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ABSTRACT

The fact that Artificial Intelligence (Al) is increasingly finding its ways into healthcare has
greatly contributed to the diagnostic, prognostic, and forecasting propositions as well
as clinical decision-making. Nonetheless, black box in deep learning results and deep
learning algorithms in general pose significant challenges to both clinical acceptability as
well as regulatory acceptance and patient confidence. Explainable Artificial intelligence
(XAl) has come to curb such shortcomings by envisioning interpretability and humanistic
comprehension of model decisions. This systematic review intends to relatively or
comprehensively examine XAl in healthcare, and its analysis focuses on two dimensions:
types of algorithms and interpretability methods, as well as strategies of clinical
integration. A total of 112 articles were reviewed consisting of peer-reviewed articles
published since 2018 and ending by 2025 which continued to be peer-reviewed till 2025
and then considered in the following databases; PubMed, Scopus, IEEE Xplore, and Web
of Science. Papers were grouped by the domain of application (radiology, pathology,
genomics, etc.), the type of Al model (decision trees, deep neural networks, etc.), and
explanation technique (SHAP, LIME, attentions, etc.). The results indicate that SHAP
and attention-based models are common and widely applicable to their compromise
between fidelity and usability. Among the key challenges have been mentioned such
as accuracy interpretability tradeoff, data bias, absence of standardized evaluation
metrics and an insufficient clinical workflow. The conclusion to the review presents
a proposed unfolding maturity model of using human-in-the-loop XAl and future
research recommendations to include the presence of domain-specific interpretability
benchmarks and the regulatory-compliant XAl systems. The presented work will serve as
an apt guide to the development of trusted and transparent Al in healthcare.
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INTRODUCTION

The fast spread of Artificial Intelligence (Al) in
healthcare has also resulted in revolutionary changes in
the variety of applications such as disease diagnosis, risk
stratification, treatment planning, and patient-specific
monitoring among others. People have shown that deep
learning models are more successful in manipulating
complex data modalities like medical images, genomics,
and electronic health records (EHRs). Nevertheless,
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their extensive implantation in clinical settings has been
a seen to be minimal because of the mystic nature of
these models, wherein the premise generating such
predictions is not revealed. This untransparency exposes
dangerous ethical, legal and clinical threats particularly
in high-stake situations like detection of cancer, Triage
in ICU or drug dosing. Lack of a clear view of how models
behave causes healthcare professionals problems with
verification, confidence and justification of decisions
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made by Al. These fears have inspired the development
of Explainable Artificial Intelligence (XAl), which would
aim at producing models which can be understood by
human users, especially clinicians and government
regulators, with regard to the internal logic and outputs
of the models.

Nevertheless, work on XAl in the field of healthcare has
inspired a considerable level of interest, but available
investigations have a number of limitations. First, a lot
of research on the subject of algorithmic explanation
methodology is narrow in the sense that they do not
consider usability in clinical settings (during workflow)
and how they can be used to clinically instruct patients.
Second, such regularized criteria to measure the quality,
relevance of the explanations or impact to medical
decisions do not exist. Third, the large majority of reviews
so far have focused on technical approaches or general
Al in medicine but did not discuss broad, domain-based
overview of XAl models, interpretability strategies,
and in-clinic integration paths. The given systematic
review will fill these gaps by delivering a comprehensive
synthesis of 112 peer-reviewed articles published in the
period between 2018 and 2025. It classifies the literature
according to the Al model type (e.g. decision trees,
neural networks), explanation approaches (e.g. SHAP,
LIME, Grad-CAM, attention mechanisms), and fields of
application (e.g. radiology, pathology, genomics ). The
review also points out the latest trends, speaks about
the practical issues of utilizing XAl in actual clinical
practice, and specifies the strategic potentials of further
research and the development of regulations.

Recent research by Zhang et al.[" underlines that the
ability to achieve explainability without compromising
performance is important in terms of gaining clinicians
trust and guaranteeing safe implementation of Al systems
in the clinical setting of critical applications. This paper
synthesizes current research on XAl in healthcare in
both a technical and translational style, which will add a
thorough picture of how the field is developing and how
it should develop.

