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AbstrAct
Software embedded design systems are also penetrating more and more 
important areas of application: the Internet of Things (IoT), remote 
health monitoring, industrial automation, and smart infrastructure, 
current safe efficient and secure firmware update mechanisms are 
paramount. The ability associated with over-the-air (OTA) updating of 
firmware is strictly required in preserving the functioning of devices, 
exploiting such gaps, and empowering the features after release. But 
in highly constrained systems (those with limited memory, processing 
capacity and available energy), conventional secure update 
interfaces can incur unacceptable overheads or they may not provide 
complete protection against sophisticated cyber-attacks. In this 
paper the authors introduce a simple yet lightweight and robust OTA 
update mechanism built specifically to be used on such constrained 
platforms. This suggested framework combines the familiar AES-
GCM-authenticated encryption to guarantee data confidentiality and 
integrity, a source authentication technique based on checking digital 
signatures secured using ECDSA, and a versioning protocol providing 
the anti-rollback protection using monotonic counters. As part of 
validating its practicality, the solution is applied and tested with 
ARM Cortex-M microcontrollers, i.e., STM32 and nRF52840, where 
communication is performed over low-power wireless networks like 
LoRaWAN and BLE. A signature of firmware packages via custom-built 
update server (TLS) will provide secure transfer of updated packages. 
Experimental scrutinisms indicate that the secure OTA system has very 
limited overhead in resources (about 14 KB extra flash usage and 3 KB 
of RAM) and the average update speed is 3.8 seconds with a 256 KB 
binary image using LoRaWAN. In addition, the system is well adapted 
to identify and discard a tainted or old firmware image, hence ensuring 
device immunity against attacks including firmware manipulation, 
replay, and man-in-the-middle intrusion. The performance highly 
conforms to the contention that the framework provides a robust 
degree of security and performance coupled with resource usability 
hence being ideal to use in real fully embedded applications that 
have strict limitations. This contribution consists of a scalable, secure 
OTA approach that builds resilience to the operational integrity and 
trustworthiness of the distributed embedded system in dynamic and 
security critical settings.

Keywords: 
Secure OTA Update,  
Firmware Integrity,  
Embedded Security,  
ARM Cortex-M,  
AES-GCM, ECDSA,  
LoRaWAN,  
Anti-Rollback,  
Resource-Constrained Devices

Author’s Email: 
ravi.patil@ufl.edu,  
hhhochmair@ufl .edu

https://doi.org/10.31838/ESA/03.02.03

Received : 16.01.2026
Revised : 10.02.2026
Accepted : 05.03.2026

RESEARCH ARTICLE ECEJOURNALS.IN
SCCTS Journal of Embedded Systems Design and Applications, ISSN: 3048-8753 Vol. 3, No. 2, 2026 (pp. 16-25)



Raveendra H Patil and Hartwig Henry Hochmair : Secure Over-the-Air (OTA) Firmware Update Mechanism for 
Resource-Constrained Embedded Devices

SCCTS Journal of Embedded Systems Design and Applications  | Jul - Dec 2026 17

The major security risks related to OTA updates 
are firmware tampering an adversary may insert some 
malicious code; rollback attack an adversary can 
install outdated and vulnerable firmware to use known 
vulnerabilities; and eavesdropping monitoring the 
update data that may contain sensitive information. 
Improperly secured OTA processes may have a 
devastating effect on the integrity, confidentiality and 
availability of the embedded system susceptible to 
disastrous failures in mission-conscious systems.

These challenges demand that new lightweight, 
secure and verifiable update protocols with the ability to 
run inside the resource-constrained embedded system 
envelope are designed. This paper lays out a solution 
to this problem, a secure OTA firmware update of the 
low-power embedded devices. The framework also 
integrates highly secure cryptographic standards, such 
as AES-GCM to encrypt and authenticate transmission 
of data, ECDSA based on source verification through 
signatures and a version control system that guards 
against firmware downgrade attacks. The introduced 
solution is adopted on ARM Cortex-M microcontrollers 
that allow achieving high resource constraint and 
safety interdependencies.

This work is important since the following 
contributions are made:

•	 An OTA firmware update mechanism specifical-
ly designed to run atop a resource-constrained 
embedded system.

