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AbstrAct 
Artificial Intelligence also has achieved very rapid advancement, with com-
putational power demands of the kind never before seen. However, contin-
ued demand on the specialized hardware has kept right on pace with how 
complex AI models have gotten. In this article, we dive into AI hardware ac-
celerators architecture, the implementation strategy, and the amazing shift 
the world of AI got into. That burgeoning field has forced traditional com-
puting architectures to their limit. General purpose processors are generally 
powerful in many ways other than dealing with the extremely difficult com-
putational demands that AI algorithms require. As a result of this challenge, 
there is such a new class of hardware: AI accelerators. To enable breakdowns 
on areas such as computer vision or natural language processing, these are 
purpose built devices designed to reduce the time and energy required for 
computing with the AI significantly. To set AI hardware accelerator explora-
tion in the space, we’ll evaluate the principles that govern their design, the 
type of accelerators that currently exist, and how to harness them to their 
largest deployment. Additionally we will also be envisioning future AI hard-
ware, as well as some emerging trends we believe will define it. If you are a 
seasoned AI practitioner or just interested to know about the technology of 
the AI revolution, this detailed guide provides you some insights to the world 
of AI acceleration.
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the need for AI hArdwAre AccelerAtIon
In spite of the tremendous increase in applications, AI 
applications, across industries, the old ways of doing 
computer have failed when it comes to handling AI 
workloads. While general compute tasks are in the 
realm of general compute, AI algorithms are extremely 
general and thus different, and traditional central 
processor units (CPUs) often fall short when asked to 
handle this domain. This section explores the relevance 
and problems that create the requirement and stimuli 
for specialized AI hardware accelerators .[1-3]

AI Workloads Computational Intensity
AI models have very high computational requirements, 
and deep learning architectures of AI models 
particularly so. Because these models have millions 

or even billions of parameters, it takes hundreds or 
thousands of mathematical operations to train and 
to do inference. Specifically, my applications have 
many matrix multiplications and convolutions, which 
is the meat and bones of AIs. At large scale, general 
purpose processors are not capable of performing 
these computations, and their performance is sluggish 
and their energy consumption is high.

On top of that, AI workloads are usually inherently 
parallel, and traditional CPUs are not particularly well 
suited for taking advantage of that parallelism. It is 
because AI algorithms lack efficiency in between were 
unconsumed by computing processes are naturally 
parallel, and the CPU architecture leaves a lack of 
number of process for utilization of the computing 
resources that consequently makes suboptimal 
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utilization of computing power and very small total 
performance.[4-6]

Memory Bandwidth Bottleneck
In the same vein, there is a problem of memory 
bandwidth bottleneck in the AI processing. The demand 
to have heavy access to huge quantities of data puts 
heavy stress on the memory system of AI models. 
However, speed of data transfer between memory and 
processing units has often been a speed barrier that 
plagues performance of AI. In particular, this problem 
is of grave importance when the size of the AI model is 
significantly larger than the on chip memory, as data 
transfer between slower off chip memory is necessary 
quite frequently.

With faster computational capability growing 
faster than the memory bandwidth, the problem of 
memory bandwidth is magnified. Although we have 
seen increases in processing power that have grown 
rapidly, so too is the memory bandwidth increase 
has trailed behind the growing gap in the improving 
efficiency of computing in AI as the relative increase in 
memory bandwidth has fallen far behind.[7-11]

Energy Efficiency Concerns
Now that energy efficiency is an issue with AI 
applications everywhere, the desire is to understand 
MD within the limitations of the energy available on 
a board. The workloads of AI are power hungry since 
they run not for the most optimal solution, but for 
the one that is good enough, resulting in non specific 
hardware. Both it is a huge source of operational cost 
as well as the resource constrain to execute AI in 
energetically constrained environments like edge or 
mobile devices (Figure 1).