RELATED WORK

Hypertrophy of the transparency and understandability
of Al models in clinical fields has turned into an import-
ant subject of research in recent years, and the aspect
of explainability is very crucial in clinical decision-mak-
ing. Such post-hoc methods of interpretability as the
Local Interpretable Model-Agnostic Explanations (LIME)
approach developed by Ribeiro et al.?] have now given
a basis to directly create local surrogate models that
can explain individual predictions regardless of underly-

ing the model. Expanding on the theory of cooperative
games, SHapley Additive exPlanations (SHAP) formulated
by Lundberg and Lee! provide globally and locally con-
sistent and theoretically rigorous feature attributions,
and they have been popular in numerous applications of
electronic health recording (EHR) such as prediction of
sepsis and risk of readmission. Gradient-weighted Class
Activation Mapping (Grad-CAM)¥ has become an effec-
tive visual explanation method in the field of medical
imaging, which can show a significant area in the image
that plays key roles in the decision process of a convo-
lutional neural network (CNN). Such techniques enable
clinicians to access model decisions and review with
highlighted regions to increase clinical trust between
radiologists and pathologists. Moreover, attention mech-
anisms implemented in transformer/LSTM-based models
not only have had great potential in genomics and oncol-
ogy/pathology and provide a trade-off between model
performance and interpretability.

These advancements notwithstanding, there are still
huge disparities. The major limitation on many studies
is a narrower scope of focusing on algorithm develop-
ment and paying little attention to how the explanation
can be addressed as usable in clinical practice, where
various factors, including cognitive load, limited time,
interface design, and so on are essential. Even more,
there is no agreement on the quantitative metrics to
measure the quality or utility of treatments, which
precludes inter-study comparison and benchmarking to
reality.[! Furthermore, not many frameworks are suffi-
cient to tackle the questions of integrating XAl in the
clinical practices, such as electronical health systems,
sovereign boundaries, and the communication between
the clinicians and the Al systems. Previous surveys (e.g.
Holzinger et al..l) presented conceptual bases of ex-
plainable Al in medicine and were not structured to com-
prehensively cover empirical practice. Tjoa and Guanl”!
reviewed interpretability methods in deep learning, but
this analysis was mainly technical, and thus it provided
little information on how to implement these methods
or demonstrate clinical validity. Contrastingly, this re-
view intends to fill this gap by extensively categorizing
the methods of XAl, determining the feasible obstacles
to adoption and defining strategies of integration that
can comply with clinical and regulatory requirements.

METHODOLOGY

This review follows a systematic and plausible process
on locating, choosing, and analyzing the literature
related to the topic of interest, which in this case was
Explainable Artificial Intelligence (XAl) in healthcare.
The methodology describes a designed research method,
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well defined inclusion and exclusion criteria and a well-
defined data extraction protocol.

Search Strategy

The general literature was conducted with the help
of four large academic sources: IEEE Xplore, PubMed,
Scopus, and Web of Science. Articles were searched in
January 2018- June 2025. The query syntax used the
keywords and Boolean operators to cover a non-focused,
but narrow corpus:

“Explainable Artificial Intelligence” OR “XAI” OR
“interpretable Al” AND (“healthcare” OR “clinical
decision support” OR “medical diagnostics”)

Other filters narrowed down to journal articles,
conference papers and peer-reviewed reviews. Snowball
sampling helped finding other references in the
bibliographies of related papers.

Inclusion and Exclusion Criteria

To guarantee the relevance and quality of the literature,
the listed below criteria were imposed:

Inclusion Criteria:

o Articles of January 2018 to June 2025, through
peer-reviewed.

« Publications dealing directly with XAl, as applied
to healthcare.

« Articles thatinvolve the development of Al models
as well as at least one of the Al interpretability
approaches.

« Applications that include organized (e.g., EHR),
semi organized (e.g., genomics), or unstructured
data (e.g., medical imaging).

Exclusion Criteria:

o Publications through non-English languages.

o Greyleturer white
paper).

e Research of black-boxes that do not give
interpretability or explanation strategies.

