
SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 2026 59

A Review of Fault-Tolerant Reconfigurable
Architectures for Autonomous Systems Based on

Redundant Logic Mapping
Belal Batiha1*, Amina El-Fahmy2

1Mathematics Department, Faculty of Science and Information Technology, Jadara University, Jordan
2School of Computer Science, Universidad Nacional de Colombia, Colombia.

AbstrAct
Mission-critical applications (aerospace, automotive, and defense)
have autonomous systems that must have very high reliability to
allow continued operation in varied environmental structures and
fault conditions. The medium of flexibility and adaptability of the
computer hardware is represented by reconfigurable computing
platforms and, especially, by Field-Programmable Gate Arrays (FPGAs)
and Coarse-Grained Reconfigurable Architectures (CGRAs). The review
will provide an orderly research into the fault-tolerant reconfigurable
architecture with an interest in redundant logic mapping which
encompasses spatial, temporal, and hybrid redundancy model. We
study important analysis metrics including Mean Time to Failure
(MTTF), fault coverage, resources overhead and reconfiguration
latency. Recent literature shows comparative results that hybrids are
able to provide the MTTF with up to 3.5x scaling without a drastically
high resource overhead (~2.1x LUTs, +25% power). The relevance also
points to the real use in self-governing frameworks e.g. UAV, self-
governing automobiles, and smart robotics, where fault cloaking,
configuration abrasive, and flawless cycles are fundamental. Lastly,
it presents open research issues in scalable fault diagnosis, AI-based
reconfiguration as well as cross layer fault resilience, and states a
guideline towards the design of next generation self-sustainable
systems comprising of both economic and fault tolerant systems.
How to cite this article: Batiha B, El-Fahmy A (2026). A Review of
Fault-Tolerant Reconfigurable Architectures for Autonomous Systems
Based on Redundant Logic Mapping. SCCTS Journal of Embedded
Systems Design and Applications, Vol. 3, No. 2, 2026, 59-68

Keywords:
Fault-Tolerant Computing,
Reconfigurable Architecture,
Redundant Logic Mapping,
Autonomous Systems,
Dynamic Partial Reconfiguration,
FPGA-Based Reliability

Author’s Email:
b.bateha@jadara.edu.jo

https://doi.org/10.31838/ESA/03.02.07

Received : 09.01.2026
Revised : 24.02.2026
Accepted : 19.03.2026

RESEARCH ARTICLE ECEJOURNALS.IN
SCCTS Journal of Embedded Systems Design and Applications, ISSN: 3048-8753 Vol. 3, No. 2, 2026 (pp. 59-68)

IntroductIon

The fast development of safety and mission-critical
areas (aerospace, defense, automotive and industrial
automation) has led to an evolution in system design
requirements to a paradigm shift. Such systems are
required to run in uncertain and most of the time,

harsh environmental conditions where computation
failures may have disastrous effects. Consequently,
fault tolerance has also become the underlying concept
of designing reliable autonomous systems. Sources of
faults in hardware may be cosmic radiation, aging-
induced wear, thermal stress, defects introduced during
manufacturing, and electromagnetic interference.

Belal Batiha and Amina El-Fahmy : A Review of Fault-Tolerant Reconfigurable Architectures for Autonomous
Systems Based on Redundant Logic Mapping

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 202660

prediction and management using AI, as well as the
fabrication of hybrid redundancy models in a fluidity
of fault contingency against efficiency.

With the growing sophistication in autonomous
systems and the necessity of having unsupportable and
continuous operation of these systems, development
of in-depth knowledge of the application of redundant
logic mapping techniques to increase the fault
tolerance of the reconfigurable architectures is very
strong motivation. This is especially important in
embedded systems involved in autonomous systems,
in which power, latency, and compute resources are
highly restricted and require effective and sustainable
mitigation strategies to faults. Restricted to correctly
used, redundant logic mapping offers adaptive fault
resilience without performance or power consumption
penalty. An overview of such mechanisms will help
system designers to understand to make intelligent
trade-offs among performance, fault coverage, and
resource usage; to select redundancy schemes that
are suited to application-specific levels of criticality;
and to use both run-time reconfiguration and adaptive
redundancy as a means of achieving self-healing and
autonomy robust behavior.

