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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
The fact that Artificial Intelligence (AI) is increasingly finding its ways into healthcare has 
greatly contributed to the diagnostic, prognostic, and forecasting propositions as well 
as clinical decision-making. Nonetheless, black box in deep learning results and deep 
learning algorithms in general pose significant challenges to both clinical acceptability as 
well as regulatory acceptance and patient confidence. Explainable Artificial intelligence 
(XAI) has come to curb such shortcomings by envisioning interpretability and humanistic 
comprehension of model decisions. This systematic review intends to relatively or 
comprehensively examine XAI in healthcare, and its analysis focuses on two dimensions: 
types of algorithms and interpretability methods, as well as strategies of clinical 
integration. A total of 112 articles were reviewed consisting of peer-reviewed articles 
published since 2018 and ending by 2025 which continued to be peer-reviewed till 2025 
and then considered in the following databases; PubMed, Scopus, IEEE Xplore, and Web 
of Science. Papers were grouped by the domain of application (radiology, pathology, 
genomics, etc.), the type of AI model (decision trees, deep neural networks, etc.), and 
explanation technique (SHAP, LIME, attentions, etc.). The results indicate that SHAP 
and attention-based models are common and widely applicable to their compromise 
between fidelity and usability. Among the key challenges have been mentioned such 
as accuracy interpretability tradeoff, data bias, absence of standardized evaluation 
metrics and an insufficient clinical workflow. The conclusion to the review presents 
a proposed unfolding maturity model of using human-in-the-loop XAI and future 
research recommendations to include the presence of domain-specific interpretability 
benchmarks and the regulatory-compliant XAI systems. The presented work will serve as 
an apt guide to the development of trusted and transparent AI in healthcare.
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Introduction

The fast spread of Artificial Intelligence (AI) in 
healthcare has also resulted in revolutionary changes in 
the variety of applications such as disease diagnosis, risk 
stratification, treatment planning, and patient-specific 
monitoring among others. People have shown that deep 
learning models are more successful in manipulating 
complex data modalities like medical images, genomics, 
and electronic health records (EHRs). Nevertheless, 
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their extensive implantation in clinical settings has been 
a seen to be minimal because of the mystic nature of 
these models, wherein the premise generating such 
predictions is not revealed. This untransparency exposes 
dangerous ethical, legal and clinical threats particularly 
in high-stake situations like detection of cancer, Triage 
in ICU or drug dosing. Lack of a clear view of how models 
behave causes healthcare professionals problems with 
verification, confidence and justification of decisions 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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made by AI. These fears have inspired the development 
of Explainable Artificial Intelligence (XAI), which would 
aim at producing models which can be understood by 
human users, especially clinicians and government 
regulators, with regard to the internal logic and outputs 
of the models.

Nevertheless, work on XAI in the field of healthcare has 
inspired a considerable level of interest, but available 
investigations have a number of limitations. First, a lot 
of research on the subject of algorithmic explanation 
methodology is narrow in the sense that they do not 
consider usability in clinical settings (during workflow) 
and how they can be used to clinically instruct patients. 
Second, such regularized criteria to measure the quality, 
relevance of the explanations or impact to medical 
decisions do not exist. Third, the large majority of reviews 
so far have focused on technical approaches or general 
AI in medicine but did not discuss broad, domain-based 
overview of XAI models, interpretability strategies, 
and in-clinic integration paths. The given systematic 
review will fill these gaps by delivering a comprehensive 
synthesis of 112 peer-reviewed articles published in the 
period between 2018 and 2025. It classifies the literature 
according to the AI model type (e.g. decision trees, 
neural networks), explanation approaches (e.g. SHAP, 
LIME, Grad-CAM, attention mechanisms), and fields of 
application (e.g. radiology, pathology, genomics ). The 
review also points out the latest trends, speaks about 
the practical issues of utilizing XAI in actual clinical 
practice, and specifies the strategic potentials of further 
research and the development of regulations.

Recent research by Zhang et al.[1] underlines that the 
ability to achieve explainability without compromising 
performance is important in terms of gaining clinicians 
trust and guaranteeing safe implementation of AI systems 
in the clinical setting of critical applications. This paper 
synthesizes current research on XAI in healthcare in 
both a technical and translational style, which will add a 
thorough picture of how the field is developing and how 
it should develop.