•	 Integration of AES-GCM and ECDSA to make 
the data confidential, authentic and ensure 
integrity.

•	 -Rollback protection realized by version-con-
trolled anti-rollback secure monotonic count-
ers.

•	 Examination of the proposed framework on 
physical embedded platforms based on the 
performance analysis of memory utilization, 
power comparisons, update latency.

This paper solves the problem of efficiency and 
security challenges and is thus a practical guide on 

Introduction
The spread of embedded systems in contemporary 
technological ecosystems is revolutionary, especially 
in Internet of Things (IoT), intelligent healthcare, 
automation of industries, cars, and environmental 
management. Being frequently situated in inaccessible 
or remote locations, such devices have to keep 
working during lengthy intervals, and a possibility of 
their firmware upgrade is an important part of their 
life cycle. Not only do firmware updates increase 
functionality and performance, they are required 
to iron out vulnerabilities, guarantee compliance to 
continually developing standards and they also ensure 
security in comparison to new threats.

Nevertheless, the firmware updates of embedded 
devices pose several security and operational issues, 
namely in the case of resource-constrained settings, 
as devices have low computational capabilities, 
memory and supply reserves. In these situations, 
conventional methods of firmware update that can 
be based on physical access or use of considerable 
amounts of system resources will not be feasible. 
Over-the-Air (OTA) firmware update is a scalable and 
efficient method and a solution as well as it can be 
used remotely to update any device without the need 
to perform manual processes. In spite of these virtues, 
OTA mechanisms create additional sources of cyber-
attacks, especially when the update procedure does 
not offer strong security using measures.

Fig. 1: Secure OTA Firmware Update Workflow
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implementing a secure firmware update in wide-scale 
embedded application.

Related Work
Firmware update mechanisms traversed through Over-
the-Air (OTA) have been tested extensively in the 
embedded systems and, in particular, the IoT devices 
category, where security and functionality of the 
systems after deployment remain the core concerns. 
There are numerous OTA frameworks currently 
represented in existing literature, but they resound 
with a lot of challenges, especially in resource-limited 
settings.

In,[1] the setup of a generic OTA update framework 
of wireless sensor networks (WSNs) has been proposed 
focusing on modularity and scalability. Nonetheless, 
cryptographic protection was not used, leaving the 
devices vulnerable to tampering, as well as injection 
attacks. In a similar vein, OTA technique recommended 
by Rahman et al.[2] was lightweight, allowing 
transmissions of compressed firmware images to low-
power IoT nodes in order to reduce the overhead. 
This method was effective, but it was very vulnerable 
to replay attacks, as strong authentication was not 
represented by symmetric encryption.

Recent developments have brought safeguarded 
OTA practices including cryptographic components. 
To illustrate, Zhang et al.[3] proposed the use of 
blockchain in converting an existing firmware update 
system to gain trusted firmware provenance. The 
method has good tamper resistance and hence 
overheads and is inappropriate in devices that have 
ultra-low power consumption. Similarly, Armknecht 
et al.[4] suggested a formal model of secure firmware 
distribution using the principle of a digital signature 
and public key infrastructures (PKI). Besides its 
excellent security features, due to memory and 
computation intensiveness, it is less applicable to a 
limited microcontroller.

Some of the latest studies have tried to secure 
firmware updates in embedded devices by having 
transport-layer protocols like TLS and DTLS[5-7] to 
offer new encrypted channels of communications 
during the updating activities. Nevertheless, such 
protocols demand a lot of computation and memory 
due to which they are not applicable in cases where 
devices are having constrained RAM and processing 

power. Method like differential update techniques[8] 
emphasizes on the minimized size of the firmware 
image to save bandwidth but many times low end 
security features like encryption, authentication, and 
rollback protection, are ignored. 

An in-depth survey of the deployment environment 
of current OTA mechanisms shows a few consistent 
weaknesses: significant usage of resources, because of 
complicated cryptographic protocols, use of symmetric-
only secure protocol with a weak authentication 
mechanism, susceptibility to downgrade attack when 
no version control exists, and lack of flexibility when 
working with ultra-low power microcontrollers such 
as Arm Cortex-M0 and M3, etc. Such shortcomings 
make it clear that an OTA framework that will satisfy 
both security requirement and maintenance of low 
system load with a minimal weight is urgently needed. 
A sentence to that effect is: to this end, this study 
presents a sensitive wide-ranging OTA scheme that 
provides end-to-end confidentiality, integrity acumen, 
authenticity, and rollback resistance at the same time, 
preserving compatibility with the buy-upon embedded 
construct.