The main purpose of this review is to Organize and
systematically categorize and review existing fault
tolerant reconfigurable computing techniques focusing
on redundant logic mapping. It seeks to compare
the spatial, temporal and hybrid redundancy models
based on fault coverage, resource overhead and
reconfiguration latency. The research also attempts to
look at fault detection, recovery strategies that can be
applicable to runtime reconfigurable systems, sharing
error detection circuitry, fault prediction methods and
dynamic partial reconfiguration (DPR). Besides this,
this review also delves into the practical applications
of these architectures in real life autonomous systems;
e.g. unmanned aerial vehicles (UAVs) and autonomous
ground vehicles and various robotic platforms. Last, it
specifies key issues and unsolved issues and suggests
future work on how to achieve intelligent, efficient and
scalable fault-tolerant reconfigurable architectures of
next-generation autonomous systems.

In short, the issue tackled in this review paper
was a burning need at the subject matter of fault-
tolerant autonomous computing since it offer in-
depth study of redundant logic mapping techniques

These errors are usually categorised under three groups
namely; transient faults (soft errors), permanent faults
which are attributed to hardware that undergo wear-
out, or fabrication faults, and intermittent faults,
which are unpredictable and occur due to marginal
operating conditions. The long-standing fault-tolerant
techniques relied on either Application-Specific
Integrated Circuit (ASIC) based or static redundancy
techniques that tend to be fixed, resource-intensive
and simply inapplicable to the dynamic operations
of contemporary autonomous systems. Conversely,
Reconfigurable Computing (RC) especially with Field
Programmable Gate Arrays (FPGAs) and Coarse-
Grained Reconfigurable Architectures (CGRAs) has
been seen as an opportune second. These platforms
support dynamic system reconfigurability in real-time
such that configuration flexibility occurs on the fly
and allows fault recovery in a fault-tolerant manner
without impacts on mission continuity. The ability has
made RC an instrument of arsenal in creating resilient
and adaptable computing systems to suit the needs of
the autonomous systems.

Triple Modular Redundancy (TMR), error-
correcting codes (ECC) and checkpointing are common
fault-tolerant computing techniques discussed in
many studies. Although these techniques have so far
been useful in increasing the reliability in systems,
they are usually accompanied by huge trade-offs
being associated with high resource and power
overhead, low runtime flexibility to unpredictable
fault situations as well as the inability to scale up
with the rising complexity of autonomous tasks. In
addition, most of the current solutions do not connect
well to intelligent reconfiguration policies which
are capable of reacting to the real-time operations
data. To counter such constraints, current work has
focussed on exploiting redundant logic mapping in
reconfigurable fabrics, where logic primitive are
replicated or even triplicated together with fault-
detection and fault-recovery built in to the primitive.
Even though the developments provide interesting
future directions, none of them have carried out a
comprehensive survey to systematically categorize
those techniques, evaluate their viability in designing
autonomous systems, and outline the remaining open
problems. This is especially so in the understudied
fields of dynamic partial reconfiguration (DPR), fault

Belal Batiha and Amina El-Fahmy : A Review of Fault-Tolerant Reconfigurable Architectures for Autonomous
Systems Based on Redundant Logic Mapping

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 2026 61

in reconfigurable systems. It will fill the spaces
between the traditional fault mitigation approaches
and present-day reconfigurable approaches providing
insights that are critical to developing the next
generation autonomous platform with resilience. This
paper should thus be considered as a reference point to
any future researcher and practitioner working on the
development of strong and smart computing systems
in mission-critical autonomy through an integrative
and comparative analysis.

Fundamentals of Fault-Tolerant
Reconfigurable Architectures

Reconfigurable Computing Overview
Reconfigurable computing has emerged as

a significant design framework of contemporary
embedded and autonomous systems because the
approach allows the dynamic adaptation of hardware
functionality to meet the changing requirements of
operations. Field-Programmable Gate Arrays (FPGAs)
and Coarse-Grained Reconfigurable Architectures
(CGRAs) are the most notable among platforms that
are reconfigurable. FPGAs are distinguished by having
a fine-grained logic with programmable interaction
and real-time adaptability that enables application of
parallelized fault tolerance logic. More to the point,
FPGAs also feature Dynamic Partial Reconfiguration
(DPR), i.e. the possibility to update certain areas of
the chip on the fly without causing the complete halt
of the system, which comes in very handy in fault
mitigation scenarios.[1]