Related Work

Hypertrophy of the transparency and understandability 
of AI models in clinical fields has turned into an import-
ant subject of research in recent years, and the aspect 
of explainability is very crucial in clinical decision-mak-
ing. Such post-hoc methods of interpretability as the 
Local Interpretable Model-Agnostic Explanations (LIME) 
approach developed by Ribeiro et al.[2] have now given 
a basis to directly create local surrogate models that 
can explain individual predictions regardless of underly-

ing the model. Expanding on the theory of cooperative 
games, SHapley Additive exPlanations (SHAP) formulated 
by Lundberg and Lee[3] provide globally and locally con-
sistent and theoretically rigorous feature attributions, 
and they have been popular in numerous applications of 
electronic health recording (EHR) such as prediction of 
sepsis and risk of readmission. Gradient-weighted Class 
Activation Mapping (Grad-CAM)[4] has become an effec-
tive visual explanation method in the field of medical 
imaging, which can show a significant area in the image 
that plays key roles in the decision process of a convo-
lutional neural network (CNN). Such techniques enable 
clinicians to access model decisions and review with 
highlighted regions to increase clinical trust between 
radiologists and pathologists. Moreover, attention mech-
anisms implemented in transformer/LSTM-based models 
not only have had great potential in genomics and oncol-
ogy/pathology and provide a trade-off between model 
performance and interpretability.[5]

These advancements notwithstanding, there are still 
huge disparities. The major limitation on many studies 
is a narrower scope of focusing on algorithm develop-
ment and paying little attention to how the explanation 
can be addressed as usable in clinical practice, where 
various factors, including cognitive load, limited time, 
interface design, and so on are essential. Even more, 
there is no agreement on the quantitative metrics to 
measure the quality or utility of treatments, which 
precludes inter-study comparison and benchmarking to 
reality.[6] Furthermore, not many frameworks are suffi-
cient to tackle the questions of integrating XAI in the 
clinical practices, such as electronical health systems, 
sovereign boundaries, and the communication between 
the clinicians and the AI systems. Previous surveys (e.g. 
Holzinger et al..[6]) presented conceptual bases of ex-
plainable AI in medicine and were not structured to com-
prehensively cover empirical practice. Tjoa and Guan[7] 
reviewed interpretability methods in deep learning, but 
this analysis was mainly technical, and thus it provided 
little information on how to implement these methods 
or demonstrate clinical validity. Contrastingly, this re-
view intends to fill this gap by extensively categorizing 
the methods of XAI, determining the feasible obstacles 
to adoption and defining strategies of integration that 
can comply with clinical and regulatory requirements.

Methodology

This review follows a systematic and plausible process 
on locating, choosing, and analyzing the literature 
related to the topic of interest, which in this case was 
Explainable Artificial Intelligence (XAI) in healthcare. 
The methodology describes a designed research method, 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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well defined inclusion and exclusion criteria and a well-
defined data extraction protocol.

Search Strategy

The general literature was conducted with the help 
of four large academic sources: IEEE Xplore, PubMed, 
Scopus, and Web of Science. Articles were searched in 
January 2018- June 2025. The query syntax used the 
keywords and Boolean operators to cover a non-focused, 
but narrow corpus:

“Explainable Artificial Intelligence” OR “XAI” OR 
“interpretable AI” AND (“healthcare” OR “clinical 
decision support” OR “medical diagnostics”)

Other filters narrowed down to journal articles, 
conference papers and peer-reviewed reviews. Snowball 
sampling helped finding other references in the 
bibliographies of related papers.

Inclusion and Exclusion Criteria

To guarantee the relevance and quality of the literature, 
the listed below criteria were imposed:

Inclusion Criteria:

•	 Articles of January 2018 to June 2025, through 
peer-reviewed.

•	 Publications dealing directly with XAI, as applied 
to healthcare.

•	 Articles that involve the development of AI models 
as well as at least one of the AI interpretability 
approaches.

•	 Applications that include organized (e.g., EHR), 
semi organized (e.g., genomics), or unstructured 
data (e.g., medical imaging).

Exclusion Criteria:

•	 Publications through non-English languages.

•	 Greyleturer (preprints, manuskrifter, white 
paper).

•	 Research of black-boxes that do not give 
interpretability or explanation strategies.

•	 Articles with no implications of healthcare in 
general-purpose XAI.