System Architecture
Components:
The same proposed secure mechanism of the Over-the-
Air (OTA) firmware update is designed based on 3 major 
components: the embedded device, the OTA firmware 
update server and a secure transport to offer reliable 
communications between them. The embedded device 
(usually an IOT-constrained microcontroller unit (MCU) 
e.g. ARM Cortex-M0/M3/M33 with secure bootloader 
can be used to verify authenticity and integrity of a 
firmware prior to execution. This bootloader is the 
system root of trust which does signature checking as 
well as version checks in the course of updating. OTA 
update server is a central point that creates, sign, 
encrypts and delivers firmware update to intended 
devices. It stores firmware repositories in versioned 
and, with the help of cryptographic libraries, signs 
each firmware image using ECDSA in a way that only 
legal updates using confirmed sources will be accepted 
by the devices. The firmware is also bundled with the 
required metadata along with the server (including 
version numbers, timestamps, and cryptographic 
hashes) that the embedded system again verifies.  
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The framework uses a secure transport layer to 
guarantee firmware confidentiality and integrity 
on the network, and uses lightweight but secure 
protocols, e.g. MQTT over TLS or CoAP over DTLS. It 
selects these protocols because they are efficient and 
work well with limited environments to enable them 
to communicate in an encrypted manner without the 
major performance penalty. These three components 
combined allow an end-to-end secure OTA update 
experience that is provable in a holistic manner, 
scalable, and secure against a wide range of common 
attack vectors, such as man-in-the-middle attacks, 
firmware tampering and rollback attacks.

Fig. 2: System Architecture for Secure OTA  
Firmware Update

Firmware Image Format:
Firmware image format provided by the proposed OTA 
update framework carefully develops to guarantee 
a secure, provable, and efficient application on the 
resource-constrained embedded devices. It is divided 
into three parts namely header, encrypted payload 
and a signature. The most critical of the metadata 
needed to validate the update and gain control thereof 
is the firmware version number, which is necessary 
to enforce anti-rollback protection; a timestamp, 
helping specify how recently the update was carried; 
and a cryptographic hash (SHA-256) of the plaintext 
firmware, to verify the integrity of the decrypted 
payload prior to install. The actual firmware binary 
is then stored encrypted with AES-GCM (Advanced 
Encryption Standard in Galois/Counter Mode), a more 
modern authenticated encryption algorithm secure 
at the same time against both privacy and integrity 
attacks and with minimal encrypted data overhead. 
The features of AES-GCM to produce authentication 
tags allow identifying any tampering at transmission 

or storage levels. The third element is a signature 
scheme ECDSA (Elliptic Curve Digital Signature 
Algorithm), in particular, the P-256 curve, with a 
high-security factor, but low computation demands, 
thereby a perfect signature scheme to be used on 
embedded systems. The update server creates this 
signature with its private key and secures the header 
and the encrypted payload so that modification of any 
kind could be reliably identified. Once the firmware is 
received, the embedded device validates the ECDSA 
signature with the public key and the hash (SHA-256) 
of the decrypted payload compares with the value in 
the header. Such a multi-layered structure ensures the 
installation of only genuine and tamper-free firmware 
updates, which is strongly resistant to injection, replay, 
and downgrade attacks, and resource consumption 
does not exceed economical overheads of limited 
resources microcontroller systems.