(preprints, manuskrifter,

« Articles with no implications of healthcare in
general-purpose XAl.

Data Extraction and Categorization

Information contained in the qualifying studies was
derived and coded systematically in accordance with
a predetermined template. Every study was confirmed
according to the following dimensions:
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o Type of Al Model: Decision tree, gradient
boosting, deep neural network (CNNs, RNNs),
transformer models, and so on.

o Application Domain: Radiology, pathology,
oncology, genomics, EHR-based diagnostics, etc.

« Technique of interpretability: SHAP, LIME, Grad-
CAM, attention mechanisms, counterfactual
explanations, etc.

o Evaluation Measures:
developmental clinical
agreement etc.

Fidelity,
utility,

readability,
human-Al

e Deployment: experimental research, simulated
clinical context or actual application in a clinical
setting.

As possible, the studies were also evaluated on finding
the presence of human-in-the-loop evaluation, clinician
feedback, or regulatory factors (e.g., HIPAA, GDPR, FDA
readiness).®

One can quantitatively aggregate (e.g., frequency of
particular XAl techniques) or qualitatively perform a
thematic analysis to define trends, gaps, and patterns
across domains based on the extracted data. After using
inclusion and exclusion criteria in four large databases of
academic materials, a total of 112 studies were obtained
as shown in Figure 1.

Records identified through
< database searching (n = 657)
o IEEE Xplore (n =212)
‘-E Scopus (n = 246)
g PubMed (n =189}
= Web of Science (n =210)
. Records after duplicates Records excluded
£ removed (n = 764) (non-healthcare,
§ duplicates, etc.) 20)
g ! (n=502)
%)
== Records screened based
on title and abstract
(n=764) Full-text articles
excluded, with
R l reasons (n =150
B Full-text articles excidud | | Non-English
= for eligibility (n =262 (n =_23) n
i No interpretability
i (n=88)
Studies included in Black-box only
qualitative synthesis (n=39)
(n=112)
Studies included in

Fig. 1. PRISMA Flow Diagram for Literature
Selection
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TAXONOMY OF XAl ALGORITHMS IN HEALTHCARE

To assess the number and maturity of Explainable
Artificial Intelligence (XAl) applications in healthcare,
the following section shows a structurally taxonomic
overview of the groupings of models and interpretability
methods. The taxonomy is based on the fact that
there are models based on innate interpretability and
models based on post-hoc explanation structures. It also
categorises widely used XAl methods based on type,
functioning, and popularity in literature.

Model Categories

The application of XAl models in healthcare is describable in
two broad categories i.e. interpretable-by-design and post-
hoc explainability models. XAl models in healthcare can be
broadly divided into (see Figure 2): interpretable-by-design
and post-hoc explainability models (see Figure 2).

By nature, interpretable-by-design models allow being
transparent in their decision process. The models are
defined to be simple, and to have either a rule-based or
an additive structure but in either case, the contribution
of the features can be examined directly, and the logical
reasoning axioms can be traced.

o Examples:

o Decision Trees decision trees are nested and
represent node-based decision rules.

e Generalized Additive Models (GAMs) - the
smooth effect of single features through additive
functions.

+ Rule-Based Classifiersbetter known as logical
nouns to know it better, these classifiers may
be described as logical nouns to know it better,
these classifiers are based on nouns to know
it better, based on a logical nouns to know it
better, this type of classifier is often seen in
clinical guidelines.

Post-hoc explainable models is a model which has a
complicated internal procedure that is not interpretable
yet which can be clarified about externally through

provisional methods. They are normally related to good
predictive performance with poor transparency.

o Examples:

« Deep Neural Networks (DNNs) - high dimensional
representation of imaging and sequential data.

e Support Vector Machines (SVM)s- hyperplane
classifiers (kernel-based and relatively non-
interpretable).

e e.g., Gradient Boosted Trees (e.g., XGBoost)
structural ensemble models of non-linear feature
interactions.

