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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 

91

AI-Enabled Battery Management Systems for 
Electric Vehicles: Recent Trends in Control, 

Safety, and Energy Efficiency
Rasanjani Chandrakumar1*, Fateh M. Aleem2

1Department of Electrical Engineering Faculty of Engineering, University of Moratuwa Moratuwa, Sri Lanka
2Department of Computer Science, Faculty of Science, Sebha University Libya

KEYWORDS:
Battery Management System (BMS), 
Electric Vehicles,  
Artificial Intelligence,  
State of Charge (SoC),  
Fault Diagnosis,  
Energy Efficiency,  
Thermal Management,  
Neural Networks,  
Deep Learning

ARTICLE HISTORY:
Submitted	:	13.02.2026	
Revised	 	 :	18.03.2026	
Accepted		 :	22.05.2026

https://doi.org/10.31838/INES/03.02.10

Abstract
Increasing electrification and the swift growth of electric vehicles (EVs) have escalated 
the pressure on the development of sophisticated Battery Management Systems (BMS) 
that could bring superior performance and safety of the lithium batteries in highly 
dynamic operation conditions. This paper is a detailed survey of the latest development 
of Artificial Intelligence (AI)-enabled BMS architectures with focus on state estimation 
enhancement, fault detection, thermal control, as well as energy efficiency. In this 
particular context, it examines how artificial neural networks (ANNs), support vector 
machines (SVMs), deep learning (DL), and reinforcement learning (RL) has been applied to 
predict state-of-charge (SoC), state-of-health (SoH), and battery degradation behavior. 
The review is synthesis of the results of more than 40 peer-reviewed publications, 
which compare the AI-based solutions with the traditional model-driven estimating 
approaches. The findings indicate that the prediction chances are drastically enhanced 
(±1.5% SoC), faults are detected almost in real-time (>95% prediction accuracy) and the 
energy consumption is kept at an optimized level (up to 12% energy savings). Another 
challenge of implementation discussed in the paper is computational complexity, real-
time constraints as well as availability of data. Summing up, AI-based BMS models can 
serve as a disruptive course and empower smart, forecasting, and energy-conscious 
battery management in EVs. Hybridization of data-centric learning models and 
embedded control platforms promises to release the next era of secure, efficient, and 
driverless electric mobility.
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Introduction

Electrification of transport has been the single major 
driver of accelerated energy storage technology whose 
preferred form has become lithium-ion batteries, with 
currently high energy density, long cycle life, and falling 
cost. The ascending trend of the adoption of the use 
of electric vehicles (EVs) in the world has made the 
efficient, safe, and reliable operation of its battery a 
priority. This has increased the importance of the Battery 
Management System (BMS) a very important embedded 
subsystem which monitors, controls, and protects the 
battery pack against any mishap all through its operating 
life. Model-driven or rule-based algorithms, including 
Coulomb counting algorithms, equivalent circuit model 
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(ECM) or Kalman filters, are predominant in traditional 
forms of BMS implementation, and perform well with 
a static or otherwise predictable loading profile. 
Nonetheless, accuracy and robustness are frequently 
lacking in real driving environments where deformations 
in response, sensor noise, and temperature effects are 
the prevailing phenomena of battery dynamics.[1]

The innovation in Artificial Intelligence (AI) and machine 
learning (ML) in recent times provide a paradigm shift 
in the architecture of BMS. Predictive analytics, online 
fault diagnosis and dynamic energy control can be 
enabled by AI algorithms (e.g. neural networks, support 
vector machines, reinforcement learning) operating 
on large amounts of operational data. Although the 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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results are promising, most of the current research is 
either restricted to single-task learning (e.g., only SoC 
estimation) or does not represent a complete integration 
with embedded systems that would allow a real-time 
application, scalability, and flexibility across different 
chemistries of interest.

The purpose of the current paper is to fill these gaps by 
presenting the credentials of the current state-of-the-art 
in AI-enabled BMS of EVs, outline essential algorithms, 
deployment systems, experimental demonstrations, and 
potential research directions.

