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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Abstract
Since the use of artificial intelligence (AI) is becoming more common across high-
stakes areas, including healthcare diagnostics, financial decision-making, autonomous 
vehicles, and legal analytics, the need to increase transparency, interpretability, and 
accountability in AI decision-making has become critical. Due to the opaqueness of 
numerous effective machine learning algorithms commonly termed as black boxes, issues 
related to fairness, trust, bias, and regulatory conformity have increased. Explainable 
Artificial Intelligence (XAI) has become a major research area aiming at an attempt 
to interpret the predictions and routes of AI models and do not degrade interpretable 
performance. The first section of this paper provides a systematic and end-to-end 
review of the state of the art of XAI, subdividing the existing methods into post-hoc 
explanation models (e.g. LIME or SHAP), models whose interpretation is intrinsic (e.g. 
decision trees or rule-based systems), and those with explainability incorporated into 
the architecture of deep networks (hybrid methods). All of the essential issues relating 
to XAI are discussed in-depth and these include the model fidelity and interpretability 
trade-off, the subjectivity of explanations based on human interaction, the absence of 
evaluative metrics, and computational complexity involved in providing explanations. 
Moreover, this paper visits new directions, like causal explanations, counterfactual 
reasoning, a combination with federated learning, and consistency of XAI techniques 
with ethical AI theories and governance frameworks, such as GDPR and HIPAA. It relies 
on a systematic review methodology to review pertinent literature in large databases 
between 2017 and 2025, taking note of some comparative strengths, application areas, 
and usability issues regarding XAI techniques. The conclusion of the study determines the 
main gaps in research and the following directions such as creating benchmark datasets, 
explainability in reinforcement learning, domain-specific evaluation frameworks could 
be developed. The given paper may be used as an initial source of information by 
researchers, developers, and policymakers trying to develop AI systems that possess not 
only accuracy but also interpretablity, alignment with human values and fairness.
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Introduction
Artificial Intelligence (AI) has transformed many 
industries because it has allowed systems to undertake 
their most difficult tasks with extreme precision and 
efficiency. The AI models have shown superhuman 
potentials in diseases diagnosis / autonomous cars / 
financial forecasting / and judicial decision support 
among others, especially those models which follow the 
deep learning and ensemble techniques. Nevertheless, 
there is a serious danger of increasing dependence on 
these systems, which entails the need of transparency 
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and interpretability in the decision-making process. The 
vast majority of successful AI algorithms are implemented 
as so-called black boxes with their inner rationality 
being unknown or unintelligible by their human users, 
including programmers. It poses great dangers when 
AI finds its application in safety-sensitive and ethically 
critical areas; as important as knowing the what of a 
decision, is knowing the why.

This lack of interpretation of AI decisions creates a 
lack of trust in the user, restricts model responsibility, 
and increases ethical, legal, and regulatory issues. 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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As an example, during medical diagnosis, a patient 
or a physician should learn why an AI system suggests 
the existence of a disease to confirm the judgment or 
evaluate the way of treatment. In the same way, in the 
legal arena, the AI-based risk assessment tool should 
give excuses to justify the bail or sentencing outcomes. 
Regulations like the General Data Protection Regulation 
(GDPR) in the European Union now impose the so-called 
right to explanation that requires the AI community to 
make interpretability a priority.

Explainable Artificial Intelligence (XAI) has grown as 
a dedicated research field to these issues. XAI entails 
the establishment of methods that enhance AI models 
to be clearer, obscure, and comprehensible to humans 
aside from being compromised greatly in terms of 
performance. XAI based methods can be divided into 
those where a model is inherently explainable e.g. 
decision trees and rule-based models and those where 
we explain existing trained models after-fact e.g. using 
local interpretable model-agnostic explanations (LIME), 
SHapley Additive exPlanations (SHAP) and saliency maps 
such as Grad-CAM.

Although gaining popularity and being actively developed, 
the field of XAI has a couple of issues. These are 
fidelity/interpretability balance, quality of explanation 
evaluation, adaptation of explanation to users 
requirements, and scaling XAI solutions across various 
domains and data types. Furthermore, explanations have 
to be not only technically grounded, but also meaningful 
in terms of cognitive and contextual insights to a wide 
audience that consists of domain experts, lay users, 
regulators and the systems developers.