Model Categories

J\
\/ X

Interpretable- Post-hoc
by-design models  explainability
models
Ly Decision Trees Deep Neursl
: Networks
Generalized
> Additive Models
Support
—>  Vector
Rule-Based Machines
Classifiers
Gradient
> Boosted
Trees

Fig. 2. Taxonomy of XAl Model Categories in
Healthcare

Commonly Used XAl Techniques

The table below is a summary of the popular types of XAl
methods used in healthcare, their purpose, and so-far
popularity (Table 1):

Table 1:Comparison of Commonly Used Explainable Al (XAl) Techniques in Healthcare

Technique Type Description Popularity

SHAP Post-hoc Computes additive feature attributions based on Shapley values from coop- | High
erative game theory. Offers both local and global interpretability.

LIME Post-hoc Builds a local surrogate model (usually linear) around a prediction instance High

to approximate its decision boundary.

Attention Mecha- Intrinsic

Highlights salient parts of input data (e.g., words, image patches) that influ- | Medium
nisms ence prediction. Built into model architecture.
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Technique Type Description Popularity
Grad-CAM Post-hoc Generates class activation maps by using gradients flowing into the final High
(Visual) convolutional layer of a CNN.
Anchors Model-agnos- | Produces high-precision if-then rules that “anchor” the prediction for a given | Low
tic input. Designed for local explanation.

These methods differ as to the computational cost,
compatibility with model, and human interpretability.
SHAP and LIME are model-agnostic and popular because
of its flexibility to the domain of application (e.g.,
imaging, EHR). The attention mechanisms are intrinsic
but only applicable in certain architecture, like a
transformer or attention-based RNN.C1 Grad-CAM is
targeted at convolutional-based models in medical
imaging, but Anchors have a lower level of utilization
in clinical research because they lack useful tools and
scalability at the current stage.

APPLICATION DOMAINS OF XAl IN HEALTHCARE

XAl is used in diverse areas in healthcare, which have
different data and interpretability requirements. The
main application regions as presented in Figure 3 are
radiology, EHR analysis, genomics, and predictive
prognosis that all can be enhanced with domain-specific
explanation strategies.

Radiology and Medical Imaging

In radiology, XAl tools are used to explain CNNs outputs
of tasks like tumor detection and fracture classification,
such as Grad-CAM and Integrated Gradients. Such visual
heatmaps also emphasize key areas of the image, and
thus radiologists can check the predictions with respect
to anatomical landmarks and biomarkers.

Electronic Health Records (EHR)

Structured EHR data is most often handled with the help
of tree-based learning (e.g., XGBoost, Random Forests).
The SHAP values suggest the risk about individuals and
the population and attach the importance to several
variables (age, vital signs, and lab reports) - available
to forecast outcomes (sepsis, ICU transfer, or read-
mission).["®

enomics and Bioinformatics

High-dimensional genomic data are subjected to XAl
techniques specifically of using attention mechanisms
as transformer or LSTM-based structures. Using such
models one can determine gene sequences that are most
closely related with disease phenotypes and discover
biomarkers and practice personalized medicine.
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Predictive Diagnosis and Prognosis

In time-to-event modeling (e.g., survival analysis),
XAl tools such as LIME and SHAP explain how clinical
or genomic predictors have affected the patient
outcomes. This is helpful in oncology and cardiology risk
stratification, enhancing transparency of the models and
clinical faith.

Electronic Health
Records (EHR)

e.g. XGBoost, SHAP

Radiology and
Medical Imaging

e.g. Grad-CAM,
Integrated Gradients

Application Domains
of XAl in Healthcare

v iR’
Genomics and
Bloinformatics

Predictive Diagnosis
and Prognosis

e.g. Attention-based

e.g. LIME, SHAP
models

Fig. 3: Application Domains of Explainable Al (XAl)
in Healthcare

EVALUATION METRICS AND BENCHMARKS

The deployment of Explainable Artificial Intelligence
(XAl) in healthcare would be successful only when the
criteria of model accuracy are augmented with the
quality, applicability, and usability of model explanations.
Unlike, traditional machine learning evaluation (e.g.
Accuracy, precision, AUC), XAl requires that metrics not
only assess the alignment between explanations, human
understanding, and clinical outcomes. In this section,
some important assessment metrics, which are popular
in XAl research, will be suggested, and their strengths
and weaknesses introduced.!""!