Data Extraction and Categorization

Information contained in the qualifying studies was 
derived and coded systematically in accordance with 
a predetermined template. Every study was confirmed 
according to the following dimensions:

•	 Type of AI Model: Decision tree, gradient 
boosting, deep neural network (CNNs, RNNs), 
transformer models, and so on.

•	 Application Domain: Radiology, pathology, 
oncology, genomics, EHR-based diagnostics, etc.

•	 Technique of interpretability: SHAP, LIME, Grad-
CAM, attention mechanisms, counterfactual 
explanations, etc.

•	 Evaluation Measures: Fidelity, readability, 
developmental clinical utility, human-AI 
agreement etc.

•	 Deployment: experimental research, simulated 
clinical context or actual application in a clinical 
setting.

As possible, the studies were also evaluated on finding 
the presence of human-in-the-loop evaluation, clinician 
feedback, or regulatory factors (e.g., HIPAA, GDPR, FDA 
readiness).[8]

One can quantitatively aggregate (e.g., frequency of 
particular XAI techniques) or qualitatively perform a 
thematic analysis to define trends, gaps, and patterns 
across domains based on the extracted data. After using 
inclusion and exclusion criteria in four large databases of 
academic materials, a total of 112 studies were obtained 
as shown in Figure 1.

Fig. 1. PRISMA Flow Diagram for Literature  
Selection
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Taxonomy of XAI Algorithms in Healthcare

To assess the number and maturity of Explainable 
Artificial Intelligence (XAI) applications in healthcare, 
the following section shows a structurally taxonomic 
overview of the groupings of models and interpretability 
methods. The taxonomy is based on the fact that 
there are models based on innate interpretability and 
models based on post-hoc explanation structures. It also 
categorises widely used XAI methods based on type, 
functioning, and popularity in literature.

Model Categories

The application of XAI models in healthcare is describable in 
two broad categories i.e. interpretable-by-design and post-
hoc explainability models. XAI models in healthcare can be 
broadly divided into (see Figure 2): interpretable-by-design 
and post-hoc explainability models (see Figure 2).

By nature, interpretable-by-design models allow being 
transparent in their decision process. The models are 
defined to be simple, and to have either a rule-based or 
an additive structure but in either case, the contribution 
of the features can be examined directly, and the logical 
reasoning axioms can be traced.

o  Examples:

•	 Decision Trees decision trees are nested and 
represent node-based decision rules.

•	 Generalized Additive Models (GAMs) - the 
smooth effect of single features through additive 
functions.

•	 Rule-Based Classifiersbetter known as logical 
nouns to know it better, these classifiers may 
be described as logical nouns to know it better, 
these classifiers are based on nouns to know 
it better, based on a logical nouns to know it 
better, this type of classifier is often seen in 
clinical guidelines.

Post-hoc explainable models is a model which has a 
complicated internal procedure that is not interpretable 
yet which can be clarified about externally through 

provisional methods. They are normally related to good 
predictive performance with poor transparency.

o Examples:

•	 Deep Neural Networks (DNNs) - high dimensional 
representation of imaging and sequential data.

•	 Support Vector Machines (SVM)s- hyperplane 
classifiers (kernel-based and relatively non-
interpretable).

•	 e.g., Gradient Boosted Trees (e.g., XGBoost) 
structural ensemble models of non-linear feature 
interactions.

Fig. 2. Taxonomy of XAI Model Categories in 
Healthcare

Commonly Used XAI Techniques

The table below is a summary of the popular types of XAI 
methods used in healthcare, their purpose, and so-far 
popularity (Table 1):

Table 1:Comparison of Commonly Used Explainable AI (XAI) Techniques in Healthcare

Technique Type Description Popularity

SHAP Post-hoc Computes additive feature attributions based on Shapley values from coop-
erative game theory. Offers both local and global interpretability.

High

LIME Post-hoc Builds a local surrogate model (usually linear) around a prediction instance 
to approximate its decision boundary.

High

Attention Mecha-
nisms

Intrinsic Highlights salient parts of input data (e.g., words, image patches) that influ-
ence prediction. Built into model architecture.

