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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.

Author’s e-mail: ishratzahanmukti16@gmail.com, ebad.eee.cuet@gmail.com, kou-
shikkumarbiswas13@gmail.com

How to cite this article:  Mukti IZ, Khan ER, Biswas KK. 1.8-V Low Power, High-Res-
olution, High-Speed Comparator With Low Offset Voltage Implemented in 
45nm CMOS Technology. Journal of VLSI Circuits and System Vol. 6, No. 1, 2024 (pp. 
19-24).

Journal of VLSI Circuits and Systems, ISSN: 2582-1458 Vol. 6, No. 1, 2024 (pp. 19-24) 

IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
Machine learning (ML) integration into chemical engineering has become the latest 
innovation and efficiency. It is transforming how chemical engineers conceive of, tackle 
and solve the most sophisticated problems, improve processes and take major decisions 
during manufacture. We’ll take a look at how this synergy is transforming the industry 
and driving leaps in innovation, as we explore current and forthcoming uses of machine 
learning in this arena. There is nothing new to the convergence of artificial intelligence 
and chemical engineering. But in the last few years, the resurgence of interest has 
resulted in tremendous breakthroughs as more and more data become available and 
as computational power gets cheaper. Machine learning is becoming an indispensable 
tool for the chemical engineer from process optimization to predictive maintenance. In 
this review we seek to provide a high level overview of the current status of machine 
learning in chemical engineering (wide application across multiple areas), its application 
in various domains, and its surging potential.
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Machine Learning evolution in Chemical 
Engineering

The road of machine learning in chemical engineering 
has a somewhat bumpy history of periods of excitement, 
excitement, and renewed vigor. 

Early Attempts and Setbacks

In the late 20th century, the potential of artificial 
intelligence for chemical engineering was quite exciting. 
The researchers imagined that AI could transform process 
design, optimization and control. Nevertheless, these 
early attempts were half-hearted, for technological 
constraints (insufficient computing power, data, and 
sophistication of algorithms) frequently missed the 
mark. Then disillusionment with the promises swept 
over many chemical engineers, as the field lied fallow, 
so to speak, for a time. This setback results from 
the complexity of chemical processes, and early AI 
systems, which cannot effectively solve multivariable  
problems.
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Various Renaisances of Machine Learning

The past decade has seen a remarkable resurgence in 
machine learning in chemical engineering. This revival 
can be attributed to several factors:

1. As computational power is exponentially 
increasing

2. Vast amounts of process data are available.

3. Machine learning algorithms advancement

4. Digitizing of chemical plants and the 
corresponding chemical laboratories

All of this has lit a spark under the butt of interest in 
using machine learning techniques to solve chemical 
engineering problems. ML has not been seen for a future 
thing but today is a practical tool to bring tangible 
benefits in different areas in the field.

Current Landscape

The current picture of machine learning in chemical 
engineering covers a wide range of applications and 
a wide spectrum of tools and frameworks.— Process 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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optimization and control•drug discovery, molecular 
design• Predicts reaction and synthesizes planning.• 
Discovery & characterization of materials Recent 
Applications and Future Trends The integration of 
machine learning (ML) into chemical engineering has 
ushered in a new era of innovation and efficiency. This 
transformative technology is reshaping how chemical 
engineers approach complex problems, optimize 
processes, and make critical decisions. As we delve into 
the recent applications and future trends of machine 
learning in this field, we’ll explore how this synergy 
is revolutionizing the industry and paving the way for 
groundbreaking advancements.

The convergence of artificial intelligence and chemical 
engineering is not a new concept. However, the 
resurgence of interest in recent years, fueled by 
increased data availability and computational power, 
has led to significant breakthroughs. 