Although there are studies which provide quantitative
fidelity scores somewhere (e.g. R 2 surrogate and original
model) others are based on qualitative user studies to
cover trust and comprehensibility. Nevertheless, the
evaluation of XAl methods in healthcare does not have
a common benchmark or a standard procedure yet.
This non- standardization of the definitions deteriorates
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Table 2: Evaluation Metrics for Explainable Al (XAl) in Healthcare

Metric

Purpose

Notes

Fidelity

Measures how accurately the ex-
planation reflects the model’s in-
ternal logic and behavior.

High-fidelity explanations closely approximate the decision-making pro-
cess of the underlying model. Applicable to both local and global inter-
pretations. Often computed via perturbation-based tests or approxima-
tion error.

Comprehensibility

Evaluates how easily a human
(e.g., clinician) can interpret and
understand the explanation.

Highly subjective and user-dependent. What is comprehensible to a
data scientist may not be so for a physician. Influenced by explanation
format (textual, visual, numeric) and cognitive load.

Trust Calibration

Assesses alignment between hu-
man confidence and model cor-
rectness.

Measured through human-Al agreement in controlled experiments or
surveys. A key indicator of how explanations influence clinician trust
and reliance. Also linked to decision override rates in clinical workflows.

Clinical Utility

Gauges the extent to which the
explanation improves clinical de-

Often underreported. Best evaluated via clinical trials, simulations, or
retrospective audits. Includes metrics like diagnostic accuracy gain, de-

cision-making.

cision time reduction, or treatment compliance.

the comparability and generalizability of the search
findings across areas.

Identification of domain-specific means of evaluation,
the inclusion of clinicians in the feedback loop, and
the design of measures of explanation to the regulatory
standards (e.g., approval by the FDA/EMA) needs to be
addressed in the future. It will also play a crucial role
to speed up the adoption of trustworthy Al because of
the establishment of benchmark datasets and simulation
environments that will support XAl in the context of
healthcare in an open-source manner.

CHALLENGES AND LIMITATIONS

Although Explainable Artificial Intelligence (XAl) is
increasingly used in the healthcare field, there exist
key technical, operational, and regulatory barriers
to translation to clinical practice at the scale. These
limitations may be classified as model-level constraints,
data-level constraints, or system-level constraints as you
see in Figure 4 and it is this classifications that need to
be fulfilled to enable deployment of XAl in a trustworthy
and effective manner.

Trade-off Between Accuracy and Interpretability

Trade-offs between model accuracy and interpretability
can be counted as one of the most fundamental ones
in XAl. Although interpretable models e.g. decision
trees, rule-based systems and linear models provide
more interpretable decision-making process, there is
a lower likelihood of them having the representational
advantages that are needed to capture nonlinear and
high dimensional healthcare data. On the contrary,
deep neural networks and ensemble based techniques
provide better predictive accuracy but are black-boxes

which restrict their applicability in clinical decision-
making. Such a trade-off begs the question as to
whether explainability should have to be a trade-off of
performance or whether there is middle ground to be
had by hybridization.

Lack of Standardized Evaluation Frameworks

None of these frameworks and benchmarks are universal
when it comes to the XAl explanation. Fidelity as well
as comprehensibility and trust calibration are measured
inconsistently across studies, so there is little chance
of comparing approaches to validate them. Besides,
the majority of the available measures are either
procedures carried out in an artificial environment or on
a small scale sample numbers, which might make them
poor advances. There is also a lack of domain-specific
assessment standards and reference databases that
also hinder regulatory acceptance and integration into
clinical practice.