Fig. 1: Real Time Processing Requirements

Since hardware accelerators catering for high 
performance and low power consumption are being 

developed, they are designed specifically for the ever 
demanding requirements of AI processing which needs 
to provide higher throughput with reduced energy. 
However, energy effcientiy is crucial to the adoption 
of AI in a whole range of applications and deployment 
modes for wide spread deployment.[12-14]

Real Time Processing Requirements
In many of (now) listed AI applications: autonomous 
driving, robotics, and realtime analytics — low latency 
processing is a must. Ultimately, these AI models need 
to make really quick decisions (under a millisecond or 
two) on the data that comes in (usually). However, the 
harder the AI model, the more challenging it becomes 
to work with such stringent latency requirements by 
using general purpose hardware.

Specifically built hardware accelerators for AI 
workloads offer dramatic reduction in processing 
times and thus, near real time or real time 
performance as required for such line of application. 
This capability is critical to establishing time critical 
domain as the playing field where AI can really power  
up.[15-17]

Scalability and Flexibility
As they get more complicated, AI models need more 
important scalable and flexible computing solutions 
in order to improve. First of all, the hardware 
accelerators have to be capable of quickly serving a 
range of existing and emerging architectural styles of 
the AI models, from the edge token execution times to 
massive language models high throughput in the top of 
racks of servers (Table 1).

It also ensures that hardware can respond to a 
new model architecture and computational pattern 
at the pace of AI innovation in algorithmic space. 
Flexible accelerator platforms are a hard problem 
in accelerator design and arise from the need for 
AI accelerator platforms to be more versatile and 
programmable.[18-19]

Types of AI Hardware Accelerators
However, unlike the mostly homogeneous world of 
cloud computing, AI hardware accelerators span a wide 
range of architectures that have different priorities for 
different parts of the AI computation. First of all, we 
will expose some of the major features of major types 
AI accelerators to provide an overview of what are the 
strongest points and what are the main applications of 
the given components.
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GrAphIcs processInG UnIts (GpUs) Is 
GpUs for these pUrpose.
Given how GPUs were once created to handle the 
complex graphics rendering, it is not surprising that 
GPUs have quickly become engines to speed up AI. 
They are optimised at paralleling the processing of 
large data sets, which, more or less, corresponds to 
how many of the AI algorithms are computationally 
patterned.[20]

Architecture and Strengths
The thousands of tiny, highly efficient cores in a GPU 
can work in parallel. Particularly well suited to the 
matrix operations that dominate most AI workloads, 
it is. Specifically, modern GPUs include support for 
specialized tensor cores, which are cores that exist 
solely for handling the kind of math, in this case deep 
learning math, but generally. In GPUs, due to the high 
bandwidth memory and large caches, a reasonable 
memory usage efficiency in AI processing is allowed 
by the GPUs memory architecture. The combination 
of power of parallel processing with power of memory 
access available in GPUs makes this a very powerful 
way to perform deep learning, both in training and 
inference work. Tensor Processing Unit is a customized 
ASIC (Application Specific Integrated Circuit) on 
market that targets performing tensor operation in 
machine learning workload.[21-22]

Architecture and Strengths
Because of their use of the systolic array architecture, 
TPs apply very well to matrix multiplication and 

convolution. This design supports high throughput and 
low latency in the computations performed in an AI. In 
TPU, the on chip memory reduces huge off chip memory 
accesses and bandwidth bottlenecks. This means that 
TPU provides extremely special way of being, that are 
optimized to work on very common AI operations yet 
with orders of magnitude better performance as well 
as orders of magnitude better energy efficiency than 
typical more general purpose processors.[23]

Use Cases and Limitations
TPUs (on large scale machine learning tasks, especially 
when scale involves a neural network inference) 
are especially good for. They use them everywhere 
on their data centers to run various AI services. 
Main limitation of TPUs is spesificiy of them. On the 
upside, they aren’t as versatile as GPUs generally 
and the bonus is incredibly efficient for some types of 
AI workload. Another uniqueness of the FPGA lies in 
their full capabilities to acceleration from the field of 
the AI. These are also devices which have an array of 
programmable logic block, which can be reconfigured 
to implement custom digital circuit. Like in the case 
of FPGAs, they also inherit the reconfigurable nature 
that allows to design custom accelerator that will be 
specifically dedicated to the AI algorithms and models 
targeted. This type of flexibility allows for optimizing 
AI tasks at collection points, and in principle is very 
beneficial to performance and energy efficiency. 
The right AI operations with FPGAs can achieve 
low latency and high throughput at the expense of 
performance and in a good fit for real time processing 

Table 1: Scalability and Flexibility

Component Role in AI Hardware Application in AI

Custom AI Processors Dedicated processors designed specifi-
cally for AI workloads, enhancing com-
putation speed.