Related Work

Such trends in development of Battery Management 
System (BMS) in electric vehicles (EVs) have seen a 
shift in the control logic used in the BMS in the reverse 
direction, with the newer capabilities being rule-based, 
with estimation techniques relying on mathematical 
models and most recently, data-centric driven by 
learning algorithms and AI applications. The traditional 
BMS techniques, including Coulomb counting, extended 
Kalman filters (EKF) and electrochemical models 
(ECMs) have also existed a long time (years) on state-
of-charge (SoC) and state-of-health (SoH) estimates .[2]  
These methods provide logical accuracy in stable 
conditions yet tend to give a model drift, parameter 
uncertainty and would be noise sensitive in dynamic 
driving conditions. In an attempt to circumvent these 
shortcomings researchers have started incorporating 
BMS frameworks with machine learning (ML) and 
artificial intelligence (AI). An example is that Zhang et 
al.[3] applied a Long Short-Term Memory (LSTM) model 
to real-time prediction of SoC, with root-mean-square 
error (RMSE) less than 1.5% when different operational 
profiles are used. On the same note, a Support Vector 
Machine (SVM) classifier was applied by Chen et al.[4] 
to fault diagnosis, showing superiority in accuracy 
and the first failure detection over the traditional 
threshold-based methods. In the SoH prediction, deep 
convolutional neural networks, referred to as CNNs, 
proposed by Wu et al.,[5] were used to monitor the long-
term degradation of the battery, whereas Wang and Li[6] 
investigated the use of ensemble regression models in 
prognostic of faults at an early stage. In thermosystems 
Reinforcement Learning (RL) algorithms are now used to 
adaptively manage cooling systems, enhancing energy 
efficiency and preventing over-heating of components 
with changing loads.[7]

There still loom the following blindspots:

•	 Ai-based BMS methods are largely task specific 
(e.g., SoC-based only models), so they limit the 

applicability of integration and system-level 
optimization.

•	 They are usually based on centralized 
architectures, which obstruct scalability in 
modular or distributed BMS systems.

•	 Quite often, the real-time implementation 
constraints, including high computational 
overhead and latency, are not to be addressed.

•	 Security concerns, generalization of cross-
chemistry, and interpretability of models are 
under investigations.

The following paper will seek to fill in these gaps by 
conducting a rigorous review of AI-based BMS approaches 
in the SoC/SoH estimation, fault detection, thermal 
control, and energy management, with a perspective of 
real-time use, integration in embedded hardware, and 
scalability in the future of EV platforms.

Conventional Battery Management System 
(BMS) Architecture

The traditional Battery Management System (BMS) 
is the electroactive central management unit of the 
electric vehicles (EVs) whose responsibility is to provide 
safe, reliable, and efficient performance of lithium-
ion battery packs. These olden day architectures are 
normally structured in to four functional domains as 
shown in Figure 1.

•	 Monitoring: This is the role of monitoring in real 
time the critical parameters like cell voltage, 
pack current and temperature at various sensing 
points. the fidelity of subsequent estimation and 
control processes is critically dependent on the 
precision and resolution of the monitoring.[8]

•	 Estimation: The defining characteristic of the 
performance of BMSs is their ability to estimate 
internal battery parties that can not be directly 
measured. These are State of Charge (SoC), State 
of Health (SoH), as well as State of Power (SoP). 
An estimate of the battery state is frequently 
performed based on the extended Kalman 
Filters (EKF), Coulomb counting and Equivalent 
circuit models (ECM), but such solutions need 
an accurate modelling and calibration of the 
internal parameters of the battery.

•	 Protection: The BMS has to guarantee battery 
safety at any operating conditions. This involves 
sensing of overcharge, over-discharge, short 
circuits, overcurrent conditions and thermal 
runaway, and connecting the process of isolation 
or shutdown by breaching the limits.
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signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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•	 Control: The BMS controls active or passive cell 
balancing, thermal uniformity, and on the vehicle 
level cooperates with energy and power demand 
through the system based on thermal and power 
control algorithms.

