
SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 202616

Secure Over-the-Air (OTA) Firmware Update Mechanism
for Resource-Constrained Embedded Devices

Raveendra H Patil1*, Hartwig Henry Hochmair2

1Agricultural & Biological Engineering Department, University of Florida, USA
2University of Florida, Geomatics Program, USA

AbstrAct
Software embedded design systems are also penetrating more and more
important areas of application: the Internet of Things (IoT), remote
health monitoring, industrial automation, and smart infrastructure,
current safe efficient and secure firmware update mechanisms are
paramount. The ability associated with over-the-air (OTA) updating of
firmware is strictly required in preserving the functioning of devices,
exploiting such gaps, and empowering the features after release. But
in highly constrained systems (those with limited memory, processing
capacity and available energy), conventional secure update
interfaces can incur unacceptable overheads or they may not provide
complete protection against sophisticated cyber-attacks. In this
paper the authors introduce a simple yet lightweight and robust OTA
update mechanism built specifically to be used on such constrained
platforms. This suggested framework combines the familiar AES-
GCM-authenticated encryption to guarantee data confidentiality and
integrity, a source authentication technique based on checking digital
signatures secured using ECDSA, and a versioning protocol providing
the anti-rollback protection using monotonic counters. As part of
validating its practicality, the solution is applied and tested with
ARM Cortex-M microcontrollers, i.e., STM32 and nRF52840, where
communication is performed over low-power wireless networks like
LoRaWAN and BLE. A signature of firmware packages via custom-built
update server (TLS) will provide secure transfer of updated packages.
Experimental scrutinisms indicate that the secure OTA system has very
limited overhead in resources (about 14 KB extra flash usage and 3 KB
of RAM) and the average update speed is 3.8 seconds with a 256 KB
binary image using LoRaWAN. In addition, the system is well adapted
to identify and discard a tainted or old firmware image, hence ensuring
device immunity against attacks including firmware manipulation,
replay, and man-in-the-middle intrusion. The performance highly
conforms to the contention that the framework provides a robust
degree of security and performance coupled with resource usability
hence being ideal to use in real fully embedded applications that
have strict limitations. This contribution consists of a scalable, secure
OTA approach that builds resilience to the operational integrity and
trustworthiness of the distributed embedded system in dynamic and
security critical settings.

Keywords:
Secure OTA Update,
Firmware Integrity,
Embedded Security,
ARM Cortex-M,
AES-GCM, ECDSA,
LoRaWAN,
Anti-Rollback,
Resource-Constrained Devices

Author’s Email:
ravi.patil@ufl.edu,
hhhochmair@ufl .edu

https://doi.org/10.31838/ESA/03.02.03

Received : 16.01.2026
Revised : 10.02.2026
Accepted : 05.03.2026

RESEARCH ARTICLE ECEJOURNALS.IN
SCCTS Journal of Embedded Systems Design and Applications, ISSN: 3048-8753 Vol. 3, No. 2, 2026 (pp. 16-25)

Raveendra H Patil and Hartwig Henry Hochmair : Secure Over-the-Air (OTA) Firmware Update Mechanism for
Resource-Constrained Embedded Devices

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 2026 17

The major security risks related to OTA updates
are firmware tampering an adversary may insert some
malicious code; rollback attack an adversary can
install outdated and vulnerable firmware to use known
vulnerabilities; and eavesdropping monitoring the
update data that may contain sensitive information.
Improperly secured OTA processes may have a
devastating effect on the integrity, confidentiality and
availability of the embedded system susceptible to
disastrous failures in mission-conscious systems.

These challenges demand that new lightweight,
secure and verifiable update protocols with the ability to
run inside the resource-constrained embedded system
envelope are designed. This paper lays out a solution
to this problem, a secure OTA firmware update of the
low-power embedded devices. The framework also
integrates highly secure cryptographic standards, such
as AES-GCM to encrypt and authenticate transmission
of data, ECDSA based on source verification through
signatures and a version control system that guards
against firmware downgrade attacks. The introduced
solution is adopted on ARM Cortex-M microcontrollers
that allow achieving high resource constraint and
safety interdependencies.

This work is important since the following
contributions are made:

•	 An OTA firmware update mechanism specifical-
ly designed to run atop a resource-constrained
embedded system.

•	 Integration of AES-GCM and ECDSA to make
the data confidential, authentic and ensure
integrity.

•	 -Rollback protection realized by version-con-
trolled anti-rollback secure monotonic count-
ers.

•	 Examination of the proposed framework on
physical embedded platforms based on the
performance analysis of memory utilization,
power comparisons, update latency.