Optimizes computation for deep 
learning, reinforcement learning, and 
other AI applications.

Parallel Processing Units Units that execute multiple operations 
simultaneously, speeding up AI model 
training and inference.

Enables faster data processing for real-
time AI inference in applications like 
autonomous vehicles.

Memory Hierarchy and Bandwidth Efficient memory systems and high 
bandwidth ensure that data is available 
quickly for processing.

Minimizes memory bottlenecks, im-
proving AI system performance and 
scalability.

Interconnects and Communication Net-
works

Ensuring efficient communication be-
tween processing units and peripheral 
devices in AI systems.

Reduces latency and increases through-
put, supporting faster AI training cy-
cles.

Energy Efficiency Techniques Techniques like dynamic voltage scaling 
and lowpower components to reduce 
energy consumption in AI tasks.

Improves the operational efficiency of 
AI systems, reducing power consump-
tion while maintaining performance.
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applications. In addition, they can be keyed to new 
AI algorithms and model architectures without new  
hardware.[24]

Use Cases and Limitations
For edge computing scenarios, often FPGAs tend to 
be high in use on either execution time or energy 
efficiency. The technology is also useful in rapidly 
changing fields of AI, in which the capability to change 
hardware on the fly is an advantage. While programming 
FPGAs is certainly complex, if FPGAs are to be used, 
programming skills in hardware description languages 
need to be in place somehow. In addition, FPGAs are 
also flexible, however they do not necessarily achieve 
this raw performance for a given well defined task as 
well as ASICs do.[25]

Application specific Integrated Circuits 
(ASICs)
The pinnacle of specialization in AI hardware 
accelerators pertains to hardware acceleration of 
AI at the ASIC level. These are chips designed for 
specific AI tasks or for specific models. As such, the 
architecture of such an ASIC is entirely customized to 
AI application. This extreme specialization makes it 
possible for best performance and energy efficiency. 
ASICs provide the unique features and optimizations 
for which it is not possible to be included in general 
purpose accelerators. ASICs take the elements of a 
chip not needed for the work they are designed to do 
and eliminate them or optimize every single aspect 

of chip design for the specialized work it will be 
performing (Figure 2).[26]

With more complex and more energy consuming 
CPUs, ASICs are more and more interesting for 
precisely defined, stable, on demand AI workloads 
requiring highest performance and efficiency. They are 
popular as they are used in high volume products such 
as those in data centers while having an outstanding 
energy efficiency such as in mobile devices. ASICs 
drawback is they are not flexible. After doing an ASIC, 
it is impossible to reconfigure the ASIC for another 
task. First, this inflexibility plus high development 
costs leads ASICs to not be suited to fast evolving AI 
applications and low volume of deployment.[27]

Neuromorphic Processors
A paradigm shift in AI hardware is neuromorphic 
processors based on a neural network like structure 
and function. They are spiking neural networks (SNN) 
processors, which process information in the manner 
of the human brain. This type of computation can be 
significantly energy efficient because the only neurons 
that ‘fire’ and computation ‘happens’ in the case that 
it does. One specific consideration for neuromorphic 
architectures which are an important problem is 
the von Neumann’s bottleneck, and in particular, if 
novel memory technologies that store and process 
information on the same physical location are added 
— memristors for example.[28]

Such realtime processing of sensory data is a real 
need for applications like robotics or autonomous 