High-throughput Virtual Screening

Machine learning algorithms are enabling high-
throughput virtual screening of potential materials, 
significantly reducing the time and cost associated with 
traditional experimental methods. This approach allows 
researchers to:

One of the primary challenges in applying machine 
learning to chemical engineering problems is the quality 
and availability of data. Issues include:

• Limited historical data for rare events or new 
processes

• Noisy or inconsistent data from industrial sensors

• Difficulty in obtaining labeled data for supervised 
learning tasks

To address these challenges, chsemical engineers must:

• Implement robust data collection and 
management systems

• Develop strategies for dealing with missing or 
noisy data

• Explore semi-supervised and unsupervised 
learning techniques

Model Interpretability and Explainability

• Safety and regulatory compliance require 
transparent decision-making

• Understanding the underlying physics and 
chemistry is crucial

• Stakeholders need to trust and validate model 
outputs

Efforts to improve model interpretability include:

• Developing explainable AI techniques

• Using simpler, more transparent models where 
possible

• Combining ML models with first-principles 
knowledge

Generalization and Extrapolation

Machine learning models are typically good at 
interpolating within the range of their training data but 
may struggle when extrapolating to new conditions. 
This limitation is particularly relevant in chemical 
engineering, where:

• Processes may operate under varying conditions

• New materials or reactions may be encountered

• Scaling from laboratory to industrial settings 
introduces new challenges

To improve generalization, researchers are exploring:

• Transfer learning techniques

• Hybrid models that combine ML with physical 
models

• Active learning approaches for continuous model 
updating

Scalability and Computational Resources

Deploying real time complex machine learning models 
are computationally intensive.• Training large models 
is expensive in terms of computational cost• The 
need of specialized hardware (e.g., GPUs) for deep 
learning• Lack of deployment of ML models to resource 
constrained environment. Overall, deployment of ML 
models have challenges and the strategic imperative for 
it pertains to the use of newer technologies like ML• 
Improving algorithm and model architectures, and/or 
• Improving algorithms and model architectures• Uses 
cloud computing and distributed computing resources. In 
the second set, we explore edge computing solutions for 
real time applications of machine learning in materials 
discovery and design is revolutionizing the way chemical 
engineers approach the development of new materials 
with desired properties. This data-driven approach is 
accelerating the pace of innovation and opening up new 
possibilities across various industries.[1-4]

High-throughput Virtual Screening

Machine learning algorithms are enabling high-
throughput virtual screening of potential materials, 
significantly reducing the time and cost associated with 
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circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
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The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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traditional experimental methods. This approach allows 
researchers to:

• Rapidly evaluate millions of candidate materials

• Predict properties of hypothetical compounds

• Identify promising candidates for further 
experimental testing

By leveraging ML in virtual screening, chemical engineers 
can explore a vast chemical space and focus their efforts 
on the most promising materials.

Fig. 1: Scalability and Computational Resources

Structure-Property Relationship Prediction

One of the key challenges in materials design is 
understanding the complex relationships between a 
material’s structure and its properties. Machine learning 
models can:

• Learn from existing databases of material 
structures and properties

• Predict properties of new materials based on 
their structural features

• Identify key structural elements that contribute 
to desired properties

This capability enables engineers to design materials with 
specific properties tailored to particular applications.

Inverse Design of Materials

Machine learning is facilitating the inverse design of 
materials, where desired properties are specified, and 
the algorithm suggests potential structures that could 
exhibit those properties. This approach:

• Reverses the traditional trial-and-error approach 
to materials discovery

• Allows for targeted design of materials with 
specific performance criteria

• Accelerates the development of materials for 
emerging technologies

Inverse design powered by ML has the potential to 
revolutionize fields such as energy storage, catalysis, 
and advanced manufacturing.

Optimization of Synthesis Conditions

Developing efficient and scalable synthesis methods for 
new materials is often as challenging as discovering the 
materials themselves. Machine learning can assist in 
optimizing synthesis conditions by:

• Predicting optimal reaction parameters 
(temperature, pressure, concentrations, etc.)

• Suggesting alternative synthesis routes with 
improved yields or purity

• Identifying key process variables that influence 
material properties

This application of ML helps bridge the gap between 
laboratory discovery and industrial-scale production of 
new materials.

Multi-scale Modeling and Simulation

Machine learning is enhancing multi-scale modeling 
approaches in materials science, allowing for more 
accurate predictions of macroscopic properties based on 
atomic and molecular-level simulations.