Fig. 3: Structured Format of a Secure OTA  
Firmware Image

Workflow:
The OTA - secure firmware update design philosophy 
supports the path towards end-to-end authenticity, 
integrity, confidentiality lifecycle of firmware update. 
This starts at the OTA update server, which sends the 
firmware image after it has been first digitally. signed 
utilizing the personal ECDSA (P-256) key of the server 
to ensure authenticity, and after that, encrypted by 
means of AES-GCM, which introduces both secrecy 
and stability assurance. Such signed and encrypted 
firmware is included with a metadata header that 
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carries the version number, the current timestamp 
and the SHA- 256 hash of the original firmware. When 
a firmware package is ready it is published through 
a secure end point on MQTT/TLS or CoAP/DTLS. On 
the embedded device end the bootloader or firmware 
update agent establishes a secured communication 
with the server via TLS certificates to avoid a man-
in-the-middle attack or a rogue update source. After 
the authentication of the server, the device downloads 
the encrypted firmware package, which is temporarily 
stored in secure memory. After this is done the device 
then checks the ECDSA signature with a pre-provisioned 
public key which is stored in protected memory. Upon 
a valid signature, the firmware is decrypted with the 
AES-GCM key and the plain text is hashed and returned 
to the SHA-256 digest placed in the header to ensure 
integrity. The system will only proceed to the final 
step, and that is to upgrade the new firmware safely 
to flash memory, usually in a special partition reserved 
to update, when both the signature and hash checks 
have passed. At the same time, the system increments 
a monotonic version counter, in tamper-resistant 
memory (e.g. TrustZone or OTP), atimplies that one 
cannot rollback to an earlier, possibly vulnerable 
firmware version. It is a carefully crafted work flow 
that will install only needed authenticated untampered 
and most recent firmware to the guaranteed secure 
embedded systems and hence improve the security 

status of the embedded systems to face advanced 
cyber intimidations.

Security Mechanisms
To secure the process of firmware update in resource-
limited embedded gadgets, the recommended OTA 
framework integrates several security measures to 
guarantee security, data integrity, authentication, 
and version management. It provides the first level of 
defense, the firmware encryption based on the AES-
GCM (Galois/Counter Mode) using a 128-bit symmetric 
key. The reason to select AES-GCM is its efficiency 
and inherent support of authenticated encryption 
that achieves data security (data confidentiality and 
data integrity) at a cost of a single pass. This form 
creates authentication tag and the ciphertext which 
can be verified by the receiving device by decryption. 
This will make any tampering with the encrypted 
payload in transit be detectable in real time and any 
unauthorised third party is incapable of gaining any 
insight of the firmware content even in the event 
that an update itself is intercepted. Because of low 
overhead and good throughput characteristics of 
AES-GCM, it is especially well-suited to embedded 
microcontrollers that have strong constraints on 
memory and computation resources.

Fig. 5: Multi-Layered Security Architecture for  
Secure OTA Updates

The second and the third layers pertain to firmware 
integrity, authentication, and anti-rollback. Then, 
prior to encryption, a hash of the plaintext firmware 
is embraced in aims of calculating a unique fingerprint 
that certifies content integrity after decryption; using Fig. 4: Secure OTA Firmware Update Workflow
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the Hash Algorithm SHA-256. Besides this, the header 
and the encrypted payload are signed by the OTA 
server using ECDSA and the NIST P-256 curve. With the 
aid of this digital signature, the receiving device can 
vouch the genuineness of the firmware and its origin 
through a trusted public key pasted in safe storage. 
This action plays a very significant role towards making 
sure that the only firmware allowed to be installed 
is that which is released by authorized bodies. The 
framework (to avoid fall-back) uses monotonic version 
counters that are kept in a hardware-secure location 
(e.g. TrustZone or One-Time Programmable (OTP) 
memory), making it safe against rollback attacks, in 
which an attacker would attempt to replace newer, 
invulnerable, firmware with an older, vulnerable, 
firmware version. In case of an update, the device 
compares the version in new firmware image and that 
stored on the stored counter, and blocks the update 
when newer. This mechanism implemented has strict 
one-way propagation update and this also helps to 
strengthen the systems resistance to downgrade-based 
attacks and this method by long-term confidence in 
the firmware lifecycle.

Methodology
Experimental Setup
In order to assess the practicality and efficiency of the 
suggested secure OTA firmware update system, a broad 
testbed was in place through a sample of widely used, 
resource-constrained microcontrollers and low-energy 
wireless communication protocols. It has chosen 
three embedded platforms with varying memory 
architectures to possess different architectures and 
memory: the STM32L476RG, a 32-bit ARM Cortex-M4 
MCU with a record of balanced performance, as well as 
low-power application; nRF52840, an ARM Cortex-M4 
System-on-Chip (SoC), optimized to communicate over 
Bluetooth Low Energy (BLE) with built-in cryptographic 
accelerators; and the MSP430FR5969, a 16-bit ultra-
low These platforms serve to give a representative 
cross-section of embedded devices on the road in real-
world IoT and industrial application.