The purpose of this paper is to present an in-depth 
survey and discussion of state-of-the-art in XAI, 
including the taxonomy of techniques, evaluation 
metrics, areas of application and principal challenges. It 
also examines some of the new areas of research such as 
the combination of XAI with causal inference, federated 
learning, and human-in-the-loop systems, and how XAI 
can meet the need to ensure trustworthy and ethical AI. 
This study can be used as a primary source of knowledge 
of future improvements in the ongoing quest to obtain 
transparent, accountable, and human-driven AI systems, 
as it illustrates the study landscape and offers insights 
on the gaps that still have to be filled.

Literature Review

In recent years the area of Explainable Artificial 
Intelligence (XAI) has come a long way, through pass 
through forms of transparency to cumbersome post-hoc 
explanation approaches. This section will chronologically 

and methodologically review basic and state-of-the-art 
directions in XAI, which fall into early interpretable 
models, post-hoc explanation approaches, and inherently 
interpretable designs and tools and evaluation criteria.

Early Methods of Interpretability

Before the emergence of deep learning, classic machine 
learning models like decision texts, logistic regression, 
and k-nearest neighbors, gained a lot of popularity 
because they yield an interpretable output by design.[1].
The models enable users to visualize decision pathways, 
feature weights or the like, and hence provide the 
transparency and audibility of reasoning. Yet, their 
poor ability to simulate high dimensional,[12] non- linear 
patterns makes them less applicable in sophisticated 
tasks like image recognition or Natural language 
understanding.[2]

Post hoc Explanation Methods

As high-performance black-box models such as deep 
neural networks emerged, the requirement[13] of post-
hoc interpretability has become acute. The Local 
Interpretable Model-Agnostic Explanation (LIME) 
technique[3] approximates the action of a complex system 
in the surrounding by a simple and comprehensible 
surrogate-based model, performing feature-specific 
attribution at the level of individual predictions to that 
radial framework. SHapley Additive exPlanations (SHAP)[4]  
is an extension of the cooperative game theory using 
additive importance scores of features that depicts 
a theoretically-motivated explanation framework.[14]

Gradient-based visualization methods allow gaining a 
visual understanding of convolutional neural networks 
by explaining their input components relative to the 
spatial position. These methods include Grad-CAM,[5] as 
well as Saliency Maps [8]. Although post-hoc approaches 
are more flexible and model-free, explanation fidelity 
can be an issue and in many cases the interpretations 
can be inconsistent or spurious unless closely checked .[6]

Models That Can Be Interpreted By Design

Simultaneously, researchers have worked on the structure 
of interpretable-by-design models where transparency 
has been ingrained into the learning process. Examples 
are decision sets, rule-based classifiers and generalized 
additive models (GAMs) which are transparent yet 
capture[15] non-linear interactions.[7] More recent 
developments have used prototype learning to visualize 
class decisions by demonstrating representative 
instances of the overall decision boundaries thus 
enhancing user confidence and model explainability.[8]  
Partial interpretability can also be provided by attention-
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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based neural architecture, according to which input 
features or sequences are assigned with weights, yet 
explanations might not necessarily reflect the way a 
model actually reasons.[9]

Metrics of XAI evaluation

Measurement of quality and usefulness of explanations 
is a major priority in XAI. Fidelity versus how well 
the explanation approximates the original model, 
comprehensibility versus ease of understanding by a 
human, completeness or likelihood of important factors 
being covered, and consistency versus how the explanation 
remains stable to similar inputs, are[16] common metrics.[10]  
Nevertheless, no unitary measure or gold standard is 
found regarding the quality of explanation, thus making it 
hard to compare them. Another layer subjective and hard 
to quantify systematically[11] is human-centric, actually 
requiring user studies or assessments by some domain 
experts.[17] Infrastructures such as the Explainability 
Benchmarking Framework (EBF) and FACTS, XAITest, and 
TEDS datasets are emerging to bring consistency to an 
assessment and have received little uptake, Table 1.