• Accelerate computationally intensive simulations

• Integrate data from various experimental and 
computational sources

• Limited historical data for rare events or new 
processes

• Noisy or inconsistent data from industrial sensors

• Difficulty in obtaining labeled data for supervised 
learning tasks

To address these challenges, chemical engineers must:

• Implement robust data collection and 
management systems

• Develop strategies for dealing with missing or 
noisy data

• Explore semi-supervised and unsupervised 
learning techniques

Model Interpretability and Explainability

Many machine learning models, particularly deep learning 
networks, operate as “black boxes,” making it difficult 
to understand how they arrive at their predictions. This 
lack of interpretability can be problematic in chemical 
engineering, where:
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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• Safety and regulatory compliance require 
transparent decision-making

• Understanding the underlying physics and 
chemistry is crucial

• Stakeholders need to trust and validate model 
outputs

Efforts to improve model interpretability include:

• Developing explainable AI techniques

• Using simpler, more transparent models where 
possible

• Combining ML models with first-principles 
knowledge

Generalization and Extrapolation

Machine learning models are typically good at 
interpolating within the range of their training data but 
may struggle when extrapolating to new conditions. 
This limitation is particularly relevant in chemical 
engineering, where:

• Processes may operate under varying conditions

• New materials or reactions may be encountered

• Scaling from laboratory to industrial settings 
introduces new challenges

To improve generalization, researchers are exploring:

• Transfer learning techniques

• Hybrid models that combine ML with physical 
models

• Active learning approaches for continuous model 
updating

Computational Resources and Scalability

Training and deploying complex machine learning 
models, especially for real-time applications, can be 
computationally intensive. Challenges include:

• High computational costs for training large 
models

• Need for specialized hardware (e.g., GPUs) for 
deep learning

• Difficulty in deploying ML models in resource-
constrained environments

Strategies to address these issues include:

• Developing more efficient algorithms and model 
architectures

• Leveraging cloud computing and distributed 
computing resources

• Exploring edge computing solutions for real-time 
applications

Integration with Existing Systems and Workflows• 
Legacy systems and infrastructure• Resistance from 
stakeholders.[5-9]

Difficulty in identifying and prioritizing the 
project’s scope
• Inadequate definition and requirement of failure 
scenarios Retraining and upskilling of personnel needed• 
That needed careful planning and change management 
strategies.• Creating user friendly interfaces for ML 
tools• Clear value, and with it, clear return on investment 
demonstrated. application of machine learning in 
materials discovery and design is revolutionizing the 
way chemical engineers approach the development of 
new materials with desired properties. This data-driven 
approach is accelerating the pace of innovation and 
opening up new possibilities across various industries.

High-throughput Virtual Screening

Machine learning algorithms are enabling high-
throughput virtual screening of potential materials, 
significantly reducing the time and cost associated with 
traditional experimental methods. This approach allows 
researchers to:

Table 1: Machine Learning Techniques for  
Chemical Engineering

Technique Use Case

Supervised 
Learning

Supervised learning is used to predict chemi-
cal process outcomes based on labeled train-
ing data, enabling efficient process optimi-
zation and control.

Unsupervised 
Learning

Unsupervised learning is applied to identify 
hidden patterns in large datasets, such as 
clustering reaction types or categorizing 
process conditions.

Reinforce-
ment  
Learning

Reinforcement learning helps optimize 
dynamic processes by providing real-time 
feedback on the actions of a system and 
improving decision-making over time.

Neural 
Networks

Neural networks model complex relationships 
in chemical systems, enhancing predictions 
and allowing for automation in tasks like 
quality control and process monitoring.

Deep 
Learning

Deep learning models large and unstructured 
datasets, particularly useful in complex 
chemical process analysis and the 
development of intelligent control systems.

Support 
Vector 
Machines

Support vector machines are used to classify 
and predict outcomes based on chemical 
data, particularly effective in quality 
prediction and fault detection.
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nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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• Rapidly evaluate millions of candidate materials

• Predict properties of hypothetical compounds

• Identify promising candidates for further 
experimental testing

By leveraging ML in virtual screening, chemical engineers 
can explore a vast chemical space and focus their efforts 
on the most promising materials.