CGRAs, in their turn, provide some flexibility
and one-time parametrization against guarantees of
computational efficiency: coarse-grained functional
units and parameterizable routing structures.[2] The
platforms allow high-throughput programs, and they
provide better energy efficiency which is a decisive
factor in regard to mobile and edge-based autonomous
systems. In addition, as systems provenance are
progressively becoming implemented into sustainable
VLSI systems, failures as well as fault-tolerant
processor designs are primarily fundamental to long
term introduction into intelligent infrastructure.[9, 11]

The relevance of reconfigurable computing to
large-scale modeling and simulation has also recently
been observed to be the fault resilience and the
performance scalability.[13] Segregated, the resulting

architectures form an interesting path towards making
running execution fault tolerant in mission-critical
autonomous systems.

Fault Models in Autonomous Systems
Autonomous systems have to run in highly dynamic,
frequently hostile environments where hardware is
likely to find itself in a high range of fault conditions,
which in turn may result in a significant decrease in
the reliability of systems. Perhaps the most prevalent
of this type of transient fault is the Single Event Upset
(SEU), which occurs when charged particles (e.g.,
cosmic rays) interact with the silicon, which flips
represented bits of stored information in memory or
logic cells. SEUs, in aerospace and at high altitude
have the potential to be more critical since there is
increased radiation exposure.[3]

Along with the transient faults, long term
performance degradation of the transistors presents
itself due to the presence of aging-related degradation
mechanisms i.e. Negative bias Temperature Instability
(NBTI) and Hot Carrier Injection (HCI) which both tend
to slowly cause permanent faults.[4] Such faults build
up over a period and are especially bad in cases where
the systems are supposed to work over the years
without any sort of maintenance.

Moreover, self-driving platforms, more so in
automotive or industrial contexts, are subjected to
thermal strains, electromagnetic interferences (EMI).
The factors present sporadic faults since it brings about
timing inputs/ violations or signal integrity problems,
and therefore real-time systems are prone to functional
failure.[5,10] Accordingly, mitigation strategies adopted
to design fault-tolerant architectures of autonomous
systems should be able to execute various types of
faults effectively and without considerable disruption
to the system.

Logic Mapping Concepts
Fault tolerance in reconfigurable system is an
important strategy that involves redundant logic
mapping. It entails the repetition of logic functions
in order to identify and repair faults thus ensuring
that operationality of the system remains in the event
of faults. Triple Modular Redundancy (TMR) is one
common strategy, in which three initial components
identical perform the same mission and a majority vote

Belal Batiha and Amina El-Fahmy : A Review of Fault-Tolerant Reconfigurable Architectures for Autonomous
Systems Based on Redundant Logic Mapping

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 202662

finds out which answer should be chosen. In masking
a single fault, TMR is good[6] but has a collateral cost
of high overhead in the logic area as well as power
consumption [L2-I2].

A more economical alternative is Dual Modular
Redundancy (DMR) that makes use of two redundant
modules to identify differences in results. Though
DMR does not have fault correction ability it would
start recovery processes like reconfiguration when
fault is detected.[7] Generalizations of these schemes
are N-Modular Redundancy (NMR) using more and
more replicas and more elaborate voting logic that
often finds application in systems where reliability is
paramount, such as space systems.

The implementation of redundancy can be
classified widely into spatial redundancy, and temporal
redundancy. Spatial redundancy maps stored copies
of logic cells in physically different places, enabling
them to execute over one another and fault masking.
It works especially well in safety-related cases but
requires significant quantities of hardware resources.
On the other hand, temporal redundancy shares the
same set of hardware with diverse time slices in order
to perform overlapping operations. This decreases
area overhead but comes with execution latencies,
thus not so appropriate to applications that require
timing.[8]

Coupling redundant logic mapping with
reconfiguration strategies, bitstream scrubbing,
relocation of modules, as well as immediate migration
of tasks, the designers can create adaptive, fault
resistant systems that continue to operate even in a
fault condition. These approaches are of particular
importance in such applications as wearable health
monitoring, smart buildings where fault tolerance and
energy efficiency have to be complementary features
inherent in small embedded systems.[11, 12]

Redundancy Techniques and Their
Implementation
Redundancy methods are of paramount importance
in fault tolerant reconfigurable architecture, where
redundancy methods are applied both to eliminate
design complexity and to achieve system resilience
against hardware faults. The techniques can be
generally divided into spatial redundancies, temporal
ones and hybrid methods that take the benefits of two

kinds of technique. All the techniques vary in the fault
coverage, overhead of resources, latency and their
application suitability in autonomous systems.