Medium
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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These methods differ as to the computational cost, 
compatibility with model, and human interpretability. 
SHAP and LIME are model-agnostic and popular because 
of its flexibility to the domain of application (e.g., 
imaging, EHR). The attention mechanisms are intrinsic 
but only applicable in certain architecture, like a 
transformer or attention-based RNN.[9] Grad-CAM is 
targeted at convolutional-based models in medical 
imaging, but Anchors have a lower level of utilization 
in clinical research because they lack useful tools and 
scalability at the current stage.

Application Domains of XAI in Healthcare

XAI is used in diverse areas in healthcare, which have 
different data and interpretability requirements. The 
main application regions as presented in Figure 3 are 
radiology, EHR analysis, genomics, and predictive 
prognosis that all can be enhanced with domain-specific 
explanation strategies.

Radiology and Medical Imaging

In radiology, XAI tools are used to explain CNNs outputs 
of tasks like tumor detection and fracture classification, 
such as Grad-CAM and Integrated Gradients. Such visual 
heatmaps also emphasize key areas of the image, and 
thus radiologists can check the predictions with respect 
to anatomical landmarks and biomarkers.

Electronic Health Records (EHR)

Structured EHR data is most often handled with the help 
of tree-based learning (e.g., XGBoost, Random Forests). 
The SHAP values suggest the risk about individuals and 
the population and attach the importance to several 
variables (age, vital signs, and lab reports) - available 
to forecast outcomes (sepsis, ICU transfer, or read- 
mission).[10]

enomics and Bioinformatics

High-dimensional genomic data are subjected to XAI 
techniques specifically of using attention mechanisms 
as transformer or LSTM-based structures. Using such 
models one can determine gene sequences that are most 
closely related with disease phenotypes and discover 
biomarkers and practice personalized medicine.

Predictive Diagnosis and Prognosis

In time-to-event modeling (e.g., survival analysis), 
XAI tools such as LIME and SHAP explain how clinical 
or genomic predictors have affected the patient 
outcomes. This is helpful in oncology and cardiology risk 
stratification, enhancing transparency of the models and 
clinical faith.

Fig. 3: Application Domains of Explainable AI (XAI)  
in Healthcare

Evaluation Metrics and Benchmarks

The deployment of Explainable Artificial Intelligence 
(XAI) in healthcare would be successful only when the 
criteria of model accuracy are augmented with the 
quality, applicability, and usability of model explanations. 
Unlike, traditional machine learning evaluation (e.g. 
Accuracy, precision, AUC), XAI requires that metrics not 
only assess the alignment between explanations, human 
understanding, and clinical outcomes. In this section, 
some important assessment metrics, which are popular 
in XAI research, will be suggested, and their strengths 
and weaknesses introduced.[11]

Although there are studies which provide quantitative 
fidelity scores somewhere (e.g. R 2 surrogate and original 
model) others are based on qualitative user studies to 
cover trust and comprehensibility. Nevertheless, the 
evaluation of XAI methods in healthcare does not have 
a common benchmark or a standard procedure yet.  
This non- standardization of the definitions deteriorates 

Technique Type Description Popularity

Grad-CAM Post-hoc 
(Visual)

Generates class activation maps by using gradients flowing into the final 
convolutional layer of a CNN.

High

Anchors Model-agnos-
tic

Produces high-precision if–then rules that “anchor” the prediction for a given 
input. Designed for local explanation.

Low
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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the comparability and generalizability of the search 
findings across areas.

Identification of domain-specific means of evaluation, 
the inclusion of clinicians in the feedback loop, and 
the design of measures of explanation to the regulatory 
standards (e.g., approval by the FDA/EMA) needs to be 
addressed in the future. It will also play a crucial role 
to speed up the adoption of trustworthy AI because of 
the establishment of benchmark datasets and simulation 
environments that will support XAI in the context of 
healthcare in an open-source manner.

Challenges and Limitations

Although Explainable Artificial Intelligence (XAI) is 
increasingly used in the healthcare field, there exist 
key technical, operational, and regulatory barriers 
to translation to clinical practice at the scale. These 
limitations may be classified as model-level constraints, 
data-level constraints, or system-level constraints as you 
see in Figure 4 and it is this classifications that need to 
be fulfilled to enable deployment of XAI in a trustworthy 
and effective manner.