Structure-Property Relationship Prediction

One of the key challenges in materials design is 
understanding the complex relationships between a 
material’s structure and its properties. Machine learning 
models can:

• Learn from existing databases of material 
structures and properties

• Predict properties of new materials based on 
their structural features

• Identify key structural elements that contribute 
to desired properties

This capability enables engineers to design materials with 
specific properties tailored to particular applications.

Inverse Design of Materials

Machine learning is facilitating the inverse design of 
materials, where desired properties are specified, and 
the algorithm suggests potential structures that could 
exhibit those properties. This approach:

• Reverses the traditional trial-and-error approach 
to materials discovery

• Allows for targeted design of materials with 
specific performance criteria

• Accelerates the development of materials for 
emerging technologies

Inverse design powered by ML has the potential to 
revolutionize fields such as energy storage, catalysis, 
and advanced manufacturing.

Optimization of Synthesis Conditions

Developing efficient and scalable synthesis methods for 
new materials is often as challenging as discovering the 
materials themselves. Machine learning can assist in 
optimizing synthesis conditions by:

• Predicting optimal reaction parameters 
(temperature, pressure, concentrations, etc.)

• Suggesting alternative synthesis routes with 
improved yields or purity

• Identifying key process variables that influence 
material properties

This application of ML helps bridge the gap between 
laboratory discovery and industrial-scale production of 
new materials.

Multi-scale Modeling and Simulation

Machine learning is enhancing multi-scale modeling 
approaches in materials science, allowing for more 
accurate predictions of macroscopic properties based on 
atomic and molecular-level simulations. ML models can:

• Bridge the gap between different length and 
time scales in materials modeling

• Accelerate computationally intensive simulations

• Integrate data from various experimental and 
computational sources

By improving the accuracy and efficiency of multi-scale 
modeling, ML is enabling more comprehensive and 
predictive materials design workflows.[10-13]

Challenges and Limitations of Machine Learning in 
Chemical Engineering

While machine learning offers tremendous potential in 
chemical engineering, it is not without its challenges 
and limitations. Understanding these constraints is 
crucial for effectively implementing ML solutions and 
setting realistic expectations for their performance. One 
of the primary challenges in applying machine learning 
to chemical engineering problems is the quality and 
availability of data. Issues include:

• Limited historical data for rare events or new 
processes

• Noisy or inconsistent data from industrial sensors

• Difficulty in obtaining labeled data for supervised 
learning tasks

To address these challenges, chemical engineers must:

• Implement robust data collection and 
management systems

• Develop strategies for dealing with missing or 
noisy data

• Explore semi-supervised and unsupervised 
learning techniques

Model Interpretability and Explainability

Many machine learning models, particularly deep learning 
networks, operate as “black boxes,” making it difficult 
to understand how they arrive at their predictions.  
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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This lack of interpretability can be problematic in 
chemical engineering, where:

• Safety and regulatory compliance require 
transparent decision-making

• Understanding the underlying physics and 
chemistry is crucial

• Stakeholders need to trust and validate model 
outputs

Efforts to improve model interpretability include:

• Developing explainable AI techniques

• Using simpler, more transparent models where 
possible

• Combining ML models with first-principles 
knowledge

Generalization and Extrapolation

Machine learning models are typically good at 
interpolating within the range of their training data but 
may struggle when extrapolating to new conditions. 
This limitation is particularly relevant in chemical 
engineering, where:

• Processes may operate under varying conditions

• New materials or reactions may be encountered

• Scaling from laboratory to industrial settings 
introduces new challenges

To improve generalization, researchers are exploring:

• Transfer learning techniques

• Hybrid models that combine ML with physical 
models

• Active learning approaches for continuous model 
updating

Computational Resources and Scalability

Training and deploying complex machine learning 
models, especially for real-time applications, can be 
computationally intensive. Challenges include:

• High computational costs for training large 
models

• Need for specialized hardware (e.g., GPUs) for 
deep learning

• Difficulty in deploying ML models in resource-
constrained environments

Strategies to address these issues include:

• • Developing more efficient algorithms and 
model architectures

• Leveraging cloud computing and distributed 
computing resources

• Exploring edge computing solutions for real-time 
applications

Integration with Existing Systems and Workflows

Implementing machine learning solutions in established 
chemical engineering environments can be challenging 
due to:

• Legacy systems and infrastructure

• Resistance to change from stakeholders

• Need for retraining and upskilling of personnel

Successful integration requires:

• Careful planning and change management 
strategies

• Development of user-friendly interfaces for ML 
tools

• Demonstration of clear value and return on 
investment

Machine Learning for Chemical Engineering, Future 
Trends and Opportunities

Given the pace of the developments in this field, 
many new and exciting trends are forming in chemical 
engineering applications of machine learning. What 
these developments portend is brighter days regarding 
the utility of ML as a solution to complex chemical 
engineering problems and as a means of igniting 
innovation in the industry.[14-17]

Fig. 2: Machine Learning for Chemical Engineering, 
Future Trends and Opportunities

Machine Learning (ML)

AutoML is a fast-growing field that has quickly emerged 
to tackle the problem of automating the process of 
selecting, training and optimizing machine learning 
model.• Reduces the need of a higher level of expertise 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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in machine learning algorithmsof machine learning in 
materials discovery and design is revolutionizing the 
way chemical engineers approach the development of 
new materials with desired properties. This data-driven 
approach is accelerating the pace of innovation and 
opening up new possibilities across various industries.

High-throughput Virtual Screening

Machine learning algorithms are enabling high-
throughput virtual screening of potential materials, 
significantly reducing the time and cost associated with 
traditional experimental methods. This approach allows 
researchers to:

• Rapidly evaluate millions of candidate materials

• Predict properties of hypothetical compounds

• Identify promising candidates for further 
experimental testing

By leveraging ML in virtual screening, chemical engineers 
can explore a vast chemical space and focus their efforts 
on the most promising materials.

Structure-Property Relationship Prediction

One of the key challenges in materials design is 
understanding the complex relationships between a 
material’s structure and its properties. Machine learning 
models can:

• Learn from existing databases of material 
structures and properties

• Predict properties of new materials based on 
their structural features

• Identify key structural elements that contribute 
to desired properties

This capability enables engineers to design materials with 
specific properties tailored to particular applications.

Inverse Design of Materials

Machine learning is facilitating the inverse design of 
materials, where desired properties are specified, and 
the algorithm suggests potential structures that could 
exhibit those properties. This approach:

• Reverses the traditional trial-and-error approach 
to materials discovery

• Allows for targeted design of materials with 
specific performance criteria

• Accelerates the development of materials for 
emerging technologies

Inverse design powered by ML has the potential to 
revolutionize fields such as energy storage, catalysis, 
and advanced manufacturing.

Multi-scale Modeling and Simulation

• Accelerate computationally intensive simulations

• Integrate data from various experimental and 
computational sources

Challenges and Limitations of Machine Learning in 
Chemical Engineering

Data Quality and Availability

• Limited historical data for rare events or new 
processes

• Noisy or inconsistent data from industrial sensors

• Difficulty in obtaining labeled data for supervised 
learning tasks

To address these challenges, chemical engineers must:

• Implement robust data collection and 
management systems

• Develop strategies for dealing with missing or 
noisy data

• Explore semi-supervised and unsupervised 
learning techniques

Model Interpretability and Explainability

• Safety and regulatory compliance require 
transparent decision-making

• Understanding the underlying physics and 
chemistry is crucial

• Stakeholders need to trust and validate model 
outputs

Efforts to improve model interpretability include:

• Developing explainable AI techniques

• Using simpler, more transparent models where 
possible

• Combining ML models with first-principles 
knowledge

Generalization and Extrapolation

Machine learning models are typically good at 
interpolating within the range of their training data but 
may struggle when extrapolating to new conditions. 