Data Heterogeneity and Bias

The healthcare data is naturally incomplete,
heterogeneous, and frequently biased because of the
demographic concentration, the absence of records,
or unique coding requirements at the same institution
[12]. Such discrepancies do not only undermine model
effectiveness, but also undermine the trustworthiness
of explanations produced by XAl systems. To give
an example, SHAP or LIME explanations might differ
drastically when provided on the subgroups of the data,
leading toincorrect interpretations or the overconfidence
of the model output. The newest XAl research area is
still underdeveloped when it comes to bias mitigation
and datasets auditing.
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Clinical Acceptance and Usability

Nevertheless, although XAl has technical growth, clinical
adoption is insufficient. Visuals of saliency maps or
statistical feature attributions are usually not enough
because the results have to be placed in context by being
presented in the context of clinical rules or a patient
history. Moreover, XAl systems are seldom tested in terms
of usability by domain experts, which makes the interface
not always matching decision workflows and cognitive
preferences of clinicians. The absence of clinician-in-
the-loop assessment in the majority of research findings
suggests that the gap exists between scholarly progress
in the field and practical implementation.

Regulatory and Ethical Barriers

Adherence to the healthcare regulations like HIPAA
(Health Insurance Portability and Accountability Act) in
the U.S. or GDPR (General Data Protection Regulation)
in Europe introduces a large degree of complexity to
XAl systems deployment. Such regulations demand
explainability of the safety as well as legal accountability
and rights of a patient. Nonetheless, the majority of
existing XAl-models are not approved (certified) as
medical devices and are not auditable. To fill out this
gap, there should be a cross-disciplinary cooperation
between developers of Al, clinicians and regulatory
agencies to develop norms of explainability with both
technical and ethical stability.

Regulatory Barriers

Clinical Acceptance

Trade-off Between Accuracy
and Interpretability

Trade-off Between Accuracy and Interpretability

Challenges of XAl in Healthcare

Fig. 4: Hierarchical Representation of Key Challenges
in Implementing XAl in Healthcare

CLINICAL INTEGRATION STRATEGIES

Unlike transparency of algorithms, the success of
Explainable Al (XAl) in healthcare may be linked not
only to efficient integration of this technology in clinical

processes but also to the nature of the clinical processes
themselves. A multi disciplinary approach of usability,
clinical applicability, and ethics will help to ensure
successful adoption.

Human-in-the-Loop (HITL) Interfaces

An old trend in improving HITL systems is making
clinicians an active participant in their adoption by
providing interpretable dashboards with SHAP-based
feature importance, local risk visualizations, and what-
if simulations. These tools can increase the trust and
enable clinicians to provide feedback to Al-driven
decisions via feedback loops.

Multimodal XAl Systems

Multimodal XAl offers layers of interpretability by
integrating structured (e.g. EHR), unstructured (e.g.
clinical notes) and visual (e.g. imaging) data. Reasons
can be aggregates of Grad-CAM heatmaps, explanatory
text, and SHAP values thereby facilitating better, whole-
brained diagnoses.

Real-World Case Studies

Effective implementations reveal the effect of XAl:

« Mayo Clinic applied the prediction of sepsis
through EHRs by using SHAP-enhanced models,
which improved clinical response.

e NIH used Grad-CAM on CNN in the detection
of pediatric pneumonia to increase class
detectability and confidence in the diagnosis.

Such instances stress the necessity of domain-specific
adjusting and cooperation between clinicians.

Ethical Frameworks

XAl should fit within fairness, accountability, and
transparency (FAT). These are alleviating demographic
bias, the model auditability, and providing clinically
significant explanations. Ethical design can be supported
by frameworks such as Al4People, IEEE EAD, and signing
up with FDA GMLP and GDPR is essential to meet
regulatory acceptance.

DiscussiON

As outlined in this review, on one hand, XAl methods are
growing at an elevated rate, but on the other hand, their
clinical implementation is curtailed. SHAP and attention
mechanisms thrive because of their attainment of both
accuracy and interpretability. XGBoosts and other tree-
based solutions are favored when using structured
data (e.g., EHRs) whereas CNNs and transformers are
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more relevant in unstructured data environments (e.g.,
radiology and genomics).

Nevertheless, there remain important obstacles:

1. Interpretability-Accuracy Tradeoff: Independent
or simple models are easy to interpret, but
usually perform poorly, compared to deep
models that are more prone to poor performance
on challenging medical problems, in addition to
lack of interpretability.