Trade-off Between Accuracy and Interpretability

Trade-offs between model accuracy and interpretability 
can be counted as one of the most fundamental ones 
in XAI. Although interpretable models e.g. decision 
trees, rule-based systems and linear models provide 
more interpretable decision-making process, there is 
a lower likelihood of them having the representational 
advantages that are needed to capture nonlinear and 
high dimensional healthcare data. On the contrary, 
deep neural networks and ensemble based techniques 
provide better predictive accuracy but are black-boxes 

which restrict their applicability in clinical decision-
making. Such a trade-off begs the question as to 
whether explainability should have to be a trade-off of 
performance or whether there is middle ground to be 
had by hybridization.

Lack of Standardized Evaluation Frameworks

None of these frameworks and benchmarks are universal 
when it comes to the XAI explanation. Fidelity as well 
as comprehensibility and trust calibration are measured 
inconsistently across studies, so there is little chance 
of comparing approaches to validate them. Besides, 
the majority of the available measures are either 
procedures carried out in an artificial environment or on 
a small scale sample numbers, which might make them 
poor advances. There is also a lack of domain-specific 
assessment standards and reference databases that 
also hinder regulatory acceptance and integration into 
clinical practice.

Data Heterogeneity and Bias

The healthcare data is naturally incomplete, 
heterogeneous, and frequently biased because of the 
demographic concentration, the absence of records, 
or unique coding requirements at the same institution 
[12]. Such discrepancies do not only undermine model 
effectiveness, but also undermine the trustworthiness 
of explanations produced by XAI systems. To give 
an example, SHAP or LIME explanations might differ 
drastically when provided on the subgroups of the data, 
leading to incorrect interpretations or the overconfidence 
of the model output. The newest XAI research area is 
still underdeveloped when it comes to bias mitigation 
and datasets auditing.

Table 2: Evaluation Metrics for Explainable AI (XAI) in Healthcare

Metric Purpose Notes

Fidelity Measures how accurately the ex-
planation reflects the model’s in-
ternal logic and behavior.

High-fidelity explanations closely approximate the decision-making pro-
cess of the underlying model. Applicable to both local and global inter-
pretations. Often computed via perturbation-based tests or approxima-
tion error.

Comprehensibility Evaluates how easily a human 
(e.g., clinician) can interpret and 
understand the explanation.

Highly subjective and user-dependent. What is comprehensible to a 
data scientist may not be so for a physician. Influenced by explanation 
format (textual, visual, numeric) and cognitive load.

Trust Calibration Assesses alignment between hu-
man confidence and model cor-
rectness.

Measured through human-AI agreement in controlled experiments or 
surveys. A key indicator of how explanations influence clinician trust 
and reliance. Also linked to decision override rates in clinical workflows.

Clinical Utility Gauges the extent to which the 
explanation improves clinical de-
cision-making.

Often underreported. Best evaluated via clinical trials, simulations, or 
retrospective audits. Includes metrics like diagnostic accuracy gain, de-
cision time reduction, or treatment compliance.



Al-Yateem Nabee and Q. Hugh Li : Explainable Artificial Intelligence (XAI) in Healthcare: A Systematic Review of Algorithms, 
Interpretability Techniques, and Clinical Integration Strategies

Innovative Reviews in Engineering and Science| July-Dec 2026 19Journal of VLSI circuits and systems, , ISSN 2582-1458 

RESEARCH ARTICLE WWW.VLSIJOURNAL.COM

 1.8-V Low Power, High-Resolution, High-Speed 
Comparator With Low Offset Voltage 

Implemented in 45nm CMOS Technology

 Ishrat Z. Mukti1, Ebadur R. Khan2. Koushik K. Biswas3

1-3Dept. of EEE, Independent University, Bangladesh, Dhaka, Bangladesh

AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.

Author’s e-mail: ishratzahanmukti16@gmail.com, ebad.eee.cuet@gmail.com, kou-
shikkumarbiswas13@gmail.com

How to cite this article:  Mukti IZ, Khan ER, Biswas KK. 1.8-V Low Power, High-Res-
olution, High-Speed Comparator With Low Offset Voltage Implemented in 
45nm CMOS Technology. Journal of VLSI Circuits and System Vol. 6, No. 1, 2024 (pp. 
19-24).