  
Fig. 2: Application specific Integrated Circuits (ASICs)
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vehicles and neuromorphic processors are a good 
means to address that need. For use in the scenarios 
of edge computing, they are also evaluated for 
their energy efficiency. Nevertheless, the field of 
neuromorphic computing is in its infancy. However, 
programming models and tools for these processors are 
less developed than those for traditional computing 
paradigms and that may thus impede their usage. As 
AI workloads come in a wide variety of shapes and 
form, so does landscape of hardware accelerators for 
AI workload. The hardware must consider the type of 
acceleration required and therefore requires different 
types of accelerators, depending on the application of 
AI such as performance demands, energy limitations, 
flexibility demands, etc. Great work at AI will lead 
to advancement of the design of accelerator and 
combine elements from different approaches to make 
more powerful and effective AI computing platform.[29]

AI ArchItectUrAl prIncIples of 
AccelerAtors
Architectural principles leading to AI hardware 
accelerator designs focus on its performances, 
energy efficiency and flexibility of AI workloads. We 
explore these key principles, and how they define the 
architecture of modern AI accelerators in this section.

Parallelism and Vectorization
The design of AI accelerator is at the core of massive 
parallelism. Just as with other algorithms of AI, deep 
learning algorithms have a lot of inherent parallelism: 

the independent thirds can all be processed in parallel. 
In principle, they usually have many processing 
elements or cores running in parallel, thus defining an AI 
accelerator. This architecture achieves the capability of 
sequential execution of multiple computations resulting 
into improved throughput over sequential processing. 
Here for example, the GPU has a CUDA core which is 
thousands of parallel floating point operations in a 
core and the number of the cores in a GPU is so large. 
Similarly, systolic arrays — a grid of processing elements 
capable of high parallelized matrix multiplication — are 
used within TPUs  (Table 2).[30]

Many of the AI accelerators use Single Instruction, 
Multiple Data (SIMD) or Single Instruction, Multiple 
Thread (SIMT). When the data that needs to be 
processed is such that a single instruction can 
be applied to many of them (i.e vector or matrix 
operations which are commonplace in AI workloads), 
these approaches are well suited. NVIDIA’s GPU 
architecture is an example of a simt value like they 
can parallelize AI computations by running multiple 
threads on the same instruction at different data 
elements.[31]

Memory Hierachy and Bandwidth 
Optimization
As the memory intense nature of AI workloads demands 
that AI accelerators are very efficient at memory 
access, we derive the cost model for onchip and off
chip IO data movement using Simplex caching strategy. 
In the design of accelerators, many strategies are used 

Table 2: AI hardware accelerators and their impacts

Strategy Focus Area Impact on AI Systems

Optimized HardwareSoft-
ware CoDesign

Integrating AI algorithms with hard-
ware design to maximize efficiency 
and performance.

Improves overall system efficiency by closely cou-
pling software and hardware.

FPGABased AI Accelerators Utilizing FPGAs to create program-
mable hardware solutions that can 
be reconfigured for various AI tasks.

Provides flexibility to adapt to different AI tasks, 
improving the system‚Äôs versatility and reconfig-
urability.

ASIC Development for AI Tasks Designing ApplicationSpecific Inte-
grated Circuits (ASICs) tailored for 
specific AI workloads to maximize 
performance.

Delivers high performance for specific AI applica-
tions with low power consumption and reduced la-
tency.

Custom AISpecific Machine 
Learning Algorithms

Developing algorithms that are opti-
mized for AI accelerators to improve 
data processing speeds.

Enables faster training and inference cycles, im-
proving AI model development and deployment.

Integration with CloudBased 
AI Systems

Connecting AI hardware accelerators 
with cloud systems to enhance com-
putational power and scalability.

Scales AI systems dynamically, ensuring high per-
formance across various computational loads.
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to reduce memory bandwidth requirements and reduce 
the effect of the memory access latency. As often used 
data lies close to the processing units, large on chip 
memory or caches typically appear on AI accelerators. 
This allows to save time collecting, and off chip memory 
accesses can be much slower and highly energy hungry. 
For example, Google TPUs prominently include an ‘on 
chip’ memory which we call the ‘Unified Buffer’ for 
storing intermediate results and parameters, and so 
ship them less frequently from the off chip memory. 
Data transfer rate in many accelerators is increased 
via the use of high bandwidth memory. People use HBM 
or GDDR memory technologies commonly in GPUs (and 
other AI accelerators) for the bandwidth they provide 
to support the AI workload.