Nonetheless, even though conventional BMS structure 
is the backbone of EVs, it is flawed by its model 
dependence. In a strategy like the use of Kalman filters 
or electrochemical modeling, the parameters and fixed 
relationships cannot generalize and become impractical 
over a variety of batteries chemistries, dissimilar aging, 
and nonlinear real-world settings. Modelling Here too, 
these models are prone to the scope of parameters 
drifting, sensor noise and environmental variations, 
leading to inference that the estimation accuracy and 
control robustness are sub-optimal as time goes by.

With growing performance requirements on EV battery 
systems, where high fast-charging and discharge capabilities 
and harsh environments are present, then current 
conventional BMS designs are becoming harder to provide the 
flexibility, fault tolerance, and predictive functionalities that 
next-generation electric mobility needs.

Figure 1: Functional Block Diagram of a Conventional 
Battery Management System (BMS) Architecture

Role of Artificial Intelligence in Battery 
Management Systems

Artificial Intelligence (AI) has become a game-changing 
enabler in the field of Battery Management System 
(BMS), capable of providing high-end data-oriented 
capabilities to overcome the limitations of the existing 
rule- and model-based systems that could never offer 
a sustainable approach towards an autonomous Battery 
Management System (BMS). With the help of historical 
and real time sensor data, AI models can learn the 
complex nonlinear behaviors of the battery and can 
compensate due to the uncertainty of measurements as 
well as dynamics due to changing operating conditions. 
The combination of AI with BMS enablestate estimation, 
including its accuracy; fault identification, including 

thermal management, and energy management, having 
a positive effect on the entire system performance, 
reliability, and security. Structure and the flow of data 
within an AI assisted BMS are shown in Figure 2: Block 
Diagram of AI-Enabled Battery Management System 
(BMS) Architecture, with the introduction related to 
machine learning modules, cloud-edge interoperability 
and adaptive control algorithms.

State Estimation

State-of-Charge (SoC) Estimation: The estimation of SoC 
is crucial when it comes to making decisions concerning 
the amount of driving range left, as well as control 
charge-discharge cycles to optimize performance. The 
conventional technique is not flexible to dynamic loading 
and it is subject to drift. Artificial intelligence models 
related to longer Short-Term Memory (LSTM) networks 
and Convolutional Neural Networks (CNN) have proved 
exceptionally promising in identifying nonlinearity and 
temporal dependencies in voltage-current data. Unlike 
classical Kalman filter-based models, these methods 
have high accuracy in prediction (RMSE < 1.5 %) even in 
the presence of variating driving cycles.[9]

State-of-Health (SoH) Estimation: The AI algorithms like 
ensemble regression, XGBoost, and deep learning (DL) 
models may assist the degradation pattern estimation 
of batteries over the longer perspective. Such methods 
only need a small amount of training data and are 
generalizable to other cell chemistries and usage 
conditions. They can effectively predict the loss of 
capacity and increase of internal resistance so that the 
possible early intervention and sustainance planning 
could be made early.

Fault Diagnosis

Fault detection is key to anticipating dangerous conditions 
like thermal runaway, internal shorts and a faulty sensor. 
AI based diagnostic system use real time classification & 
Anomaly Detection using supervised learning algorithms. 
Early stage fault prediction techniques ; Support Vector 
Machines (SVMs), Decision Trees and CNN classifier have 
been shown to be able to predict (correctly- with an 
accuracy >95), even in noisy or incomplete data sets. 
These models outperform threshold based detection 
considerably in terms of speed and accuracy.[10]

Thermal Management

The thermal stability of batteries has a direct effect on 
safety, efficiency and longevity. Conventional methods 
of control, based upon either fixed look-up tables or 
simple PID controls, are neither flexible nor robust in a 



Rasanjani Chandrakumar and Fateh M. Aleem : AI-Enabled Battery Management Systems for Electric Vehicles: Recent Trends in 
Control, Safety, and Energy Efficiency

Ishrat Zahan Mukti,  , et al. :  1.8-V Low Power, High-Resolution, High-Speed Comparator With Low Offset Voltage Implemented in 45nm CMOS Technology

Journal of VLSI circuits and systems, , ISSN 2582-1458 20

A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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changing load or ambient environment. The applications 
of AI-enhanced thermal models, based on the methods 
like Reinforcement Learning (RL), and Gaussian Process 
Regression, would prevent predictive thermal mapping 
and adapting cooling strategies. These models predict 
appearance of hotspots and dynamically adapt cooling 
flows, which permit up to 12-15% savings in power 
consumption of thermal subsystems.