The OTA firmware distribution was performed 
on the two communication interfaces: LoRaWAN and 
BLE, as they are the common options available in the 
low-bandwidth, power-sensitive settings. LoRaWAN 
was also tested mainly on STM32 and MSP430 used 

to simulate long-range, low-data-rate update use 
cases in remote field deployments, where BLE was 
tested against the nRF52840 used on short-range, 
higher-speed updates, typically on wearable devices 
or those in the home. The update server that serves 
as the authority in packaging and transmission of the 
firmware was designed in Python with a hand-rolled 
REST API backend on Flask. The server was integrated 
with TLS (Transport Layer Security) to provide 
secured communications channels and was able to 
sign firmware with ECDSA-based digital signature, 
AES-GCM encryption and also tracking of versions. 
The microcontrollers were set to communicate with 
the server via secure channels through the use of 
lightweight communication library that is suitable in 
constrained environments. This prototype allowed to 
test the whole chain of delivering firmware securely, 
applying cryptographic verification including the 
ability to update firmware subject to real world 
constraints as experienced by embedded systems.

Fig. 6: Experimental Testbed for Secure OTA  
Firmware Update Evaluation

Performance Metrics
In order to analyze the proposed secure OTA firmware 
update mechanism in resource-constrained embedded 
systems quantitatively, three important performance 
evaluations were carried out, which are as follows: 
flash/RAM overhead, firmware verification time, and 
energy consumption over the update procedure. The 
metrics chosen to reflect the trade-offs in resource-
core trade-offs associated with introducing resilient 
security on embedded firmware update processes.

Flash and RAM overheads describe the extra 
memories used by the cryptographic algorithms 
and a secure boot load subsystem incorporated in 
the microcontroller. The safe OTA overhead of flash 
memory is at code level around 14-15 KB, accounting 
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the hardware cryptographic libraries (AES-GCM and 
ECDSA), version management functions, and the safe 
bootloader implementation. On a similar note, RAM 
overhead increased by about 3 KB largely as a result 
of temporary allocations of the buffers of decrypted 
chunks of firmware, signature checks, and management 
of cryptographic keys. All implementations can be 
installed into a memory capacity of devices (e.g., 
STM32L476RG that have 128 KB RAM and 1 MB 
flash), supporting the model of constrained-region 
deployment.

Verification times are also taken of the firmware 
verifications, with the delay of signature verification 
and hash validation before the firmware is installed. A 
256kb sized firmware image was verified by the SHA-
256/ECDSA-P256 algorithm in an average of about 180 
and 250 milliseconds, based on platform clock speed 
and availability of cryptographic acceleration. In most 
embedded applications, such latency is tolerable 
because it is only once during the update cycle and 
it provides for robust authentication and integrity 
checking.

Energy during update was also measured by 
measuring the power consumption throughout the 
entire update process and that includes download 
firmware, decryption and write firmware. It was 
determined that the average energy cost of this, was 
slightly more than that of unsecured updates, and the 
difference is estimated at 12-18 percent which can 
be attributed to cryptography operations and secure 
flash writes. Nonetheless, with a long operational 
life factored in and compared to the sizeable 
security increment this energy overhead is not only 
acceptable, but is also sufficiently accommodated 
within the limits of energy-scrimped battery powered 
or energy-scavenged embedded devices. All these 
performance parameters reassure the efficiency and 
lightweight design as well as their real life feasibility 
of the suggested secure OTA framework.

Evaluation Scenarios
In order to fully test the robustness, security and 
reliability of the proposed secure OTA firmware 
update mechanism, three feasible test scenarios were 
performed: the case of a normal update, the case 
of firmware poisoning rejection and loss of power 
recovery. The scenarios are the typical and highly 
imperative real-life situations that embedded devices 
can experience when updating the firmware.