XAI Methods and Taxonomy

The design philosophy and the explainability modality of 
the explainable Artificial Intelligence (XAI) approaches 
can be divided into four broad categories: namely, 
post-hoc, intrinsic, model-specific and example-
based. Among the most well-known approaches of 
post-hoc explanation which seek to explain the model 
based on flexibility and model-agnostic properties can 
be noted LIME (Local Interpretable Model-Agnostic 
Explanations), SHAP (SHapley Additive exPlanations), 
and Grad-CAM (Gradient-weighted Class Activation 

Mapping). These algorithms will usually operate by 
mutating the behavior of black-box models that are 
complex to approximate, or emphasize features after 
training to produce feature-wise explanations. But, 
their explanations might not translate faithfully the 
decision logic of the underlying model, a fact that raises 
reliability and consistency issues. Conversely, intrinsic 
or design-interpretable (sometimes called inherently 
interpretable) models, e.g. decision trees, rule-based 
systems, and generalized additive models, are built with 
transparency in mind to allow users to directly inspect 
the decision making process of the model. These models 
they are easily interpretable and especially come in 
handy in settings where auditability is desirable, they 
tend to fall short in high-dimension or unstructured 
data tasks. Model-specific techniques such as attention 
mechanisms and Layer-wise Relevance Propagation 
(LRP) provide an understanding of how certain neural 
network architectures operate (by observing the flow 
of signals or visualising the attention maps). Figure 
1Such methods are useful when it comes to learning 
about deep learning models, yet they are usually 
architecture-specific and not generalizable. Lastly, 
some predictions, such as counterfactual explanations 
and prototypical learning models, are explained by 
reference to the existence or non-existence of similar 
cases. Table 2 These are highly intuitive and human-
pleasing, and will help the user in deciding how 
slight modifications in the prediction could occur. 
Nevertheless, they are not scalable on elaborate cases 
of data and models. All in all, the given taxonomy will 
allow examining and contrasting different approaches 
to XAI in a systematic or analytical way, indicating the 
trade-offs between interpretability, domain suitability, 
and generalizability.

Table 1: Summary of Key XAI Methodological Categories and Evaluation Considerations

Category Description Representative Methods Strengths Limitations

Early Approaches to 
Interpretability

Traditional ML 
models with inherent 
transparency

Decision Trees, Logistic 
Regression, k-NN

Simple, transparent, 
easy to audit

Poor scalability, low 
performance in high-
dimensional or non-
linear tasks

Post-hoc Explanation 
Techniques

Explanations generated 
after model training

LIME, SHAP, Grad-CAM, 
Saliency Maps

Model-agnostic, flexible, 
local explanations

May lack fidelity, 
sensitive to 
perturbations, 
inconsistent results

Inherently 
Interpretable Models

Models designed with 
built-in transparency

Decision Sets, Rule-
Based Learners, GAMs, 
ProtoPNet

Transparent by design, 
good for compliance 
and user trust

Limited complexity, 
not ideal for large or 
unstructured datasets

Evaluation Metrics 
for XAI

Frameworks and 
criteria to assess 
explanation quality

Fidelity, 
Comprehensibility, 
Completeness, 
Consistency

Supports method 
comparison and user 
acceptance studies

No standardized 
benchmarks; evaluation 
can be subjective and 
domain-dependent
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Fig. 1: Taxonomy of XAI Methods and Their 
Representative Techniques

Methodology

Research Questions

In order to comprehensively explore the scenery of 
Explainable Artificial Intelligence (XAI), the current 
study is anchored in three main research questions (RQs), 
which aim at exploring three fundamental aspects of the 
domain: methodological development, implementation 
issues, and future research directions. These questions 
are motivated to facilitate a conceptual framework 
through which the huge corpus of XAI literature could 
be read, classified and integrated.

The first research question, i.e., the question What are 
the prevailing techniques in XAI and how do they compare 
aims to identify and classify the existing prevalent 
methods to construct explanations related to AI. That is, 
it encompasses post-hoc explanations, which are used 
after training black box models (e.g., LIME, SHAP, Grad-
CAM), and inherently interpretable models, which are 
made with intention of being explanatory (e.g., decision 

trees, rule-based classifiers, and prototype networks). 
The idea is to provide the comparison of these methods 
on a wide range of criteria including fidelity of models, 
scalability, generalizability, human interpretability and 
suitability to the domain. This question is crucial to 
learning how different approaches behave in a variety of 
settings, as well as what trade-offs are present between 
model explainability and complexity.

The second research question, namely, What challenges 
impede effective deployment of XAI systems, is to cover 
the barriers to effective implementation of explainable 
AI solutions and cover them in the areas of practical, 
technical, and ethical aspects. Such challenges are also 
multidimensional, with them including the absence of 
standardization of evaluation measures, the subjectivity 
of explanations based on the human factor, extendability 
with very large systems and regulatory limitations like 
those provided by GDPR, HIPAA, and ethical guidelines 
on AI. Moreover, most of the existing approaches fail to 
reflect the explanations enough to the cognitive model 
of the users or topical knowledge, which makes them 
less practical in the working conditions. This question 
highlights the difference between the academic progress 
and the practical implementation, which should be 
breached to make AI systems efficient and responsible.