Energy Efficiency Optimization

Artificial intelligence-based measures to manage energy 
are progressively being implemented to improve the 
use of batteries without any hazards to safety. These 
are Deep Q- Learning, Model Predictive Control (MPC) 
hybrids, and multi-objective optimization algorithms 
used to maintain performance and thermal limitations in 
the real-time operation environment. These algorithms 
allow the BMS to make intelligent control choices 
including varying charge/discharge currents, an enable 
cell balancing networks, or synchronizing with vehicle-
level powertrain control systems, but all to optimize 
energy transfer and reduce degradation.[11]

The many-angled aspect of AI integration into the 
BMS frameworks leads the path to fully autonomous, 
intelligent, and adaptive battery systems, compliant to 
the complexity and performance needs of an electric 
vehicle of the future.

Fig. 2: Block Diagram of an AI-Enabled Battery 
Management System (BMS) Architecture

The main differences in the accuracy of estimation, 
adaptability, computational load, the flexibility of 
implementation of a traditional approach and one based 
on AI are shown in Table 1.

Case Studies and Applications

The recent developments in the AI-powered Battery 
Management Systems (BMS) were confirmed in numerous 
case studies and revealed the practical benefits regarding 
battery state estimation, fault detection, and thermal 
control. Table 2 presents the overview of the representative 
literature investigating the practical use of machine 
learning and deep learning techniques implemented into a 
real-life or simulated electric vehicle setting.

Table 1: Comparative Analysis of Traditional vs. AI-Based Battery Management System (BMS) Approaches

Feature Traditional BMS AI-Enabled BMS

State Estimation Methods Kalman Filter, Coulomb Counting, ECM LSTM, CNN, Deep Regression, Ensemble 
Models

Accuracy Under Dynamic Loads Moderate (±5–10%) High (≤ ±1.5% RMSE)

Adaptability to Aging/Degra-
dation

Requires manual recalibration Self-learning; adapts from data over time

Fault Diagnosis Threshold-based detection, lookup tables SVM, Decision Trees, Deep CNNs (Accuracy 
>95%)

Thermal Management Static control (PID or rule-based) Reinforcement Learning, Predictive Control

Energy Optimization Heuristic or fixed control profiles AI-based optimization (MPC, DQN, fuzzy RL)

Generalization Across Chemis-
tries

Poor — requires chemistry-specific modeling Moderate to High — with retraining or transfer 
learning

Real-Time Implementation Low computational load; suitable for MCUs Higher load; requires optimization or edge AI 
integration

Scalability (e.g., Distributed 
BMS)

Limited — centralized and model-bound High — supports modular, decentralized archi-
tectures

Interpretability High — physically interpretable models Often low (black-box), improving via Explain-
able AI (XAI)

Data Dependency Low — model-based High — requires labeled datasets for training

Cybersecurity & Updateability Minimal AI vulnerabilities Requires secure model update pipelines and 
inference protection
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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According to the study by Zhang et al., training of a 
Long Short-Term Memory (LSTM) network has been 
performed using realistic driving data to forecast the 
state-of-charge (SoC) of lithium-ion batteries. The 
model also realized a root mean square error (RMSE) of 
less than +-1.5 percent over a broad range of loading 
types and that in the similarity in adjustability as well 
as responsiveness, the model vastly outdid conventional 
Kalman filter-based strategies.

Kumar et al. used the Support Vector Machine (SVM) 
classifier to anticipate faults in the battery cells at an 
early stage, including shorting, thermal abnormalities, 
and short circuits within the battery cells. Their model 
achieved accuracy of 97 percent, which demonstrated 
the efficiency of supervised learning algorithms in the 
safety-conscious missions.