• Processes may operate under varying conditions

• New materials or reactions may be encountered

• Scaling from laboratory to industrial settings 
introduces new challenges
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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To improve generalization, researchers are exploring:

• Transfer learning techniques

• Hybrid models that combine ML with physical 
models

• Active learning approaches for continuous model 
updating

Computational Resources and Scalability

• High computational costs for training large 
models

• Need for specialized hardware (e.g., GPUs) for 
deep learning

• Difficulty in deploying ML models in resource-
constrained environments

Strategies to address these issues include:

• Developing more efficient algorithms and model 
architectures

• Leveraging cloud computing and distributed 
computing resources

• Exploring edge computing solutions for real-time 
applications

Integration with Existing Systems and Workflows

Implementing machine learning solutions in established 
chemical engineering environments can be challenging 
due to:

• Legacy systems and infrastructure

These developments promise to further enhance the 
capabilities of ML in solving complex chemical engineering 
problems and driving innovation in the industry.

Automated Machine Learning (AutoML)

AutoML is an emerging field that aims to automate the 
process of selecting, training, and optimizing machine 

learning models. For chemical engineers, AutoML offers 
several advantages:

• Reduces the need for deep expertise in machine 
learning algorithms

• Collaborative Research with Federated Learning

Distributed machine learning approach federated 
learning is a set of algorithms for allowing multiple 
parties to train models collaboratively without sharing 
raw data.• These concerns are very common - proprietary 
data, intellectual property.

Intellectual Property• Collaboration between the 
academia and the industry is necessary• Mixed models 
allow pooling the data from multiple sources so that the 
models are more robust. a distributed machine learning 
approach that allows multiple parties to train models 
collaboratively without sharing raw data. This technique 
has significant potential in chemical engineering, where:

• Proprietary data and intellectual property 
concerns are common

• Collaboration between academia and industry is 
crucial

• Pooling data from multiple sources can lead to 
more robust models

Federated learning could support accelerating the 
research and development in such areas as drug 
discovery and materials design by enabling secure and 
privacy preserving collaboration.[19-21]

Machine Learning Integration with Process 
Simulation

Integration of machine learning with the traditional 
process simulation tools is a trend that seems to combine 
the best of both worlds.• Improves process simulations 
with data driven insights• Provides real time updating 

Table 2: Recent Innovations In Machine Learning For Chemical Engineering

Innovation Advancement

Predictive Process 
Control

Predictive process control uses machine learning algorithms to forecast and adjust process parameters, 
ensuring stable and efficient chemical operations.

Chemoinformatics Chemoinformatics applies machine learning to analyze chemical data, enabling the prediction of molec-
ular properties and optimizing compound design for various applications.

Process Fault 
Detection

Process fault detection systems use machine learning to automatically identify deviations in process 
parameters, reducing downtime and improving system reliability.

Catalyst Design Machine learning aids in the design of novel catalysts by analyzing molecular interactions, reducing the 
need for expensive trial-and-error experiments in catalytic processes.

Energy Optimization Energy optimization leverages machine learning to minimize energy consumption in chemical processes, 
offering potential savings and supporting sustainability goals.

Advanced Quality 
Monitoring

Advanced quality monitoring utilizes machine learning to continuously assess product quality during pro-
duction, providing insights for real-time adjustments and reducing defects.
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A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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of simulation models based upon plant data.• Allows 
for more full optimisation of large complex chemical 
processesdistributed machine learning approach that 
allows multiple parties to train models collaboratively 
without sharing raw data. This technique has significant 
potential in chemical engineering, where:

• Proprietary data and intellectual property 
concerns are common

• Collaboration between academia and industry is 
crucial

• Pooling data from multiple sources can lead to 
more robust models

By enabling secure and privacy-preserving collaboration, 
federated learning could accelerate research and 
development in areas such as drug discovery and 
materials design.

Integration of Machine Learning with Process 
Simulation

The integration of machine learning with traditional 
process simulation tools is a promising trend that 
combines the best of both worlds. This hybrid approach:

• Enhances the accuracy of process simulations 
with data-driven insights

• Allows for real-time updating of simulation 
models based on plant data

• Enables more comprehensive optimization of 
complex chemical processes

This emerging seamlessness in the integration will make 
available to the chemical engineer powerful tools that 
bring together physical understanding and data driven 
predictions.