The third research question to be answered looks like 
this: What are the current tendencies in the research 
directions study? This question is also meant to define 
new trends of the themes, techniques and paradigm 
which will inevitably greatly affect XAI development. 
Recent directions have been the combination of causal 
inference to obtain robust, counterfactual inferences, 
the creation of explainability frameworks in federated 
learning and privacy-preferring learning, and the rise of 
human-in-the-loop systems where a user could interact 
with and tune explanations of the model. There is also 
the convergence between XAI and trustworthy AI, ethical 

Table 2: Taxonomy and Comparison of XAI Methods

Method Type Key Techniques Explanation Mode Strengths Limitations

Post-hoc LIME, SHAP, Grad-CAM Feature attribution Flexible and model-ag-
nostic; applicable after 
training

May produce inconsistent 
or low-fidelity explana-
tions

Intrinsic Decision Trees, Rule-
Based Systems, GAMs

Model-level transpar-
ency

Interpretable by design; 
easy to audit and visu-
alize

Limited capacity for 
high-dimensional or com-
plex tasks

Model-Specific Attention Mechanisms, 
LRP

Internal signal tracing Provides insight into 
model internals (e.g., 
attention)

Architecture-dependent; 
lacks generality

Example-Based Counterfactuals, Proto-
types

Instance comparison Intuitive and hu-
man-aligned explanations

May not scale well to 
large or diverse datasets
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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auditing, and cross-disciplinary ideas around whether 
there should be interpretability standards across the 
areas of interest that propose that explainability 
becomes an essential component to AI system design in 
the future. Figure 2 this question aims at prognosticating 
the research frontiers and leading to the establishment 
of the next generation of XAI models, which are not 
merely interpretable to be adaptive, fair, and context-
sensitive as well.

Bringing them all together, the three questions listed 
above compose the crux of this research paper, which 
will be able to provide a detailed and critical analysis 
of the contemporary, as well as the shortcomings, and 
future of Explainable Artificial Intelligence.

Comparative Review Framework

The main methodological approach used to come up 
with a systematic outlook regarding the current shape 
of the field regarding Explainable Artificial Intelligence 
(XAI) was a systematic literature review (SLR). Such a 
framework has the advantage of enabling objective, 
replicable and depth synthesis of extant research. The 
literature search consisted in the search of the primary 
scientific databases (Scopus, IEEE Xplore, and ACM Digital 
Library) that, in aggregate, comprise a wide and quality 

collection of peer-reviewed articles encompassing the 
field of computer science, artificial intelligence, as well 
as applied engineering.

The literature review was conducted until March 2025 
and identified the latest developments and determined 
the course of history that led to the development 
of the XAI methods. Variations and combinations of 
such keywords as: the keywords were used as follows: 
“Explainable AI”, “interpretable machine learning”, 
“post-hoc explanations”, “transparent models”, “XAI 
evaluation”, “causal explanations”, and “human-
centered AI”. To obtain only peer-reviewed articles, it 
was decided to filter out non-academic type content like 
blog posts, editorials and pre-reviewed preprints unless 
they are contributing basic knowledge.

A total of more than 300 papers were explored, out of 
which 120 quality papers were identified as relevant 
and assessed by inclusion impact and methodological 
nature. A comparative framework to analyse each of 
the selected studies was devised and entailed several 
classification dimensions:

	Type of methods: Post-hoc, intrinsic, model-
specific or example-based.

	Model Compatibility: It composes whether the 
given explanation technique is model-agnostic 
or architecture-dependent.

	Explanation Output Type of explanation 
produced feature importance; rule extraction; 
attention maps; counterfactuals; or prototypes 
comparisons.

	Area of usage: Sector-specific such as healthcare, 
finance, criminal justice, autonomous driving, 
and cybersecurity, natural language processing.

	Interpretability Level: Human interpretability 
at a qualitative measure- can be low, moderate, 
and high.

Table 3: Core Research Questions and Their Strategic Focus

Research Question Focus Area Explanation

What are the dominant techniques in 
XAI, and how do they compare?