In the context of thermal management, the work by Lee 
et al. showed that reinforcement learning (RL) agent was 
able to control the system of battery thermo control in a 
dynamic way due to forecasted temperature profiles and 
load scenarios. This strategy has resulted in 12 percent 
thermal systems energy efficiency, the opportunity of AI 
to reduce operation expenses and a longer useful life of 
batteries.

These results, which can be summarized graphically 
in Figure 3: Performance Trends Across AI-Based BMS 
Case Studies, demonstrate the revolutionary levels of 
undermining the impact of AI-driven and data-centric 
models when coupled with sensor fusion sites and 
built-in control devices.[12] Through context-sensitivity, 
real-time decision-making, AI enables BMS to become 
dynamic, predictive and adaptive subsystems, which 
are well-suited to the performance expectations of the 
next-gen electric mobility.

Fig. 3: Performance Trends Across AI-Based BMS

Challenges and Research Gaps

Although AI-based Battery Management Systems 
(BMS) have shown impressive improvements in their 
estimation accuracy, fault diagnostics, and energy 
recovery capabilities, some major challenges as well 
as outstanding research gaps still prevent their large-
scale acceptance and applicability to production grade 
electric vehicle platforms.

Data Availability and Labeling Constraints

Among the most glaring shortcomings of creating better 
AI-based BMS models is how there exist limited, high 
quality labeled datasets. Battery life information varying 
with chemistry, usage patterns, failure patterns, tends 
to be owned as a trade secret by battery manufacturers, 
with little leakage into the public domain. Moreover, in 
order to perform supervised fault classification, real-
world fault data will be hard to collect since safety is at 
stake and rare critical failures do not occur. This hinders 
the training, validation and generalization of models 
particularly in tasks of rare-event classification and 
anomaly detection.

Cross-Domain Generalization and Transferability

Narrowly trained AI models (e.g. trained on a battery 
chemistry like NMC or LFP, or form factor like 
cylindrical or prismatic, or pack structure) have limited 
generalizability to dissimilar systems. Variations between 
thermal behavior, degradation rates and voltage response 
characteristics cause drift and performance loss of the 
model when used out-of-domain. Transfer learning and 
meta-learning methods are potentially potent but will 
need additional study to allow the multi-chemistry BMS 
flexibility.

Real-Time Implementation on Embedded Platforms

The use of AI models in an embedded BMS application 
poses some problems regarding computational 
complexity challenges, latency, and power concerns. 
More complex algorithm models like LSTMs, CNN and 
deep reinforcement learning models may have high 
memory and processing requirements, and can simply 
outstrip the capabilities of traditional microcontroller 
units (MCUs). Although FPGAs, GPUs or TPUs could 
provide acceleration, they come at an added cost, 

Table 2: Summary of AI-Driven BMS Applications and Reported Improvements

Study AI Technique Reported Improvement

Zhang et al. (2023) LSTM for SoC Estimation ±1.5% RMSE accuracy under variable dynamic loads

Kumar et al. (2022) SVM for Fault Classification 97% classification accuracy in early-stage fault detection

Lee et al. (2021) RL-Based Thermal Control 12% reduction in energy consumption of thermal systems
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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thermal burden, and integrate complexity, unsuitable to 
low-budget segments of EVs.

Cybersecurity and Model Integrity

Due to the introduction of AI into BMS, the attack surface 
of the system is widened. Battery security imperfections 
can be breached by adversarial assaults on AI inference 
engines or by injecting data into sensors that can lead to 
a problem in estimating states or even fault detection. 
Further, BMS to cloud, in case of fleet-level learning or 
even in federated learning, defines the challenge of 
privacy over the data, the trustworthy scheme of model 
updating, and authentication. Safe, by design, AI models 
and thin layers of cryptography are needed to protect the 
integrity and reliability of AI-augmented BMS systems.