Spatial Redundancy
Spatial redundancy involves duplicating or triplicating
hardware components and executing Redundancy
Spatial Spatial redundancy can also be done in
hardware by duplicating or even triplicating
components within a system and operating in parallel
within physically separate logic blocks. The most
everyday of those uses is Triple Modular Redundancy
(TMR) where three identical modules do the same task
and a majority voter decides what the correct output
should be. This method is so good at masking individual
faults, and is so common in space and safety-critical
systems where a high fault coverage is desirable. The
other notable approach within the spatial redundancy
is the provision of spare logic blocks. With this strategy
auxiliary space that is not used, or space that is left
idle, in a reconfigurable fabric (like an FPGA) is held
in reserve. Particularly, when a fault is identified
in a working module, the system re-routes the
functionality of the faulted module (dynamically) to
another spare block through partial reconfiguration.
This redundancy-friendly module placement also
cannot have critical logic functions installed physically
adjacent to each other, so this reduces the likelihoods
of common-mode failures. The spatial redundancy is
particularly applicable to hard real-time autonomous
systems that include control systems of UAVs or ECU
of automobiles; fault masking and a minimized latency
response are paramount in these kinds of applications.
This method has however the overhead in area and
power that might be a hindering factor when it comes
to scaling it in resource bound embedded systems.

Temporal Redundancy
Temporal redundancy uses time-multiplexing to
allow redundancy operations to be carried on same
hardware resources at different times. Rather than
using numerous parallel modules, the same task has
several instances running in series in a single module.
These outputs are then compared in order to identify
inconsistency.

Checkpoint and rollback common implementation
A typical example of temporal redundancy algorithm
is known as the checkpoint and rollback algorithm, in

Belal Batiha and Amina El-Fahmy : A Review of Fault-Tolerant Reconfigurable Architectures for Autonomous
Systems Based on Redundant Logic Mapping

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 2026 63

which the system state is periodically saved. In case of
execution fault, (e.g., using a parity or ECC check) the
system is rolled back to a prior known good checkpoint
and the computation is restarted. This method is
especially useful when one is faced with resource
limitations against full spatial redundancy.

The advantage of using temporal redundancy is
very effective as far as hardware is concerned since
there is minimal duplication of logic. It however
has latency, thus it is less favorable in applications
with strict real time requirements. It finds frequent
application in tasks of low-to-moderate criticality,
e.g. background processing of data, checking sensor
data in autonomous control systems.

Hybrid Approaches
Hybrid redundancy methods mix the advantages
of the spatial and temporal redundancy to use
reliability, performance and resource consumption.
An example would be to store critical modules using
spatial redundancy application and the less critical or
time sensitive activities using temporal redundancy
application. The mixed-criticality design can enable
the designer to selectively apply the redundancy
according to the importance of the functional activity
and due to the time constraints.

There is also the use of voting logic and self
checking circuits with Hybrid methods. The circuits
do repeated validation of the outputs through cross-
checking of results with other modules or execution
stages. As a simulation, a hybrid system could perform
two operations in parallel (spatially) and then tested
the outcome by performing the same operation on the
third time (temporally), guaranteeing fault detection
as well as fault correction.

The other potent idea with hybrid strategies is
the dynamic reconfigurable redundancy profile where
the system shifts dynamically between spatial and
temporal components of redu1ndancy depending
on existing operational conditions, available power
budget, or severity of detected faults. Such a dynamic
behavior is particularly useful in non-programmable
platforms that perform under changing mission
manifestations and energy separates.

To conclude, spatial, temporal, and hybrid redun-
dancy methods have a variety of tools of implement-
ing fault-tolerant reconfigurable architectures. Choos-

ing a suitable redundancy strategy should also be done
bearing in mind the needs of a particular relevant sys-
tem, reliability, as well as time and resource needs.
Redundancy aware design automation techniques,
online monitoring, and dynamic reconfiguration are
an important way to optimize these trade-offs at ad-
vanced design and to provide scalable, robust plat-
forms on which safety-critical tasks will run.