Methodological Development Categorizes and compares existing XAI methods 
(e.g., post-hoc vs. intrinsic) based on scalability, 
fidelity, etc.

What challenges hinder effective deploy-
ment of XAI systems?

Practical and Ethical Challenges Identifies deployment barriers, including regu-
latory compliance, lack of metrics, and human 
interpretability gaps.

What trends are shaping future research 
directions?

Emerging Research Frontiers Explores evolving directions like causal XAI, 
federated explainability, and human-in-the-loop 
design frameworks.

Fig. 2:Hierarchical Structure of Research Questions 
Addressing Key Themes in Explainable Artificial 

Intelligence (XAI)
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 

159

	Fidelity to Model: the extent to which the 
explanation gives an accurate picture regarding 
the behavior of the originator model.

	User Alignment: The evaluation of the degree 
of alignment between the explanation and user 
experience and cognitive expectations (e.g., 
clinicians and data scientists).

	Computational Overhead: A cost over runtime 
or training-time by explanation generation.

The research papers were additionally divided into the 
clusters according to the topic of study, i.e., algorithmic 
fairness, adversarial robustness, visual interpretability, 
and causal reasoning. This taxonomy made it possible to 
do an analytical comparison of the nature of techniques 
and how well it works in different situations and the 
fulfilment of their tasks by the user.

Also, to improve on transparency and reproducibility, 
a review matrix was created in a tabular form (not 
shown here), that aligned each study with the criteria of 
classification. The matrix allowed determining the trends 
in methodological aspects, trade-offs in performance, 
and research gaps, which provided the basis of the 
analysis and discussion sections of the present paper.

The given comparative review framework does not only 
offer a synthesized overview of the field, but also a 
benchmarking source available to future studies that will 
seek to suggest or test new XAI methodologies. Figure 3

Fig. 3:Comparative Review Framework for 
Explainable Artificial Intelligence (XAI): A Systematic 

Workflow for Literature Analysis and  
Thematic Classification

Evaluation Criteria

In order to effectively compare and contrast the wide 
range of XAI methods and approaches, formulation of a 
set of clearly specified evaluation factors was developed. 
These should be selected criteria as they are to present 
both technical performance and human impact, thus 
allowing a balanced and overall evaluation of either of 
the methods. There are four main evaluation dimensions; 
the accuracyexplainability tradeoff, user trust and 
acceptance, scalability and computation overhead, and 
domain-specific adaptability. Every criterion is geared to 
one of the most essential dimensions of XAI in the real 
world, and it aids in differentiating between a possible 
theoretical effectiveness and practical applicability.

1. Accuracy–Explainability Tradeoff

Perhaps the most basic tradeoff in XAI is the relationship 
between accuracy and explainability of the model. In 
most cases, more interpretable models like decision trees 
or linear regressions are very easy to interpret, but they 
may not have a large enough representational capability 
to reach high predictive accuracy with complex and high 
dimensional data. Alternatively, the deep neural networks 
and the ensemble models have outstanding performance 
and are infamously hard to analyze. The analysis against 
this criterion entailed an examination on whether the XAI 
approach can ensure a high performance of models and 
produce an understandable output. Attributes that can 
be explained without severely decreasing the quality of a 
model, e.g., via SHAP or attention mechanisms or hybrid 
interpretable-deep architectures, do better in this regard.

2. Trust and Acceptance by the user

The end goal of explainability, then, is to promote the 
trustworthiness of the AI systems on the part of various 
stakeholders, such as experts in the field of interest, 
ordinary users and regulators. This criterion incorporates 
how well the explanation leads to understanding the user 
and greater confidence in decision-making and model 
acceptance. The studies including the user studies or 
qualitative interviews or human-in-the-loop experiments 
were discussed in order to determine the perceived 
usefulness, clarity, and satisfaction. As an illustration, 
a sentence that aligns with human reasoning (e.g. 
counterfactuals or visual prototypes), as a rule, will trump 
in the trust-building quality, especially when the stakes 
are high (e.g. in the medical and the juridical context).

3. Scalability and Overhead Computation

The other important aspect is the scalability of the XAI 
technique with regard to its computational ease and 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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compatibility with integration. Certain techniques, 
e.g. SHAP or LRP (Layer-wise Relevance Propagation) 
are computationally expensive, particularly when 
run on large models or models run in high-resolution 
datasets. This can be used to benchmark the 
complexity of the approach in terms of its runtime and 
memory requirements as well as the capacity of the 
method to support large-scale, real-time, or resource-
limited applications (e.g., at the edge or in federated 
systems). Methods that provide pre- or near-realtime 
interpretability or enable them to be used in existing 
pipelines with minor retraining adjustment will be 
more in vogue in resource-constrained projects.