Journal of VLSI Circuits and Systems, ISSN: 2582-1458 Vol. 6, No. 1, 2024 (pp. 19-24) 

IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Clinical Acceptance and Usability

Nevertheless, although XAI has technical growth, clinical 
adoption is insufficient. Visuals of saliency maps or 
statistical feature attributions are usually not enough 
because the results have to be placed in context by being 
presented in the context of clinical rules or a patient 
history. Moreover, XAI systems are seldom tested in terms 
of usability by domain experts, which makes the interface 
not always matching decision workflows and cognitive 
preferences of clinicians. The absence of clinician-in-
the-loop assessment in the majority of research findings 
suggests that the gap exists between scholarly progress 
in the field and practical implementation.

Regulatory and Ethical Barriers

Adherence to the healthcare regulations like HIPAA 
(Health Insurance Portability and Accountability Act) in 
the U.S. or GDPR (General Data Protection Regulation) 
in Europe introduces a large degree of complexity to 
XAI systems deployment. Such regulations demand 
explainability of the safety as well as legal accountability 
and rights of a patient. Nonetheless, the majority of 
existing XAI-models are not approved (certified) as 
medical devices and are not auditable. To fill out this 
gap, there should be a cross-disciplinary cooperation 
between developers of AI, clinicians and regulatory 
agencies to develop norms of explainability with both 
technical and ethical stability.

Fig. 4: Hierarchical Representation of Key Challenges 
in Implementing XAI in Healthcare

Clinical Integration Strategies

Unlike transparency of algorithms, the success of 
Explainable AI (XAI) in healthcare may be linked not 
only to efficient integration of this technology in clinical 

processes but also to the nature of the clinical processes 
themselves. A multi disciplinary approach of usability, 
clinical applicability, and ethics will help to ensure 
successful adoption.

Human-in-the-Loop (HITL) Interfaces

An old trend in improving HITL systems is making 
clinicians an active participant in their adoption by 
providing interpretable dashboards with SHAP-based 
feature importance, local risk visualizations, and what-
if simulations. These tools can increase the trust and 
enable clinicians to provide feedback to AI-driven 
decisions via feedback loops.

Multimodal XAI Systems

Multimodal XAI offers layers of interpretability by 
integrating structured (e.g. EHR), unstructured (e.g. 
clinical notes) and visual (e.g. imaging) data. Reasons 
can be aggregates of Grad-CAM heatmaps, explanatory 
text, and SHAP values thereby facilitating better, whole-
brained diagnoses.

Real-World Case Studies

Effective implementations reveal the effect of XAI:

•	 Mayo Clinic applied the prediction of sepsis 
through EHRs by using SHAP-enhanced models, 
which improved clinical response.

•	 NIH used Grad-CAM on CNN in the detection 
of pediatric pneumonia to increase class 
detectability and confidence in the diagnosis.

Such instances stress the necessity of domain-specific 
adjusting and cooperation between clinicians.

Ethical Frameworks

XAI should fit within fairness, accountability, and 
transparency (FAT). These are alleviating demographic 
bias, the model auditability, and providing clinically 
significant explanations. Ethical design can be supported 
by frameworks such as AI4People, IEEE EAD, and signing 
up with FDA GMLP and GDPR is essential to meet 
regulatory acceptance.

Discussion

As outlined in this review, on one hand, XAI methods are 
growing at an elevated rate, but on the other hand, their 
clinical implementation is curtailed. SHAP and attention 
mechanisms thrive because of their attainment of both 
accuracy and interpretability. XGBoosts and other tree-
based solutions are favored when using structured 
data (e.g., EHRs) whereas CNNs and transformers are 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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more relevant in unstructured data environments (e.g., 
radiology and genomics).

Nevertheless, there remain important obstacles:

1.	Interpretability-Accuracy Tradeoff: Independent 
or simple models are easy to interpret, but 
usually perform poorly, compared to deep 
models that are more prone to poor performance 
on challenging medical problems, in addition to 
lack of interpretability.

2.	Absence of Consistent Measures: There is no 
internationally accepted set of measures by 
which to compare and benchmark the models 
across areas (e.g. fidelity, lack of plausibility).

3.	Usability and Trust: A large proportion of XAI 
tools fail to fit to the workflow of a clinician, 
thus showing a low usage rate. Interfaces have 
to be in tandem with clinical reasoning, as well 
as improving decision making.

4.	Regulatory Uncertainty: There is ambiguity in 
FDA/EMA guidelines as to explainability and this 
acts as a deterrent to the deployment in the real 
world, particular in high-risk applications.