Runtime Fault Detection and Recovery
In the execution of faults in a run time environment,
modern reconfigurable structures utilize a mixture
of detection, diagnosis and recovery techniques to
manage the faults effectively. Table 1 is an overview of
comparative review of commonly used methods which
can fall in the categories of error detection, fault
diagnosis and recovery mechanism. Lightweight and in
some sense low-latency fixes to real-time detection
of transient errors in memory and interconnects are
provided by techniques like ECC and parity checks.
BIST, though being more resource-consuming is useful
in scheduled offline testing and structural integrity
certifying. In fault diagnosis, online fault localization
allows us to arrive at precise fault mapping at runtime
yet prediction using a machine learning framework
creates intelligent pro-active mitigation, albeit at
the cost of a higher computational overhead. Runtime
repair of dynamic systems is possible using recovery
mechanisms such as Dynamic Partial Reconfiguration
(DPR) and module reloading that can occur whenever
systems experiences a malfunction without stopping
system activities. Meanwhile a spatial redundancy,
the tile activation of spare tiles, provides an almost
foolproof at the cost of resource-intensive. Selection
of these techniques can be done based on application
specific constraints such as latency tolerance budget,
area and tightness level. The comparative analysis
is able to allow a system architect to specify and
select fault management strategy techniques which
are applicable and capable of fitting to the specific
autonomous systems that have provisions of high
dependability requirements (Table 1).

Applications in Autonomous Systems
To provide reliability in the unpredictable environment,
it requires integration of fault-tolerant computing in
autonomous systems. Autonomous platforms have

Belal Batiha and Amina El-Fahmy : A Review of Fault-Tolerant Reconfigurable Architectures for Autonomous
Systems Based on Redundant Logic Mapping

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 202664

different types such as those which are aerial, others
land based, still others are space-based and as well
are diverse, and because of these diverse challenges
in class, each level should use a specific fault
mitigation approach. An example can be Unmanned
Aerial Vehicles (UAVs) which also depend considerably
on ongoing and precise sensor information to navigate
and have a stable flight. Fault masking In such systems,
Triple Modular Redundancy (TMR) fault masking and
redundancy in IMU/GPS fusion modules can enable
safe control in the event of a sensor failure or noise.

Autonomous Ground Vehicles on the other hand
require a very high degree of resilience and reliability
in both perception and decision-making dynamics

within urban environments. The hardware faults of
these systems are regularly covered by redundant deep
learning pipelines and with dynamic task migration
they prevent perturbation in safety by isolating and
recovering hardware faults. Configuration scrubbing,
error correction codes (ECC) and SEU-hardened logic
have been used in space and defense programs where
cosmic radiation and thermal extremes are frequent
occurrences to maintain continuity of the mission.

Embedded deep learning/neuromorphic based
Edge-AI robotic systems that utilize real-time autonomy
need to be resilient to faults and need to operate
under both stringent power and area requirements.
In this case, lightweight built-in self-tests (BSTs),

Table 1: Comparison of Runtime Fault Detection and Recovery Techniques in Reconfigurable Architectures

Technique Category Purpose Latency
Hardware
Overhead Suitability

Error-Correcting
Codes (ECC)

Error Detection Detects and
corrects bit-level
memory errors

Low Medium Ideal for memory
blocks and cache
systems

Parity Checks Error Detection Simple error
detection on data
lines

Very Low Low Used in buses,
registers, and
lightweight
modules

Built-In Self-Test
(BIST)

Error Detection Autonomous
offline circuit
testing

Medium High Useful for
periodic testing
and certification

Online Fault
Localization

Fault Diagnosis Identifies the
exact fault
location at
runtime

Medium Medium Suitable for
adaptive and real-
time systems

ML-Based Fault
Prediction

Fault Diagnosis Predicts fault
occurrence using
historical and
sensor data

Variable High (if model is
complex)

Best for
intelligent fault-
aware systems

Dynamic Partial
Reconfiguration
(DPR)