Domain-Specific Adaptability

Finally, flexibility of methods of XAI to a diverse 
range of applications is also vital in realizing mass 
adoption. This criterion evaluates the applicability 
of the techniques of explanations to various domains 
like healthcare, finance, autonomous systems, 
cybersecurity and NLP. Others such as LIME or rule-
based models are more domain agnostic but some must 
be highly domain-specific such as Grad-CAM applied to 
vision-based systems. In addition, domain adaptability 
is also about the method capabilities to support the 
domain requirements, e.g., explaining requirements 
to meet legal standards, clinical interpretability 
standards, or regulations on financial compliance 
requirements.

Using such a multidimensional assessment framework, 
this research can be sure that comparative analysis 
trees of XAI techniques will cover not only algorithmic 
robustness Figure 4, but also usability in real life. 

The criteria chosen are not only to facilitate the 
benchmarking of the current techniques but also as 
a way of informing future studies to come up with 
AI systems based on more transparent, scalable, and 
human-aligned AI systems.

Fig. 4: Quadrant-Based Visualization of Key 
Evaluation Criteria for XAI Methods

Results and Discussion

In their comparative review of more than 120 peer-
reviewed publications, it is seen that the present 
applications of Explainable Artificial Intelligence (XAI) 
to the real world are dominated by post-hoc techniques 
of explanation, in specific SHAP and LIME. They are 
largely used because of their flexibility, which allows 
using them on a variety of classifiers and deep learning 
architectures without modifying the original model. The 
methods give local explanations by associating features 
with the importance scores of the inputs thus giving 
insights on how the individual predictions are made. 
Nonetheless, their consistency and accuracy is arguable, 
since, in some cases they generate explanations that 

Table 4: Evaluation Criteria for Assessing XAI Methods

Evaluation Criterion Description Key Aspects Considered
High-Performing Techniques 

(Examples)

Accuracy–Explainability 
Tradeoff

Measures how well the method 
balances prediction perfor-
mance with interpretability

Fidelity to original model, 
performance drop due to 
explanation module

SHAP, Attention Mechanisms, 
ProtoPNet

User Trust and Acceptance Assesses how well the ex-
planation aligns with user 
cognition, promoting trust and 
acceptance

Human-in-the-loop validation, 
clarity, perceived usefulness, 
decision confidence

Counterfactuals, Visual Proto-
types, Rule-Based Systems

Scalability & Computational 
Overhead

Evaluates runtime efficiency, 
scalability to large models, 
and integration feasibility

Execution time, memory foot-
print, compatibility with edge 
and real-time applications

LIME (optimized), FastSHAP, 
Lightweight Attention

Domain-Specific Adaptability Determines the applicability 
of the method across various 
domains and regulatory frame-
works

Generalizability, sector-spe-
cific customization, alignment 
with legal or clinical norms

LIME, Generalized Additive 
Models (GAMs), Grad-CAM
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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do not reflect the true decision logics of the model. 
Moreover, they are be sensitive to input perturbation, 
thereby compromising their interpretability and 
consequently their robustness in high-stakes setting 
(Additionally, Figure 5). LIME makes model behavior 
comprehensible through linear surrogates, but SHAP 
provides model behavior through Shapley values based 
methods that have theoretical concerns, both methods 
are computationally demanding and fail to scale readily 
in a real-time system.

Fig. 5:Distribution of Focus Areas in XAI Research 
Based on Comparative Literature Review

The review also mentions such spheres as healthcare 
and finance where XAI adoption is in the lead 
because of high regulatory and ethical needs. The 
interpretability requirement, however, goes beyond 
technical performance in the mentioned contexts to 
explainability that fits a human cognition pattern and 
professional reasoning paradigm. E.g., within medical 
diagnostics, clinicians need explanations that can justify 
the AI-generated prediction, referring to such medically 
meaningful factors as the symptoms, biomarkers or 
imaging patterns. In finance as well, regulators require 
audit trails and an open explanation of credit scores, 

fraud detection or risk models. Such application-oriented 
requirements require explanations that are domain- and 
high-fidelity, capable of justifying decisions, validating 
models and measuring liability. Therefore, explainability 
in such domains is not a technical option but rather a 
compliance and accountability requirement, and as 
such, it leads researchers to consider interpretable-
by-design models and more of high-quality evaluation 
measures.