Chemical Systems with Quantum Machine Learning

Quantum machine learning (QML), the field that 
combines quantum computing with ML algorithms, shows 
great promise for solving chemical problems that are 
complex.• Molecular system simulation.

• Using molecular system as the target.

### Related Topics:• Optimizing chemical reactions at 
quantum level.• Finding of unique materials with strange 
propertiested learning is a distributed machine learning 
approach that allows multiple parties to train models 
collaboratively without sharing raw data. This technique 
has significant potential in chemical engineering, where:

• Proprietary data and intellectual property 
concerns are common

• Collaboration between academia and industry is 
crucial

• Pooling data from multiple sources can lead to 
more robust models

By enabling secure and privacy-preserving collaboration, 
federated learning could accelerate research and 
development in areas such as drug discovery and 
materials design.

Integration of Machine Learning with Process 
Simulation

The integration of machine learning with traditional 
process simulation tools is a promising trend that 
combines the best of both worlds. This hybrid approach:

• Enhances the accuracy of process simulations 
with data-driven insights

• Allows for real-time updating of simulation 
models based on plant data

• Enables more comprehensive optimization of 
complex chemical processes

As this integration becomes more seamless, chemical 
engineers will have access to powerful tools that combine 
physical understanding with data-driven predictions.

Quantum Machine Learning for Chemical Systems

The emerging field of quantum machine learning, which 
combines quantum computing with ML algorithms, holds 
great promise for solving complex chemical problems. 
Potential applications include:

• Accurate simulation of molecular systems

• Optimization of chemical reactions at the 
quantum level

• Discovery of novel materials with exotic 
properties

Unlike traditional ML, which is still relatively mature, 
quantum ML remains in its infant stages and could 
forever alter the way we can consider and manipulate 
the building blocks of matter at their most basic level.

Explainable AI applied for Process Safety and Corporate 
Compliance

With the increase in the presence of machine learning 
models in high stakes decisions, the need for methods 
of explainable AI (XAI) become more frequent.• Ensuring 
the transparency of safety critical system• Regulatory 
requirement for process control and optimization• Trust 
in ML based decision supports tools.rated learning is 
a distributed machine learning approach that allows 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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multiple parties to train models collaboratively without 
sharing raw data. This technique has significant potential 
in chemical engineering, where:

• Proprietary data and intellectual property 
concerns are common

• Collaboration between academia and industry is 
crucial

• Pooling data from multiple sources can lead to 
more robust models

By enabling secure and privacy-preserving collaboration, 
federated learning could accelerate research and 
development in areas such as drug discovery and 
materials design.

Integration of Machine Learning with Process 
Simulation

The integration of machine learning with traditional 
process simulation tools is a promising trend that 
combines the best of both worlds. This hybrid approach:

• Enhances the accuracy of process simulations 
with data-driven insights

• Allows for real-time updating of simulation 
models based on plant data

• Enables more comprehensive optimization of 
complex chemical processes

As this integration becomes more seamless, chemical 
engineers will have access to powerful tools that combine 
physical understanding with data-driven predictions.

Quantum Machine Learning for Chemical Systems

• Accurate simulation of molecular systems

• Optimization of chemical reactions at the 
quantum level

• Discovery of novel materials with exotic 
properties

While still in its early stages, quantum ML could 
revolutionize our ability to model and manipulate matter 
at the most fundamental levels.

Explainable AI for Process Safety and Regulatory 
Compliance

• Ensuring transparency in safety-critical systems

• Meeting regulatory requirements for process 
control and optimization

• Building trust in ML-based decision support tools

Over the coming years we will see more interpretable 
ML models, and more interpretable explanations 
techniques.