2. Absence of Consistent Measures: There is no
internationally accepted set of measures by
which to compare and benchmark the models
across areas (e.g. fidelity, lack of plausibility).

3. Usability and Trust: A large proportion of XAl
tools fail to fit to the workflow of a clinician,
thus showing a low usage rate. Interfaces have
to be in tandem with clinical reasoning, as well
as improving decision making.

4. Regulatory Uncertainty: There is ambiguity in
FDA/EMA guidelines as to explainability and this
acts as a deterrent to the deployment in the real
world, particular in high-risk applications.

Regardless of these obstacles, promising integration
programs are on the rise, such as human-in-the-
loop (HITL) systems, and multimodal interpretability
dashboards. The future research must focus on:

» Commercially feasible, auditable XAl Frameworks
« Clinician-Al co-learning platforms

o Ethical compliance and standardization of
regulations

In the healthcare context, it will be essential to reduce
the chasm between technical innovation and clinical
application and, therefore, adoption of XAl will be
reliable.

FUTURE DIRECTIONS

Future research on Explainable Al (XAl) to medicine
ought to focus on clinical relevance, ethical design,
and regulatory harmonization as Explainable Al (XAl)
in healthcare continues to develop. The next main
directions will determine its responsible implementation:

Specificity Criterion of Interpretability

These formulas of explaining things in a generic way
do not take into consideration the peculiarities of
nursing specialties. Subsequent frameworks ought to
be well aligned to user function--e.g. visual overlays to

radiologists or longitudinal information to oncologists--
and should be co-designed with experts.

Method of Causal Explanations

Contemporary XAl is largely correlational. Robust
explanations can be improved by integrating causal
inference (e.g. counterfactuals, structural models) in
situations involving complex diagnostics and probabilistic
prediction of the effects of treatments.

Clinical Simulations and DTs Digital Twins

When used together, XAl, and digital twins can give
patient-specific insights about their context. The
personalization and proactive nature of clinical decision-
making can be made through the incorporation of
interpretable logic into a simulation environment.

Co-Learning Clinician Al Platforms

Bi-directional adaptation Co-learning platforms must
enable both clinicians and models to adapt to one
another in two directions: to interpret the Al outputs
according to the feedback received and tailor models
accordingly.

Regulation policies and certification procedures

The standardization of the XAl certification according to
FDA, EMA, and ISO/IEC standards is required to eliminate
the barriers to deployment. These must contain the
standards of interpretability, bias reduction, and the
human usability.

These methods, in combination, will allow XAl to
develop into a system that is clinically effective,
ethically responsible, and legal-ready network of smart
healthcare systems.

CONCLUSION

In healthcare, Explainable Artificial Intelligence ( XAl )
has become one of the significant pillars of the safe,
ethical and efficient application of Al technologies.
With the rise of Al into clinical decisions, diagnosis
and treatment design, transparency, accountability
and humanity-centered design have become essential
criteria. XAl gives answers to these concerns, as it
provides interpretable explanations of the model
behavior, thus encouraging trust, enhancing usability,
and making regulatory compliance easier. The presented
systematic review has demonstrated the taxonomy of
XAl models, techniques, and application areas in the
context of healthcare that revealed the widespread
application of such methods as SHAP, LIME, Grad-CAM,
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and attention mechanisms. It has also discussed the
issues that stand in the way of clinical implementation
such as the accuracy-interpretability tradeoff, absence
of standardized measures of evaluation, heterogeneity of
data, and minimal clinician input. Moreover, it described
feasible clinical associated integration plans and showed
future directions like causal reality, computerized twins,
and XAl confirmation systems.

Although the technical development of XAl has been
significant, it will still likely require connecting the
algorithm development world to the healthcare needs
world before it can make any real clinical difference.
This will involve multidisciplinary cooperation, design
area specific, as well as ethical governance, and
regulatory preparedness, and user-centric examination.
To sum up, the predictive accuracy is not the only
factor defining the future of Al in healthcare, but there
is also the transparency, fairness, clinical relevance of
explanations. The development of XAl into the clinical
decision-making setting at the bedside is not just a
technology target but a moral obligation in the age of
smart medicine.
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