Austria. https://doi.
org/10.1109/HPCA.2018.00017

33. Yazdanbakhsh, A., Samadi, K., Kim, N. S., & Esmaeilzadeh, H.
(2018). GANAX: A unified MIMD-SIMD acceleration for gen-
erative adversarial networks. In Proceedings of the 45th Annu-
al International Symposium on Computer Architecture (ISCA)
(pp. 650–661). Los Angeles, CA, USA. https://doi.org/10.1109/
ISCA.2018.00059

34. Han, S., Kang, J., Mao, H., Hu, Y., Li, X., Li, Y., et al. (2017).
ESE: Efficient speech recognition engine with sparse LSTM on
FPGA. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (pp. 75–84).
Monterey, CA, USA. https://doi.org/10.1145/3020078.3021745

35. Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT:
Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computation-
al Linguistics: Human Language Technologies (NAACL-HLT
2019) (Vol. 1, pp. 4171–4186). Minneapolis, MN, USA. https://
doi.org/10.18653/v1/N19-1423

36. Naveen, G., et al. (2022). Design of high-performance full ad-
der using 20nm CNTFET technology. In Proceedings of the
2021 4th International Conference on Recent Trends in Com-
puter Science and Technology (ICRTCST). IEEE. https://doi.
org/10.1109/ICRTCST52520.2021.9711546

37. Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J.,
& Catanzaro, B. (2019). Megatron-LM: Training multi-billion
parameter language models using model parallelism. arXiv
preprint arXiv:1909.08053. Retrieved from https://arxiv.org/
abs/1909.08053

38. Rodriguez, A., Segal, E., Meiri, E., Fomenko, E., Kim, Y., Shen,
H., & Ziv, B. (2018). Lower numerical precision deep learning
inference and training. Intel White Paper, 3(1), 1–19.

39. Fang, J., Liu, S., & Zhang, X. (2017). Research on cache par-
titioning and adaptive replacement policy for CPU-GPU het-
erogeneous processors. In Proceedings of the 16th Internation-
al Symposium on Distributed Computing and Applications to
Business, Engineering, and Science (DCABES) (pp. 19–22).
https://doi.org/10.1109/DCABES.2017.28

40. Lee, J., & Kim, H. (2012). TAP: A TLP-aware cache manage-
ment policy for a CPU-GPU heterogeneous architecture. In Pro-
ceedings of the IEEE International Symposium on High-Perfor-
mance Computer Architecture (HPCA) (pp. 1–12). https://doi.
org/10.1109/HPCA.2012.6168953

41. Bhuiyan, M. A., Pallipuram, V. K., & Smith, M. C. (2010). Ac-
celeration of spiking neural networks in emerging multi-core
and GPU architectures. In Proceedings of the IEEE Internation-
al Symposium on Parallel and Distributed Processing, Work-
shops and PhD Forum (IPDPSW). https://doi.org/10.1109/IPD-
PSW.2010.5470915

42. Zhang, X., Gu, N., & Ye, H. (2016). Multi-GPU based recurrent
neural networks language model training. In Communications
in Computer and Information Science (pp. 484–493). https://
doi.org/10.1007/978-3-319-45378-1_44

43. Uvarajan, K. P. (2024). Integration of artificial intelligence in
electronics: Enhancing smart devices and systems. Progress
in Electronics and Communication Engineering, 1(1), 7–12.
https://doi.org/10.31838/PECE/01.01.02

44. Uvarajan, K. P. (2024). Advanced modulation schemes for en-
hancing data throughput in 5G RF communication networks.
SCCTS Journal of Embedded Systems Design and Applications,
1(1), 7-12. https://doi.org/10.31838/ESA/01.01.02

45. Velliangiri, A. (2024). Security challenges and solutions in IoT-
based wireless sensor networks. Journal of Wireless Sensor
Networks and IoT, 1(1), 8-14. https://doi.org/10.31838/WSNI-
OT/01.01.02

46. Borhan, M. N. (2025). Exploring smart technologies towards
applications across industries. Innovative Reviews in Engi-
neering and Science, 2(2), 9-16. https://doi.org/10.31838/
INES/02.02.02

47. Sadulla, S. (2024). Techniques and applications for adaptive re-
source management in reconfigurable computing. SCCTS Trans-
actions on Reconfigurable Computing, 1(1), 6-10. https://doi.
org/10.31838/RCC/01.01.02

48. Geetha, K. (2024). Advanced fault tolerance mechanisms in
embedded systems for automotive safety. Journal of Integrat-
ed VLSI, Embedded and Computing Technologies, 1(1), 6-10.
https://doi.org/10.31838/JIVCT/01.01.02

49. Sathish Kumar, T. M. (2023). Wearable sensors for flexible
health monitoring and IoT. National Journal of RF Engineer-

K. S. Hyun et al. : AI Hardware Accelerators: Architectures and Implementation Strategies

Journal of Integrated VLSI, Embedded and ComputingTechnologies | Jan - April | ISSN: 3049-1312 19

ing and Wireless Communication, 1(1), 10-22. https://doi.
org/10.31838/RFMW/01.01.02

50. Antoniewicz, B., & Dreyfus, S. (2024). Techniques on controlling
bandwidth and energy consumption for 5G and 6G wireless
communication systems. International Journal of Communi-

cation and Computer Technologies, 12(2), 11-20. https://doi.
org/10.31838/IJCCTS/12.02.02

51. Tang, U., Krezger, H., & LonnerbyRakob. (2024). Design and
validation of 6G antenna for mobile communication. National
Journal of Antennas and Propagation, 6(1), 6–12.