Real time process control using Edge 
Computing

In recent times, industrial applications are moving 
towards utilizing edge computing, where data is 
‘processed’ closer to the data source as opposed to in 
centralized cloud systems.• Immediate decision making 
based on real time processing requires sensor data.• 
Faster response times in control systems through reduced 
latency• Increases in reliability and resilience in process 
control applications distributed machine learning 
approach that allows multiple parties to train models 
collaboratively without sharing raw data. This technique 
has significant potential in chemical engineering, where:

• Proprietary data and intellectual property 
concerns are common

• Collaboration between academia and industry is 
crucial

• Pooling data from multiple sources can lead to 
more robust models

By enabling secure and privacy-preserving collaboration, 
federated learning could accelerate research and 
development in areas such as drug discovery and 
materials design.

Integration of Machine Learning with Process 
Simulation

The integration of machine learning with traditional 
process simulation tools is a promising trend that 
combines the best of both worlds. This hybrid approach:

• Enhances the accuracy of process simulations 
with data-driven insights

• Allows for real-time updating of simulation 
models based on plant data

• Enables more comprehensive optimization of 
complex chemical processes

As this integration becomes more seamless, chemical 
engineers will have access to powerful tools that combine 
physical understanding with data-driven predictions.

Quantum Machine Learning for Chemical Systems

The emerging field of quantum machine learning, which 
combines quantum computing with ML algorithms, holds 
great promise for solving complex chemical problems. 
Potential applications include:

• Accurate simulation of molecular systems

• Optimization of chemical reactions at the 
quantum level
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 1.8-V Low Power, High-Resolution, High-Speed 
Comparator With Low Offset Voltage 

Implemented in 45nm CMOS Technology
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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• Discovery of novel materials with exotic 
properties

While still in its early stages, quantum ML could 
revolutionize our ability to model and manipulate matter 
at the most fundamental levels.

Explainable AI for Process Safety and Regulatory 
Compliance

As machine learning models become more prevalent in 
critical decision-making processes, there is a growing 
need for explainable AI (XAI) techniques. In chemical 
engineering, XAI will be crucial for:

• Ensuring transparency in safety-critical systems

• Meeting regulatory requirements for process 
control and optimization

• Building trust in ML-based decision support tools

The development of more interpretable ML models and 
explanation techniques will be a key focus area in the 
coming years.

Edge Computing for Real-time Process Control

Edge computing, which involves processing data closer 
to the source rather than in centralized cloud systems, is 
gaining traction in industrial applications. For chemical 
engineering, edge computing enables:

• Real-time processing of sensor data for 
immediate decision-making

• Reduced latency in control systems for faster 
response times

• Enhanced reliability and resilience in process 
control applications

We are on the verge of moving more ML models directly 
to process equipment and control systems as edge 
computing technologies mature.

Conclusion

The integration of machine learning into chemical 
engineering marks a paradigm break in solving complex 
problems in the chemical engineering domain. ML has 
benefitted the industry by proving to be a very valuable 
tool from process design and optimization to materials 
discovery and safety management. In this article, 
we walked through various applications of machine 
learning in chemical engineering as they extend to the 
other branches of engineering as well as the sciences. 
It’s making large data analysis, pattern detection, and 
prediction powerful and changing traditional workflows 
and empowering even more data-driven decision making. 

One of the things to keep in mind about working with 
ML is that it’s not a panacea; ML does have some of its 
own challenges and limitations. With continuing work 
on ML techniques and the acceleration of computing 
power and data collection, there is even more to come. 
AutoML, federated learning, and quantum machine 
learning have the potential to significantly spur the 
boundaries of what’s possible in chemical engineering. 
Embracing machine learning is no longer an option 
for chemical engineers in a competitive, constantly 
changing industry, it’s a necessity! It is unlikely that the 
chemical engineer will need to give up their reliance on 
domain expertise, but the role of ML will become a key 
piece in the chemical engineer’s tool kit. As a result, 
the next generation of chemical engineers will need 
to develop skills in data science and machine learning. 
And finally, we conclude that machine learning is 
producing new era of innovation and efficiency working 
with Chemical engineering. Cast into an ML framework, 
chemical engineers can more than ever tackle the 
grand challenges of society – from breakthrough arid 
energy solutions to advanced materials for a changing 
world. Still building on the frontiers of what is possible, 
the future of chemical engineering is brighter than 
ever thanks to the machine learning potential for 
transforming the chemical process.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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