Recovery
Mechanism

Reconfigures
faulty regions
without stopping
system

Low–Medium Medium Enables in-
place repair
with minimal
disruption

Module Swapping
& Reloading

Recovery
Mechanism

Replaces faulty
modules using
preloaded
bitstreams

Medium Medium–High Needs spare logic
and efficient
memory access

Spare Tile Activa-
tion

Recovery Mecha-
nism

Activates pre-as-
signed fault-free
resources

Low High Excellent for spa-
tial redundancy
platforms

Belal Batiha and Amina El-Fahmy : A Review of Fault-Tolerant Reconfigurable Architectures for Autonomous
Systems Based on Redundant Logic Mapping

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 2026 65

self-healing circuits and online error detection
are employed to maintain reliability of inference.
Likewise, autonomous marine systems that reside
in high-moisture, high-pressure regions incorporate
module swapping with autonomous tile activation in
order to overcome damage to functionality.

These fault-tolerant design techniques have been
tabulated in Table 2 in different autonomous domains
showing the dependence of the target modules with
the kind of protection mechanism. Moreover, these
strategies are applied on various architecture levels
as shown in Figure 1, starting at sensor devices and
memory, proceeding to AI process and actuator
control, which proves systemic incorporation of fault-
tolerance in autonomous and intelligent platforms.

Fig. 1: Integration of Fault-Tolerance Strategies in
Autonomous System Architectures

Evaluation Metrics and Comparative
Analysis

Reliability Metrics
The initial step in gauging the effectiveness of fault-
tolerant reconfigurable architectures is reliability
assessment that is normally determined based on
two major metrics Mean Time to Failure (MTTF) and
Fault Coverage. MTTF is a measure of the anticipated
time a system runs until a fault develops, and fault-
tolerant designs attempt to maximize this measure
by the incorporation of systems to prevent, conceal,
or restore when faults happen in the course of
operation. Fault coverage, in contrast, measures the
number of faults which can be detected or fixed in
a particular fault model in a percentage. When the
fault coverage is high it means that the system will
take care of a wide variety of fault types i.e. transient
faults, intermittent faults and permanent faults. Such
metrics are particularly essential in safety-, mission
and autonomous vehicles, aerospace systems and
defense platforms where unnoticeable faults or short-
term downtimes can have disastrous consequences.

Resource Overhead
Although it increases fault tolerance, redundant logic
and reconfigurable recovery mechanisms logically
produce supplementary overheads on hardware
resource and power consumption. Significant
measures of evaluation, in this respect, is the
utilization of Look-Up Table (LUT) and Flip-Flop (FF),
as measures of the physical logic resources spent in

Table 2: Fault-Tolerant Design Strategies in Various Autonomous System Domains

Application Domain Target Modules Fault-Tolerance Strategy Benefits / Use Case

Unmanned Aerial
Vehicles (UAVs)

Navigation, Sensor
Fusion Modules

Triple Modular Redundancy
(TMR), Redundant IMU/GPS
Paths

Ensures stable flight and location accura-
cy under sensor failure

Autonomous
Ground Vehicles

Perception, Deci-
sion-Making Pipelines

Redundant Deep Neural Net-
works (DNNs), Dynamic Task
Migration

Enhances safety and reliability in re-
al-time driving scenarios

Space and Defense
Systems

On-Board Processors,
Memory Blocks

SEU-Hardened Logic, Configu-
ration Scrubbing, ECC

Maintains system integrity under radia-
tion and cosmic events

Edge-AI Robotics AI/ML Accelerators,
Neuromorphic Cores

Online Fault Detection,
Self-Healing Circuits, Light-
weight BIST

Sustains continuous learning/inference
under hardware degradation

Autonomous Ma-
rine Systems

Sonar, Underwater
Navigation Units

Error Correction + Module
Swapping with Spare Tiles

Provides resilience in high-pressure and
moisture-prone environments

Belal Batiha and Amina El-Fahmy : A Review of Fault-Tolerant Reconfigurable Architectures for Autonomous
Systems Based on Redundant Logic Mapping

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 202666

implementations working on FPGA. Technologies like
Triple Modular Redundancy (TMR) have a potential to
consume 2-3x more LUTs which is a major concern
on the aspect of area utilization. Another significant
factor is the power dissipation where a fault-tolerant
circuit might have increased static and dynamic
power dissipation due to voting logic or other spares
modules. Besides, reconfiguration latency (measured
as time to reconfigure a faulty logic block, especially
under Dynamic Partial Reconfiguration (DPR) schemes)
should be confined within the permissible limits of the
targeted application to ensure smooth functioning.
Trading off these overheads against the intended
fault resilience is one of the key design issues, and
in resource-limited contexts like edge-AI systems
and embedded platforms where the power, area and
timing budgets are quite stringent.