This paper solves the problem of efficiency and
security challenges and is thus a practical guide on

Introduction
The spread of embedded systems in contemporary
technological ecosystems is revolutionary, especially
in Internet of Things (IoT), intelligent healthcare,
automation of industries, cars, and environmental
management. Being frequently situated in inaccessible
or remote locations, such devices have to keep
working during lengthy intervals, and a possibility of
their firmware upgrade is an important part of their
life cycle. Not only do firmware updates increase
functionality and performance, they are required
to iron out vulnerabilities, guarantee compliance to
continually developing standards and they also ensure
security in comparison to new threats.

Nevertheless, the firmware updates of embedded
devices pose several security and operational issues,
namely in the case of resource-constrained settings,
as devices have low computational capabilities,
memory and supply reserves. In these situations,
conventional methods of firmware update that can
be based on physical access or use of considerable
amounts of system resources will not be feasible.
Over-the-Air (OTA) firmware update is a scalable and
efficient method and a solution as well as it can be
used remotely to update any device without the need
to perform manual processes. In spite of these virtues,
OTA mechanisms create additional sources of cyber-
attacks, especially when the update procedure does
not offer strong security using measures.

Fig. 1: Secure OTA Firmware Update Workflow

How to cite this article: Patil RH, Hochmair HH (2026). Secure Over-
the-Air (OTA) Firmware Update Mechanism for Resource-Constrained
Embedded Devices. SCCTS Journal of Embedded Systems Design and
Applications, Vol. 3, No. 2, 2026, 16-25

Raveendra H Patil and Hartwig Henry Hochmair : Secure Over-the-Air (OTA) Firmware Update Mechanism for
Resource-Constrained Embedded Devices

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 202618

implementing a secure firmware update in wide-scale
embedded application.

Related Work
Firmware update mechanisms traversed through Over-
the-Air (OTA) have been tested extensively in the
embedded systems and, in particular, the IoT devices
category, where security and functionality of the
systems after deployment remain the core concerns.
There are numerous OTA frameworks currently
represented in existing literature, but they resound
with a lot of challenges, especially in resource-limited
settings.

In,[1] the setup of a generic OTA update framework
of wireless sensor networks (WSNs) has been proposed
focusing on modularity and scalability. Nonetheless,
cryptographic protection was not used, leaving the
devices vulnerable to tampering, as well as injection
attacks. In a similar vein, OTA technique recommended
by Rahman et al.[2] was lightweight, allowing
transmissions of compressed firmware images to low-
power IoT nodes in order to reduce the overhead.
This method was effective, but it was very vulnerable
to replay attacks, as strong authentication was not
represented by symmetric encryption.

Recent developments have brought safeguarded
OTA practices including cryptographic components.
To illustrate, Zhang et al.[3] proposed the use of
blockchain in converting an existing firmware update
system to gain trusted firmware provenance. The
method has good tamper resistance and hence
overheads and is inappropriate in devices that have
ultra-low power consumption. Similarly, Armknecht
et al.[4] suggested a formal model of secure firmware
distribution using the principle of a digital signature
and public key infrastructures (PKI). Besides its
excellent security features, due to memory and
computation intensiveness, it is less applicable to a
limited microcontroller.

Some of the latest studies have tried to secure
firmware updates in embedded devices by having
transport-layer protocols like TLS and DTLS[5-7] to
offer new encrypted channels of communications
during the updating activities. Nevertheless, such
protocols demand a lot of computation and memory
due to which they are not applicable in cases where
devices are having constrained RAM and processing

power. Method like differential update techniques[8]
emphasizes on the minimized size of the firmware
image to save bandwidth but many times low end
security features like encryption, authentication, and
rollback protection, are ignored.

An in-depth survey of the deployment environment
of current OTA mechanisms shows a few consistent
weaknesses: significant usage of resources, because of
complicated cryptographic protocols, use of symmetric-
only secure protocol with a weak authentication
mechanism, susceptibility to downgrade attack when
no version control exists, and lack of flexibility when
working with ultra-low power microcontrollers such
as Arm Cortex-M0 and M3, etc. Such shortcomings
make it clear that an OTA framework that will satisfy
both security requirement and maintenance of low
system load with a minimal weight is urgently needed.
A sentence to that effect is: to this end, this study
presents a sensitive wide-ranging OTA scheme that
provides end-to-end confidentiality, integrity acumen,
authenticity, and rollback resistance at the same time,
preserving compatibility with the buy-upon embedded
construct.