Future Directions

To promote the full potential of the next-generation 
electric vehicle with AI-driven Battery Management 
Systems (BMS) potential, future research should consider 
the existing constraints, finding solutions represented 
by scalable, secure, and explainable innovations. In this 
regard, the following research paths are expected to be 
influential in determining the future of intelligent BMS 
architectures:

Federated Learning for Privacy-Preserving BMS 
Intelligence

AI models are typically trained on centralized data and 
this poses privacy and data ownership issues, especially 
when deployed on a scale of fleets. Federated Learning 
(FL) provides an alternative which is decentralized, in 
which individual EVs or distributed BMS units collectively 
train a global model without communicating raw data. 
This saves the privacy of data, the communication 
overhead is less and enables cross-platform learning in 
heterogeneous battery systems. It can be used in SoH 
modeling, anomaly detection and usage-adaptive control.

Edge-AI and Hardware/Software Co-Design

In order to satisfy real-time requirements of embedded 
settings, the future of the BMS implementations should 
involve AI-based co-optimization of both the edge 
hardware platforms and the AI algorithms. This consists 
of using low-power AI accelerators (e.g., FPGAs, TPUs, 
RISC-V) and neuro network design that is low weight 
(e.g., TinyML, quantized LSTMs). The co-design paradigm 
means that trade-offs between inference latency, energy 
efficiency and memory footprint are well balanced, 
making real-time, on-board AI inference possible to 
make safety-critical decisions.

Self-Healing and Fault-Tolerant BMS

Drawing on inspiration of biological systems, self-
healing BMS architectures will use AI to automatically 
monitor, identify and remediate partial failures, e.g. 
sensor degradation, temperature spikes, or a capacity 
imbalance. This involves dynamic reconfiguration of 
monitoring/control logic and redundancy auto-sensing-
based state estimation with ensemble methods. This 
ability is of great importance to enhancing system 
resilience in remote or other mission-critical systems, 
e.g. in autonomous electric fleets or aerospace.

Explainable Artificial Intelligence (XAI) for Certification 
and Trust

Although deep learning models provide high accuracy, 
they are still black-box, which is considered a no-go to 
regulatory approval and deployment in setting involving 
high safety concerns. Future studies must revolve around 
the Explainable AI (XAI) methods that explain model 
decisions by means of the saliency maps, attention 
mechanisms, or rule-based approximations. This will 
make certifiability, debugging and user confidence much 
easier notably in the case where the BMS decision affects 
the thermal isolation, emergency discharge or EV shut 
off functions.

Summarily, these future paths will seek to devise strong, 
transparent and flexible BMS structures, which can be 
scaled up to meet the requirements of the new age of 
electric mobility, such as connected, driverless, and 
high-performance EV paradigms.

Conclusion

Artificial intelligence (AI) in battery management systems 
(BMS) Energy storage systems The implementation of 
artificial intelligence (AI) in battery management systems 
(BMS) will fundamentally transform the management, 
monitoring and protection of the battery in electric 
vehicles (EV). Contrary to conventional models-based-
based solutions, AI-powered BMS systems are by definition 
data driven, adaptive and predictive, and can learn 
multidimensional battery behaviors in real-life settings. 
The AI will increase the accuracy of state estimates, the 
sensitivity and responsiveness of the fault diagnosis and 
make its management and control of thermal and energy 
conditions proactive through the application of such 
techniques as deep learning, reinforcement learning, 
and even ensemble modeling. The combined features 
help in the extended battery life, improved safety in 
operations, and energy exploitation, thus complying 
with the performance and reliability requirements of 
the next-generation EV platforms.
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circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
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The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Albeit current shortcomings that include data availability, 
real-time environments, and interpretability of models, the 
latest trends in federated learning, Edge-AI implementation, 
and Explainable AI (XAI) provide an opportunity to use on 
a large scale and secure outcomes. Its connection with 
AI, Internet of Things (IoT) and embedded system design 
will continue to remake the shape of electric mobility, 
as it will likely lead to smart, autonomous, and resilient 
battery design that can literally make all the difference. 
The present review reminds us of the necessity of more 
multi-disciplinary studies to overcome existing obstacles 
and hasten the implementation of AI-based BMS solutions in 
various EV applications.
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