Regardless of these obstacles, promising integration 
programs are on the rise, such as human-in-the-
loop (HITL) systems, and multimodal interpretability 
dashboards. The future research must focus on:

•	 Commercially feasible, auditable XAI Frameworks

•	 Clinician-AI co-learning platforms

•	 Ethical compliance and standardization of 
regulations

In the healthcare context, it will be essential to reduce 
the chasm between technical innovation and clinical 
application and, therefore, adoption of XAI will be 
reliable.

Future Directions

Future research on Explainable AI (XAI) to medicine 
ought to focus on clinical relevance, ethical design, 
and regulatory harmonization as Explainable AI (XAI) 
in healthcare continues to develop. The next main 
directions will determine its responsible implementation:

Specificity Criterion of Interpretability

These formulas of explaining things in a generic way 
do not take into consideration the peculiarities of 
nursing specialties. Subsequent frameworks ought to 
be well aligned to user function--e.g. visual overlays to 

radiologists or longitudinal information to oncologists-- 
and should be co-designed with experts.

Method of Causal Explanations

Contemporary XAI is largely correlational. Robust 
explanations can be improved by integrating causal 
inference (e.g. counterfactuals, structural models) in 
situations involving complex diagnostics and probabilistic 
prediction of the effects of treatments.

Clinical Simulations and DTs Digital Twins

When used together, XAI, and digital twins can give 
patient-specific insights about their context. The 
personalization and proactive nature of clinical decision-
making can be made through the incorporation of 
interpretable logic into a simulation environment.

Co-Learning Clinician AI Platforms

Bi-directional adaptation Co-learning platforms must 
enable both clinicians and models to adapt to one 
another in two directions: to interpret the AI outputs 
according to the feedback received and tailor models 
accordingly.

Regulation policies and certification procedures

The standardization of the XAI certification according to 
FDA, EMA, and ISO/IEC standards is required to eliminate 
the barriers to deployment. These must contain the 
standards of interpretability, bias reduction, and the 
human usability.

These methods, in combination, will allow XAI to 
develop into a system that is clinically effective, 
ethically responsible, and legal-ready network of smart 
healthcare systems.

Conclusion

In healthcare, Explainable Artificial Intelligence ( XAI ) 
has become one of the significant pillars of the safe, 
ethical and efficient application of AI technologies. 
With the rise of AI into clinical decisions, diagnosis 
and treatment design, transparency, accountability 
and humanity-centered design have become essential 
criteria. XAI gives answers to these concerns, as it 
provides interpretable explanations of the model 
behavior, thus encouraging trust, enhancing usability, 
and making regulatory compliance easier. The presented 
systematic review has demonstrated the taxonomy of 
XAI models, techniques, and application areas in the 
context of healthcare that revealed the widespread 
application of such methods as SHAP, LIME, Grad-CAM, 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.

Author’s e-mail: ishratzahanmukti16@gmail.com, ebad.eee.cuet@gmail.com, kou-
shikkumarbiswas13@gmail.com

How to cite this article:  Mukti IZ, Khan ER, Biswas KK. 1.8-V Low Power, High-Res-
olution, High-Speed Comparator With Low Offset Voltage Implemented in 
45nm CMOS Technology. Journal of VLSI Circuits and System Vol. 6, No. 1, 2024 (pp. 
19-24).

Journal of VLSI Circuits and Systems, ISSN: 2582-1458 Vol. 6, No. 1, 2024 (pp. 19-24) 

IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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and attention mechanisms. It has also discussed the 
issues that stand in the way of clinical implementation 
such as the accuracy-interpretability tradeoff, absence 
of standardized measures of evaluation, heterogeneity of 
data, and minimal clinician input. Moreover, it described 
feasible clinical associated integration plans and showed 
future directions like causal reality, computerized twins, 
and XAI confirmation systems.

Although the technical development of XAI has been 
significant, it will still likely require connecting the 
algorithm development world to the healthcare needs 
world before it can make any real clinical difference. 
This will involve multidisciplinary cooperation, design 
area specific, as well as ethical governance, and 
regulatory preparedness, and user-centric examination. 
To sum up, the predictive accuracy is not the only 
factor defining the future of AI in healthcare, but there 
is also the transparency, fairness, clinical relevance of 
explanations. The development of XAI into the clinical 
decision-making setting at the bedside is not just a 
technology target but a moral obligation in the age of 
smart medicine.
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