System Architecture
Components:
The same proposed secure mechanism of the Over-the-
Air (OTA) firmware update is designed based on 3 major
components: the embedded device, the OTA firmware
update server and a secure transport to offer reliable
communications between them. The embedded device
(usually an IOT-constrained microcontroller unit (MCU)
e.g. ARM Cortex-M0/M3/M33 with secure bootloader
can be used to verify authenticity and integrity of a
firmware prior to execution. This bootloader is the
system root of trust which does signature checking as
well as version checks in the course of updating. OTA
update server is a central point that creates, sign,
encrypts and delivers firmware update to intended
devices. It stores firmware repositories in versioned
and, with the help of cryptographic libraries, signs
each firmware image using ECDSA in a way that only
legal updates using confirmed sources will be accepted
by the devices. The firmware is also bundled with the
required metadata along with the server (including
version numbers, timestamps, and cryptographic
hashes) that the embedded system again verifies.

Raveendra H Patil and Hartwig Henry Hochmair : Secure Over-the-Air (OTA) Firmware Update Mechanism for
Resource-Constrained Embedded Devices

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 2026 19

The framework uses a secure transport layer to
guarantee firmware confidentiality and integrity
on the network, and uses lightweight but secure
protocols, e.g. MQTT over TLS or CoAP over DTLS. It
selects these protocols because they are efficient and
work well with limited environments to enable them
to communicate in an encrypted manner without the
major performance penalty. These three components
combined allow an end-to-end secure OTA update
experience that is provable in a holistic manner,
scalable, and secure against a wide range of common
attack vectors, such as man-in-the-middle attacks,
firmware tampering and rollback attacks.

Fig. 2: System Architecture for Secure OTA
Firmware Update

Firmware Image Format:
Firmware image format provided by the proposed OTA
update framework carefully develops to guarantee
a secure, provable, and efficient application on the
resource-constrained embedded devices. It is divided
into three parts namely header, encrypted payload
and a signature. The most critical of the metadata
needed to validate the update and gain control thereof
is the firmware version number, which is necessary
to enforce anti-rollback protection; a timestamp,
helping specify how recently the update was carried;
and a cryptographic hash (SHA-256) of the plaintext
firmware, to verify the integrity of the decrypted
payload prior to install. The actual firmware binary
is then stored encrypted with AES-GCM (Advanced
Encryption Standard in Galois/Counter Mode), a more
modern authenticated encryption algorithm secure
at the same time against both privacy and integrity
attacks and with minimal encrypted data overhead.
The features of AES-GCM to produce authentication
tags allow identifying any tampering at transmission

or storage levels. The third element is a signature
scheme ECDSA (Elliptic Curve Digital Signature
Algorithm), in particular, the P-256 curve, with a
high-security factor, but low computation demands,
thereby a perfect signature scheme to be used on
embedded systems. The update server creates this
signature with its private key and secures the header
and the encrypted payload so that modification of any
kind could be reliably identified. Once the firmware is
received, the embedded device validates the ECDSA
signature with the public key and the hash (SHA-256)
of the decrypted payload compares with the value in
the header. Such a multi-layered structure ensures the
installation of only genuine and tamper-free firmware
updates, which is strongly resistant to injection, replay,
and downgrade attacks, and resource consumption
does not exceed economical overheads of limited
resources microcontroller systems.

Fig. 3: Structured Format of a Secure OTA
Firmware Image

Workflow:
The OTA - secure firmware update design philosophy
supports the path towards end-to-end authenticity,
integrity, confidentiality lifecycle of firmware update.
This starts at the OTA update server, which sends the
firmware image after it has been first digitally. signed
utilizing the personal ECDSA (P-256) key of the server
to ensure authenticity, and after that, encrypted by
means of AES-GCM, which introduces both secrecy
and stability assurance. Such signed and encrypted
firmware is included with a metadata header that

Raveendra H Patil and Hartwig Henry Hochmair : Secure Over-the-Air (OTA) Firmware Update Mechanism for
Resource-Constrained Embedded Devices

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 202620

carries the version number, the current timestamp
and the SHA- 256 hash of the original firmware. When
a firmware package is ready it is published through
a secure end point on MQTT/TLS or CoAP/DTLS. On
the embedded device end the bootloader or firmware
update agent establishes a secured communication
with the server via TLS certificates to avoid a man-
in-the-middle attack or a rogue update source. After
the authentication of the server, the device downloads
the encrypted firmware package, which is temporarily
stored in secure memory. After this is done the device
then checks the ECDSA signature with a pre-provisioned
public key which is stored in protected memory. Upon
a valid signature, the firmware is decrypted with the
AES-GCM key and the plain text is hashed and returned
to the SHA-256 digest placed in the header to ensure
integrity. The system will only proceed to the final
step, and that is to upgrade the new firmware safely
to flash memory, usually in a special partition reserved
to update, when both the signature and hash checks
have passed. At the same time, the system increments
a monotonic version counter, in tamper-resistant
memory (e.g. TrustZone or OTP), atimplies that one
cannot rollback to an earlier, possibly vulnerable
firmware version. It is a carefully crafted work flow
that will install only needed authenticated untampered
and most recent firmware to the guaranteed secure
embedded systems and hence improve the security

status of the embedded systems to face advanced
cyber intimidations.