Memory Compression, Sparsity 
Exploitation
Memory compression techniques are also used by 
some accelerators to optimize memory usage even 
further, or to use the sparsity in AI models. In practice, 
the usage of these techniques for data compression 
and skipping computation on zeros can increase the 
memory bandwidth and reduce the energy consumed. 
What is more important is functional units designed for 
AI operations that are more popular in AI accelerators. 
The operation currently does complex operation in an 
efficient way versus the general purpose arithmetic 
units.

NVIDIA’s GPUs have tensor cores for accelerating 
multiply accumulate operations (typical to many 
deep learning algorithms). These cores allow mixed 
precision matrix operations to be much faster than 
could be run with handling of the mix by traditional 
floating point units. Matrix multiplications are the core 
of Google’s TPUs capacity, and so they are particularly 
well suited to systolic arrays. It computes some 
fraction of the problem and electronics the results to 
its neighbors; they compute a portion (passing results 
down); and ultimately the results trickle down the end 
of the systolic array. Some of the accelerators have 
hardware units to compute the common activation 
functions present in neural networks such as a ReLU, 
a sigmoid and a tanh. Usually, these units are useful 
as they can perform these operations faster than the 
general purpose arithmetic unit.

Current focus of design for AI accelerators is 
dataflow architectures. These architectures try to 
optimize the flow of data through the processing 
elements by giving large scale storage, high data 

movement, and poor computational efficiency. Spatial 
dataflow architectures are appropriate for many AI 
algorithms, which regularly have regular computational 
patterns. This is an expensive bottleneck of AI 
processing and using this means will save the energy 
and time spent on data movement. temporal dataflow 
architectures are based on reusing the data over time, 
and localizing the data in local memories and moving 
algorithms over (or just with) data. This approach 
can (especially) well serve to reduce off chip memory 
accesses as well as energy efficiency.

Programmability and Flexibility
The operation of an AI accelerator requires some 
sort of specialization, but there is some degree of 
flexibility needed in order to support a variety of AI 
model types and accommodate changing algorithms. 
Configurable datapaths in other accelerators allow 
them to configure to run different kinds of operations 
or precision levels. This gives the accelerator, to switch 
to different AI models or computational need. The aim 
of software defined hardware is to strike a balance 
between the systems with high intensity towards 
tailoring hardware and those with high flexibility to 
programming. By configuring positions of the above 
hardware behavior using software, these designs can 
be adapted to different AI workloads.

Energy efficiency optimizations
Since AI workloads are so vast, energy efficiency is 
one of those important considerations in accelerator 
design. Moreover, many accelerators change their 
power consumption, dynamically based on dynamic 
voltage and frequency scaling (DVFS) where their 
frequency changes as a function of workload demands. 
This technique can be used by the accelerator to save 
power when computation intensity is low. To the extent 
that this is possible, reducing power consumption 
is to power gate part (or all) of the accelerator 
with techniques that turn off segments that are not 
required.[32-33]

MIxed-precIsIon coMpUtAtIon
Operating at mixed precision — accelerators can 
use different levels of precision (e.g. 16bit or 8bit 
on operations that need high precision but are not 
crucially important in producing a result — differs 
namely from the programmable accelerators which 
allows all operations being predetermined and 
deterministic.
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On the higher level, we contrast the architectures 
of GPGPUs and AI accelerators and demonstrate that 
the architectural decisions which power AI accelerators 
are a careful balance between specialization to run AI 
workloads vs. open mindedness that retains flexibility 
to run arbitrary applications. Resorting to massively 
parallelism, improving memory access, and exploiting 
specialized functional units enables such accelerators 
to offer AI programs performance and efficiency to the 
level needed for running. As the field of AI expands, 
these architectural principles will be refined, new 
ways of thought will be developed, and the march of 
AI computation will be reversed further.