Performance Trade-offs
A momentous evaluation of fault tolerant reconfigurable
architectures is the performance-reliability trade off.
As redundancy is added, fault-resilience can be added,
but with the trade-offs of less system throughput,
or a slower response. As an example, Triple Modular
Redundancy (TMR) enhances execution determinism, in
that faults are masked by a majority voting operation,
but at the cost of extra logic, and hence lower
performance. Likewise, temporal redundancy, which
repeats the previous hardware resource to perform
multiple execution cycles, saves area and power
without having to bring in delays that are harmful to
time-conscious applications. System designers should
therefore evaluate these trade-offs with respect

to application-based constraints, such as real-time
responsiveness, energy efficiency, and obligatory fault
coverage, so as to guarantee that the fault-tolerance
measures they use would not undermine the system
operational intentions.

Comparative Analysis of State-of-the-Art
Techniques
In order to understand the practical efficiency of the
fault-tolerant reconfigurable architecture, comparison
of most recent research efforts on the basis of certain
key metrics fault model coverage, redundancy
scheme, improvement of Mean Time to Failure (MTTF),
hardware resource and power overhead, and recovery
latency cannot be neglected. The table summarizes
in a comparative manner well known fault-tolerant
methods suggested during the past 5-7 years (table 3).

These solutions depict the variability in the design
strategies, whereby the traditional spatial redundancy
covers TMR and DMR, whereas more dynamic and
intelligent solutions become hybrids and ML-based
fault recovery. Techniques involving spatial masking
such as that used by Ng et al.[1] give a high fault masking
capability but with a significant overhead. Temporal
codes on the other hand are area-efficient, but not
so suitable to real-time duty as they contain a certain
delay, e.g. Sami et al.[2] The hybrid model developed
by Kozlova and Smirnov[3] shows a trade-off well
balanced because this approach uses both spatial and
temporal approaches to mitigate transient as well as
age-related failures. Importantly, new solutions based
on machine learning-related recovery techniques,
evidenced by the work of Javier et al.,[5] may be fed

Table 3. Comparison of Recent Fault-Tolerant Reconfigurable Architectures (2018–2025)

Reference Redundancy Type Fault Model
MTTF

Improvement
Overhead (LUT /

Power) Recovery Time

Ng et al., 2021[1] Spatial (TMR +
DPR)

SEU, transient 3× 2.7× LUT, +35%
power

~12 ms (DPR)

Sami et al., 2019[2] Temporal Intermittent,
transient

1.8× 1.3× LUT, +12%
power

~9 ms

Kozlova & Smirnov,
2025[3]

Hybrid SEU, aging 3.5× 2.1× LUT, +25%
power

~10 ms (dynamic
swap)

Alves et al., 2020[4] Spatial (DMR) Permanent 2.2× 1.8× LUT, +18%
power

~6 ms

Javier et al.,
2025[5]

ML-based
Recovery

Predictive /
Transient

2.7× 2.0× LUT, +20%
power

~15 ms (with
feedback)

Belal Batiha and Amina El-Fahmy : A Review of Fault-Tolerant Reconfigurable Architectures for Autonomous
Systems Based on Redundant Logic Mapping

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 2026 67

into predictive fault processing, though they have
not yet succeeded in the areas of runtime delays and
implementation effort. Since Table 3 demonstrates
that hybrid schemes provide the best improvement
of MTTF at moderately high overhead, performances
of the three schemes are compared and discussed in
detail. Figure summarizes the performance and fault-
tolerance trade-offs in a graphical form.

Below is the radar chart measuring the similarities
and differences among the techniques techniques
in fault tolerance in important dimensions: fault
coverage, time of reconfiguration, overhead of power
and resources, and scalability. Multi-dimensional trade
offs between TMR + DPR, ML-based recovery, temporal
redundancy, and Hybrid models can be explained in
this visualization.