Security Mechanisms
To secure the process of firmware update in resource-
limited embedded gadgets, the recommended OTA
framework integrates several security measures to
guarantee security, data integrity, authentication,
and version management. It provides the first level of
defense, the firmware encryption based on the AES-
GCM (Galois/Counter Mode) using a 128-bit symmetric
key. The reason to select AES-GCM is its efficiency
and inherent support of authenticated encryption
that achieves data security (data confidentiality and
data integrity) at a cost of a single pass. This form
creates authentication tag and the ciphertext which
can be verified by the receiving device by decryption.
This will make any tampering with the encrypted
payload in transit be detectable in real time and any
unauthorised third party is incapable of gaining any
insight of the firmware content even in the event
that an update itself is intercepted. Because of low
overhead and good throughput characteristics of
AES-GCM, it is especially well-suited to embedded
microcontrollers that have strong constraints on
memory and computation resources.

Fig. 5: Multi-Layered Security Architecture for
Secure OTA Updates

The second and the third layers pertain to firmware
integrity, authentication, and anti-rollback. Then,
prior to encryption, a hash of the plaintext firmware
is embraced in aims of calculating a unique fingerprint
that certifies content integrity after decryption; using Fig. 4: Secure OTA Firmware Update Workflow

Raveendra H Patil and Hartwig Henry Hochmair : Secure Over-the-Air (OTA) Firmware Update Mechanism for
Resource-Constrained Embedded Devices

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 2026 21

the Hash Algorithm SHA-256. Besides this, the header
and the encrypted payload are signed by the OTA
server using ECDSA and the NIST P-256 curve. With the
aid of this digital signature, the receiving device can
vouch the genuineness of the firmware and its origin
through a trusted public key pasted in safe storage.
This action plays a very significant role towards making
sure that the only firmware allowed to be installed
is that which is released by authorized bodies. The
framework (to avoid fall-back) uses monotonic version
counters that are kept in a hardware-secure location
(e.g. TrustZone or One-Time Programmable (OTP)
memory), making it safe against rollback attacks, in
which an attacker would attempt to replace newer,
invulnerable, firmware with an older, vulnerable,
firmware version. In case of an update, the device
compares the version in new firmware image and that
stored on the stored counter, and blocks the update
when newer. This mechanism implemented has strict
one-way propagation update and this also helps to
strengthen the systems resistance to downgrade-based
attacks and this method by long-term confidence in
the firmware lifecycle.

Methodology
Experimental Setup
In order to assess the practicality and efficiency of the
suggested secure OTA firmware update system, a broad
testbed was in place through a sample of widely used,
resource-constrained microcontrollers and low-energy
wireless communication protocols. It has chosen
three embedded platforms with varying memory
architectures to possess different architectures and
memory: the STM32L476RG, a 32-bit ARM Cortex-M4
MCU with a record of balanced performance, as well as
low-power application; nRF52840, an ARM Cortex-M4
System-on-Chip (SoC), optimized to communicate over
Bluetooth Low Energy (BLE) with built-in cryptographic
accelerators; and the MSP430FR5969, a 16-bit ultra-
low These platforms serve to give a representative
cross-section of embedded devices on the road in real-
world IoT and industrial application.

The OTA firmware distribution was performed
on the two communication interfaces: LoRaWAN and
BLE, as they are the common options available in the
low-bandwidth, power-sensitive settings. LoRaWAN
was also tested mainly on STM32 and MSP430 used

to simulate long-range, low-data-rate update use
cases in remote field deployments, where BLE was
tested against the nRF52840 used on short-range,
higher-speed updates, typically on wearable devices
or those in the home. The update server that serves
as the authority in packaging and transmission of the
firmware was designed in Python with a hand-rolled
REST API backend on Flask. The server was integrated
with TLS (Transport Layer Security) to provide
secured communications channels and was able to
sign firmware with ECDSA-based digital signature,
AES-GCM encryption and also tracking of versions.
The microcontrollers were set to communicate with
the server via secure channels through the use of
lightweight communication library that is suitable in
constrained environments. This prototype allowed to
test the whole chain of delivering firmware securely,
applying cryptographic verification including the
ability to update firmware subject to real world
constraints as experienced by embedded systems.