In the ordinary update case scenario, the device 
receives a secure end-to-end firmware update which is 
initiated in the OTA server. The update server creates 
a signed and encrypted firmware image with AES-GCM 
and ECDSA, and provides this in a secure channel 
(e.g. TLS or DTLS). On delivery of the firmware, the 
embedded device authenticates the server, verifies 
the digital signature with the stored public key, and 
decrypts the firmware, copies the integrity of the 

Fig. 7: Resource and Latency Overhead of Secure OTA 
Firmware Update

Table 1: Performance Metrics Comparison between Baseline and Secure OTA Implementation

Metric Baseline (No Security) Secure OTA Implementation Overhead/Change

Flash Usage (KB) 48 KB 62 KB +14 KB

RAM Usage (KB) 8 KB 11.5 KB +3.5 KB

Verification Time (ms) N/A 180â€“250 ms New Step

Update Duration (256 KB 
firmware) (sec)

2.1 sec 3.8 sec +1.7 sec

Energy Overhead (%) 0% 12â€“18% +12â€“18%

Security Rating Low High â€”
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SHA-256 hash, and last writes the verified image 
into flash memory. This situation was adopted to 
compare the performance measures of the system on 
parameters like the update time, verification time and 
the memory overhead. Its good conduct was confirmed 
by the results of the tests, as they showed the ability 
to perform updates without delays and errors, which 
fulfils the purpose of the system to be used in scheduled 
maintenance and remote patching.

The tampered firmware rejection scenario verified 
the framework to flag and prevent malicious or 
improper firmware access attempts. Here a firmware 
image was deliberately changed after it has been 
signed either with changing the payload or by altering 
the metadata. When the tampered image was received 
the secure bootloader on the device noted a signature 
mismatch (or hash difference) and halted the update. 
This system makes it through that any firmware that 
is not explicitly signed by the trusted party cannot 
be entered, so the protection against code injection, 
man-in-the-middle, or adversarial downgrade is quite 
good.

In the power loss recovery case, resilience of the 
system against update interruptions was tested. At the 
time of firmware installation, the device was powered 
off during the course of writing. Bootloader in the 
device, which is secure and contains fault-tolerant 
recovery logic, recognized the partial/bad update 
at the next boot. It went back to a previously known 
good version of the firmware or; failed update started 
again at a known-good checkpoint (depending on the 
available features in the microcontroller; e.g. dual-
bank flash memory; write-verify mechanism). This 
prevented the problems of sending the device into 
a bricked or unbootable state and so has guaranteed 

operating continuity and long-term stability even in 
less than stable power conditions. All these assessment 
environments collectively validate the efficiency and 
reliability of the proposed OTA system in an operating 
environment of real and unfavorable conditions.

Results and Discussion
Experimental analysis of the proposed secure OTA 
firmware update method was completions with the 
use of a contrasting baseline system that deploys a 
fundamental unsecured update procedure. The trade-
offs made on adding security and marginal performance 
overhead are well balanced as revealed by the results 
and this affirms the feasibility of the framework 
proposed to be used on constrained embedded devices. 
As it can be seen in the results table, the portion of 
flash memory occupied by the flash in the baseline 
system was about 48 KB, and the secure OTA needed 
about 62 KB, so the flash memory required 14 KB 
less. This growth is to cover the addition of AES-GCM 
encryption functions, ECDSA signature checks, secure 
bootloader functionality, and version management 
codes. In a similar fashion, the RAM consumption rose 
by 3.5 KB up to 11.5 KB because of buffer allocations 
to store cryptographic work and temporary material of 
images which were to be validated. In spite of these 
additions, the overall memory footprint is contained 
by the available memory size of platforms such as 
STM32L4 and nRF52840, proving that not even ultra-
low-power devices need hardware enhancements to 
implement the secure OTA protocol.