What is coming out of the analysis is a rising fascination 
in hybrid XAI methods, whereby the understanding can 
be incorporated with the deep-learning frameworks. 
In the example of such models as ProtoPNet that 
already use prototypical parts instead of individual 
examples in convolutional architecture, the decision 
can be justified by the mention of representative 
examples, an idea based on human intuition. This 
balanced between accuracy and interpretability, these 
architectures can be a hopeful compromise between 
post-hoc explanations and intrinsically interpretable 
models. Besides, possibilities of human-in-the-loop XAI 
systems when user feedback is directly used to generate 
an explanation or optimise the model are highlighted 
in the literature. These are very useful in adaptive 
systems such as individual healthcare, recommendation 
and decision support systems. These methods have their 
practical difficulties, though, such as interface design, 
customization on the person, and the usefulness of 
the explanation. To make these systems better, there 
should be a need of cross-disciplinary team work of 
AI developers, human-computer interaction (HCI) 
specialists, and domain experts to provide explanation 
by not only by being technically correct but also 
cognitively meaningful and hence actionable.

Table 5: Summary of Key Findings from Comparative XAI Literature Review

Focus Area Key Observations Advantages Challenges / Limitations

Post-hoc Techniques (e.g., 
SHAP, LIME)

Widely used due to model-ag-
nostic flexibility and feature 
attribution capabilities

Applicable to black-box mod-
els; useful for local interpret-
ability

May lack fidelity; sensitive to 
input perturbations; compu-
tational overhead in real-time 
use

Regulatory Domains (Health-
care, Finance)

High demand for interpretable 
AI due to legal and ethical 
requirements

Aligns with clinical or financial 
reasoning; enables auditabil-
ity

Requires domain-specific 
explanation formats; strict 
regulatory compliance

Hybrid XAI Models (e.g., 
ProtoPNet)

Combine deep learning with 
embedded interpretability 
using prototypes or attention 
mechanisms

Balance between performance 
and transparency; intuitive 
explanation formats

Complexity in training; archi-
tecture-specific design

Human-in-the-Loop Systems Leverage user feedback for 
explanation refinement and 
adaptive learning

Supports personalization; im-
proves trust and engagement

Requires HCI design; expla-
nation utility varies by user 
expertise



Dinfe Egash and Rane Kuma : Explainable Artificial Intelligence (XAI): State-of-the-Art, Challenges, and Research Trends

Ishrat Zahan Mukti,  , et al. :  1.8-V Low Power, High-Resolution, High-Speed Comparator With Low Offset Voltage Implemented in 45nm CMOS Technology

Journal of VLSI circuits and systems, , ISSN 2582-1458 20

A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Conclusion

Explainable Artificial Intelligence (XAI) has appeared as 
the tenet behind building transparent and accountable 
and ethically acceptable AI systems, especially 
with machine learning penetrating health, finance, 
criminal justice, and autonomous systems. This paper 
has approached the systematic investigation of the 
taxonomy of the XAI methods by evaluating the post hoc 
and intrinsic techniques to analyze their performance 
and efficiency regarding the most relevant aspects 
such as interpretability, fidelity, scalability and domain 
applicability. Although a lot of progress was made, 
particularly in making model-independent tools such 
as SHAP and LIME, and incorporating them in hybrid 
architectures such as ProtoPNet, serious challenges are 
yet to be overcome. The most prominent ones include 
lack of common evaluation metrics, the computational 
hassle of generating explanations and the mismatch 
between technical explanations and the understanding 
of users. Moreover, the interpretability is subjective, 
so it is also difficult to establish universally applicable 
explanatory systems, and it is necessary to continue 
to adhere to human-centric points of view and apply 
domestic horizons. Future research should therefore 
shift towards interventions in how XAI can be integrated 
with causal reasoning principles and the human-in-the-
loop design to include Theusage of adaptive interfaces 
to meet individual user profiles and even the cognitive 
capacity. Interdisciplinary collaboration in order to 
create policy-aware, context-sensitive, and regulatory-
compliant XAI systems is also urgent. Finally, the 
realization of AI, which should not only be precise but 
also easy to explain, is needed to advance trust in AI, 
enlightened decision-making, and ethics of AI application 
to the society.
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