Hardware-Software Co-design
Hardware – Software Co Design : is one of the most 
crucial strategies of how to implement AI accelerators. 
That’s about doing hardware and software together 
to operate correctly with the loads of AI. Specialized 
compilers rely on translating high level AI models to 
efficient code for given accelerator architectures. 
They utilize different techniques of optimization to 
exhaust what it has to offer in terms of its accelerator 
resources to use. NVIDIA’s CUDA compiler for GPUs not 
only provides optimizations built for deep learning 
workloads such as kernel fusion and memory access 
pattern optimization, but it also offers an embedding 
strategy that flexibly adapts types to code target (GPU, 

CPU, etc). Just as with the Google XLA (Accelerated 
Linear Algebra) compiler, TensorFlow also optimizes on 
computations onto all types of hardware platform from 
TPUs to GPUs. One major part in hardware software co 
design is developing language specific for AI (domain 
specific languages). These languages help programming 
the AL algorithm in a way that is easily translatable 
to the underlying hardware. Nvidia has CUDA, Google 
has JAX which define a high level way to write 
accelerator friendly ai code. Balancing the energy and 
performance of AI Accelerators requires an approach 
like Quantization. This involves reductions of precision 
that significantly reduce memory requirement and 
computational complexity (Figure 3).[34]

Mixed Precision Train and Inference
Support of the many accelerators for mixed precision 
operations will include operations using different levels 
of precision in different portions of the model. Mixed 
precision matrix multiplyaccumulate operations that 
NASA supports are important as they allow training 
and inference time to be drastically reduced with 
only a small loss of model accuracy, thanks to NVIDIA;s 
Tensor Cores. The process is quantized for a licensed 
model, converting it from high to a lower precision 
with out retraining as it is trained. this technique 
can achieve dramatic size and run time reduction on 
model size and inference latency with essentially no 

Fig. 3: Mixed Precision Train and Inference
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loss in accuracy compared to our baseline. For more 
aggressive quantization, quantization aware training 
takes care of quantization effects during its training 
process. With this I am able to generate models that 
still begin to have high accuracy, even for precisions 
like 8 bit or even 4 bit.

But this alleviates the issue of deployment of the 
AI models to hardware accelerators, by methods like 
model compression that shrink size and computational 
intensity of the models. Pruning finds the feat of 
taking away unnecessary connections or neurons in 
a neural network. Thus, this can significantly shrink 
model size and reduce computational requirements 
without hurting accuracy much. With sparsity, there 
is an extra complication with accelerator support for 
sparse tensor operations like Ampere from Nvidia, 
which can be used as long as the model has been  
pruned.

Knowledge distillation is a task of training a small, 
small model which mimics that of a much large, large 
model. As a result, these techniques produce compact 
models that can be deployed on resource constrained 
accelerator. One has to pay attention to different 
strategies for distributed computing across different 
accelerators or devices when the scale of the problem 
is large enough, namely in cases with large scale AI 
applications.[35-36]

MUltI tpUs And MUltI GpU trAInInG
The distributed FAI workloads can be supported by 
frameworks like TensorFlow and PyTorch that provide 
support for multiple GPUs or TPUs. Thus allowing us to 
train very large (but maybe not large enough) models 
on a single device or dramatically cut down training 
times on smaller models. In federated learning devices 
/ servers are trained with local sample data (also called 
clients) while the model is trained jointly with respect 
just to those local data. Specifically, we find that the 
edge AI application and scenarios with data privacy 
concern are most appropriate for this approach. It will 
need to be in order to enable power management and 
thermal optimization for AI accelerators.[37]

Dynamic Voltage and Frequency Scaling 
(DVFS)
In DVFS techniques, accelerators have the ability to 
adapt their clock speeds and voltage levels as required 
to meet workload requirements without having too 
much negative effect on performance. Workloads 
can be scheduled using thermal aware scheduling 

algorithms that will distribute the workloads to have 
thermal load balance amongst devices and keep overall 
performance consistent across devices. In cloud and 
data center environment, AI accelerator acceleration 
can be shared with other users or workloads due to 
virtualization technologies.