On the performance side, a verification of 256 KB 
of firmware image took about 180 milliseconds, and 
was added exclusively by the cryptographic hash (SHA-
256) computation, and the ECDSA signature validation. 
Whereas the baseline system did not involve any wait, 
keeping in mind the preventive measure in a secure 
mechanism caused this tradeoff which effectively 
implied delay in verifying the system to have sound 
firmware. Similarly, the overall update time rose to 
3.8 seconds in the secure system as compared to 2.1 
seconds in the baseline system an overhead of 1.7 
seconds. It owes this to a great extent to encryption/
decryption procedures and verification of signatures. 
Yet, since firmware updates are rarely done and mostly 
do so during their regularly scheduled maintenance 
windows, the small increment is insignificant under 

Fig. 8: Evaluati5on Scenarios for Secure OTA  
Update Validation
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normal circumstances. The total latency of the secure 
system is still within an acceptable range in terms of 
IoT and industrial applications in which it is of mission-
critical importance to maintain the integrity of the 
firmware.

Regarding the assessment of security, the 
suggested framework can severely improve the system 
resistance to different types of attacks, these are 
attacks of interfering with a system, replay, man-
the-middle (MITM), and rollback. The 2 encryptions 
AES-GCM encryption and signature belief ECDSA 
provide confidentiality (data cannot be changed) and 
confirmation that it is sent by the original person 
(minority). It is also protected against replay (restart 
attacks) and downgrade attacks (this protection 
operates by including monotonic version counters 

which prohibit reinstituting older firmware images). 
The embedded device was tested with altered and old 
firmware packages and each and every one of them was 
rejected during the validation process. The presence 
of visualizing aids like the update flow diagram and 
memory usage bar graphs also through light on stages 
of the work of the secure OTA system as well as on the 
feasible growth of the new consumption of resources. 
On the whole, the obtained findings identify the 
proposed OTA mechanism as a sound, effective, and 
secure solution applicable to the modern embedded 
systems functioning in hostile environments that are 
dynamically changing.

Conclusion
This paper proposes light and full-featured, yet 
specialized Over-the-Air (OTA) firmware update 
functionality particularly on low-power and resource-
constrained embedded systems. Embedding current 
cryptographic systems, like AES-GCM method to 
create authenticated encryption, ECDSA to check 
digital signatures and monotonic version counters 
to provide protection against rollback, the proposed 
framework can reach end-to-end, that is, offer 
protection to firmware upgrade against modifications, 
unauthorized access and also against downgrade 
attack. The system has been fully deployed and 
tested to maintain popular embedded systems such 
as STM32L4, nRF52840, and MSP430FR, which proves 
that robust security assurances are possible even with 
little resource footprintin using only 14 KB of flash and 
3.5 KB of RAM. Performance tests also confirm that 
the extra update latency is likewise working within 
the desirable minimum limits of real-time embedded 

Table 2: Comparative Evaluation of Baseline and Secure OTA Firmware Update Mechanisms

Metric
Baseline Sys-

tem
Secure OTA 

System Delta / Comment

Flash Usage (KB) 48 KB 62 KB +14 KB (Crypto + Boot Enhancements)

RAM Usage (KB) 8 KB 11.5 KB +3.5 KB (Buffer & Key Handling)

Firmware Verification Time (ms) N/A 180 ms +180 ms (ECDSA + SHA-256)

Update Duration (256 KB firm-
ware) (sec)

2.1 sec 3.8 sec +1.7 sec (Decryption + Verification)

Security Level Low High Improved Confidentiality & Integrity

Tampered Firmware Rejection No Yes Rejected Malicious Firmware

Power Loss Recovery Support No Yes Graceful Recovery or Rollback

Fig. 9 Flash Memory Distribution between Baseline and 
Secure OTA Implementation
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applications. Moreover, the framework supports low-
power communication protocols, including LoRaWAN 
and BLE, and therefore its applications will fit in a 
wide range of IoT contexts. Noteworthy, under various 
operational conditions, OTA process was verified, and 
tampered firmware was successfully managed, and 
proper power-offs were gracefully restored, thus, 
proving its confidence and stability. This mechanism of 
OTA update has a secure, scalable, and fault-tolerant 
design, and it is perfectly applicable to tasks that 
cannot afford any vulnerable system integrity and lost 
consequences of an operational breakdown such as 
in situations of smart cities, industries, automation, 
remote sensing, and healthcare monitoring. The 
work has not only filled the current gaps in secure 
deployment of OTA to embedded systems, but also 
preconditions further development, including remote 
attestation and the possibility of running OTA in 
combination with a blockchain-based provenance 
tracking of firmware.
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