Fig. 2: Radar Chart of Fault-Tolerant Architecture Metrics

Open Challenges and Research
Directions
In spite of all the advances in fault tolerant reconfigurable
computing, some of the most intriguing research
challenges have remained open, and they constitute
alluring areas of investigation in the future. With
increasing complexity of design, effective and precise
fault identification in large, diverse architectures is
more and more of a difficulty. It creates a demand
to evolve intelligent and redundancy conscious high-
level synthesis (HLS) design tools in combination with
AI-augmented logic mapping algorithms capable of
maximizing the coverage of faults without significant

overhead. Moreover, upcoming systems need to
respond to requirements of mixed-criticality systems,
within which diverse reliability and timing goals have
to concur in a shared architecture. The post-quantum-
secure mechanisms of fault detection should be also
incorporated to guarantee resistance towards classical
and novel cyber-physical attacks. Last but not least
will be the move towards comprehensive cross-layer
resilience, that is, circuit-level fault detection, up to
the system-level adaptive reconfiguration, and the
realization of robust and smart autonomous platforms
able to maintain long-term functionality in dynamic
and mission-critical environments.

References
1]	 M. C. Ng, A. J. Laffely, and D. Koch, “Dynamic Partial Re-

configuration in FPGAs: A Survey of Architectures, Tools,
and Applications,” ACM Computing Surveys, vol. 54, no.
2, pp. 1–39, 2021.

2.	 K. Compton and S. Hauck, “Reconfigurable computing:
A survey of systems and software,” ACM Computing Sur-
veys, vol. 34, no. 2, pp. 171–210, Jun. 2002.

3.	 R. Velazco, P. Fouillat, and R. Reis, Radiation Effects on
Embedded Systems, Springer, 2007.

4.	 S. Borkar, “Designing reliable systems from unreliable
components: the challenges of transistor variability and
degradation,” IEEE Micro, vol. 25, no. 6, pp. 10–16, Nov.–
Dec. 2005.

5.	 T. Mitra and P. Mishra, Secure and Reliable System Design
for Embedded Systems, Springer, 2016.

6.	 R. E. Lyons and W. Vanderkulk, “The use of triple-mod-
ular redundancy to improve computer reliability,” IBM
Journal of Research and Development, vol. 6, no. 2, pp.
200–209, Apr. 1962.

7.	 A. R. Alves, R. P. Ribas, and A. I. Reis, “Area, power and
delay trade-offs in redundant logic synthesis,” Micro-
electronics Journal, vol. 40, no. 11, pp. 1664–1672, Nov.
2009.

8.	 M. G. Sami et al., “Temporal redundancy and check-
pointing for fault tolerance in FPGAs,” IEEE Transactions
on Instrumentation and Measurement, vol. 55, no. 5, pp.
1769–1776, Oct. 2006.

9.	 M. A. Müller, J. C. Schmidt, and C. M. Fischer, “Sus-
tainable VLSI design: Green electronics for energy con-
scious systems,” Journal of Integrated VLSI, Embedded
and Computing Technologies, vol. 2, no. 2, pp. 44–51,
 2025.

10.	R. Rangisetti and K. Annapurna, “Routing attacks in
VANETs,” International Journal of Communication and
Computer Technologies, vol. 9, no. 2, pp. 1–5, 2021.

Belal Batiha and Amina El-Fahmy : A Review of Fault-Tolerant Reconfigurable Architectures for Autonomous
Systems Based on Redundant Logic Mapping

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 202668

11.	S. Sadulla, “IoT-enabled smart buildings: A sustainable
approach for energy management,” National Journal of
Electrical Electronics and Automation Technologies, vol.
1, no. 1, pp. 14–23, 2025.

12.	F. Javier, M. José, J. Luis, A. María, and J. Carlos, “Revolution-
izing healthcare: Wearable IoT sensors for health monitoring

applications: Design and optimization,” Journal of Wireless
Sensor Networks and IoT, vol. 2, no. 1, pp. 31–41, 2025.

13.	E. I. Kozlova and N. V. Smirnov, “Reconfigurable com-
puting applied to large scale simulation and modeling,”
SCCTS Transactions on Reconfigurable Computing, vol. 2,
no. 3, pp. 18–26, 2025.