In the multitenant world, NVIDIA’s vGPU offers 
the opportunity for additional virtual machines to 
sit on the top of the same physical GPU, making 
the numbers add up. Such accelerator management 
plugins for containers orchestration platforms (such 
as Kubernetes) can effectively deploy and scale AI 
workloads in a cluster of accelerators. There are 
special challenges to deployment of AI accelerators 
at the edge. At the edge, there are also limited 
computational resources and power available and 
model quantization, pruning and architecture search 
are very important for that use case.[38-42]

hArdwAre AwAre neUrAl ArchItectUre 
seArch (nAs)
NA techniques can be used to specifically take 
specific characteristics of edge AI accelerators into 
consideration, and automatically design neural 
network architectures efficient to deploy on such 
devices. While benchmarking and continuesearching 
for the best performance is very important for AI 
accelerators, especially for it’s optimum effciency.

Standardized Benchmarks
Then, you end up with standardized benchmarks like 
MLPerf, so that that you can compare the performance 
of a certain type of accelerators for a specific task. 
These benchmarks are needed to choose the best 
hardware for these specialty AI workloads. Developers 
can use vendor provided tools like NVIDIA’s Nsight 
Compute or Intel VTune Profiler to do the analysis on 
their AI workload performance on any accelerator and 
pick up optimization opportunities.

There is a complex interaction between hardware 
design, software optimisation and system level 
strategies for AI accelerators. With such approaches 
organizations can optimize their performance, 
efficiency and flexibility of their AI infrastructure. As 
the field of AI continues to progress, we will continue 
to approach these implementation strategies with 
these types of implementation strategies, which will 
allow these implementation strategies for more and 
more powerful and as efficient AI applications in yet 
another domain.
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Performance Evaluation and 
Benchmarking.
Consequently, one would also need to be able to 
evaluate performance of AI accelerators in order to 
pick a hardware and optimize, and therefore compare, 
alternatives, to fully understand the capabilities 
of any given AI accelerator solution. In this section, 
we describe evaluation of AI accelerators based 
on the methods, metrics and challenges. Typically, 
performance of AI accelerators is evaluated from a set 
of important metrics. To really be able to compare 
and analyze the performance, we need to know these 
metrics. It is the amount of operations or inferences 
an accelerator can perform within a time interval. 
However, it’s normally phrased in OPS (operations 
per second) or IPS (inferences per second). Image per 
second or token per second, metric commonly used for 
training workload. For example, metrics for inference 
in video processing case might be frames per second 
or queries per second. In the context of this work, we 
make the definition of latency: the amount of time 
taken to run a single operation or inference. Hence, 
in such applications this metric will be very important 
because real time applications cannot afford slow 
response times.

In particular, the latency is expressed in terms of 
milliseconds (ms) and microseconds (μs) as a function 
of the model complexity and input data size. They 
measure how much можна computation utilise for 
per unit of consumed energy. These are the typical 
metrics of operations per watt (OPS/W) or inferences 
per watt (IPS/W). For example, these metrics are 
especially important for edge AI applications and 
large deployment with high power consumption. The 
measurement of utilization of accelerator’s resources 
helps to see how well an accelerator is being utilized. 
In this context that can be metrics like compute 
utilization (percent of active compute units) and 
memory bandwidth utilization etc. Utilization is high 
if it usually means that capabilities of the accelerator 
have been utilized efficiently, and low utilization 
could be an indication of scaling problems or problems 
in implementation acceleration.

conclUsIon
By doing so following some low level design decisions 
taken by Intel’s latest server product, we suggest it 
would have been possible to remove the need for 
updates to the hyperscalers’ specifications. A work 
load based benchmarks is also another thing we 

need to benchmark on, however, a good comparison 
statement is that the standard benchmarks. One 
of the benefits of KairosDB is that you can run your 
custom metrics; while many companies build custom 
benchmarks, which mimic the company’s workloads 
for AI, to troubleshoot. This is the best way to know, 
how exactly an accelerator would be used in a given 
use case. It is needed to use the actual world data 
from the datasets. The funny thing about it is maybe 
you don’t have exactly these kind of easy patterns, 
these kind of easy edge cases that maybe synthetic 
data provides. In most of the cases however, you would 
just want to benchmark the whole AI pipeline from 
data preprocessing, inference to post processing. End 
to end evaluation gives you a holistically view of how 
system performs. And benchmark AI accelerators holds 
a great potential but with challenges unique enough 
to require careful thinking to benchmark accurately 
and fairly.
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