Fig. 6: Experimental Testbed for Secure OTA
Firmware Update Evaluation

Performance Metrics
In order to analyze the proposed secure OTA firmware
update mechanism in resource-constrained embedded
systems quantitatively, three important performance
evaluations were carried out, which are as follows:
flash/RAM overhead, firmware verification time, and
energy consumption over the update procedure. The
metrics chosen to reflect the trade-offs in resource-
core trade-offs associated with introducing resilient
security on embedded firmware update processes.

Flash and RAM overheads describe the extra
memories used by the cryptographic algorithms
and a secure boot load subsystem incorporated in
the microcontroller. The safe OTA overhead of flash
memory is at code level around 14-15 KB, accounting

Raveendra H Patil and Hartwig Henry Hochmair : Secure Over-the-Air (OTA) Firmware Update Mechanism for
Resource-Constrained Embedded Devices

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 202622

the hardware cryptographic libraries (AES-GCM and
ECDSA), version management functions, and the safe
bootloader implementation. On a similar note, RAM
overhead increased by about 3 KB largely as a result
of temporary allocations of the buffers of decrypted
chunks of firmware, signature checks, and management
of cryptographic keys. All implementations can be
installed into a memory capacity of devices (e.g.,
STM32L476RG that have 128 KB RAM and 1 MB
flash), supporting the model of constrained-region
deployment.

Verification times are also taken of the firmware
verifications, with the delay of signature verification
and hash validation before the firmware is installed. A
256kb sized firmware image was verified by the SHA-
256/ECDSA-P256 algorithm in an average of about 180
and 250 milliseconds, based on platform clock speed
and availability of cryptographic acceleration. In most
embedded applications, such latency is tolerable
because it is only once during the update cycle and
it provides for robust authentication and integrity
checking.

Energy during update was also measured by
measuring the power consumption throughout the
entire update process and that includes download
firmware, decryption and write firmware. It was
determined that the average energy cost of this, was
slightly more than that of unsecured updates, and the
difference is estimated at 12-18 percent which can
be attributed to cryptography operations and secure
flash writes. Nonetheless, with a long operational
life factored in and compared to the sizeable
security increment this energy overhead is not only
acceptable, but is also sufficiently accommodated
within the limits of energy-scrimped battery powered
or energy-scavenged embedded devices. All these
performance parameters reassure the efficiency and
lightweight design as well as their real life feasibility
of the suggested secure OTA framework.

Evaluation Scenarios
In order to fully test the robustness, security and
reliability of the proposed secure OTA firmware
update mechanism, three feasible test scenarios were
performed: the case of a normal update, the case
of firmware poisoning rejection and loss of power
recovery. The scenarios are the typical and highly
imperative real-life situations that embedded devices
can experience when updating the firmware.

In the ordinary update case scenario, the device
receives a secure end-to-end firmware update which is
initiated in the OTA server. The update server creates
a signed and encrypted firmware image with AES-GCM
and ECDSA, and provides this in a secure channel
(e.g. TLS or DTLS). On delivery of the firmware, the
embedded device authenticates the server, verifies
the digital signature with the stored public key, and
decrypts the firmware, copies the integrity of the

Fig. 7: Resource and Latency Overhead of Secure OTA
Firmware Update

Table 1: Performance Metrics Comparison between Baseline and Secure OTA Implementation

Metric Baseline (No Security) Secure OTA Implementation Overhead/Change

Flash Usage (KB) 48 KB 62 KB +14 KB

RAM Usage (KB) 8 KB 11.5 KB +3.5 KB

Verification Time (ms) N/A 180â€“250 ms New Step

Update Duration (256 KB
firmware) (sec)

2.1 sec 3.8 sec +1.7 sec

Energy Overhead (%) 0% 12â€“18% +12â€“18%

Security Rating Low High â€”

Raveendra H Patil and Hartwig Henry Hochmair : Secure Over-the-Air (OTA) Firmware Update Mechanism for
Resource-Constrained Embedded Devices

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 2026 23

SHA-256 hash, and last writes the verified image
into flash memory. This situation was adopted to
compare the performance measures of the system on
parameters like the update time, verification time and
the memory overhead. Its good conduct was confirmed
by the results of the tests, as they showed the ability
to perform updates without delays and errors, which
fulfils the purpose of the system to be used in scheduled
maintenance and remote patching.

The tampered firmware rejection scenario verified
the framework to flag and prevent malicious or
improper firmware access attempts. Here a firmware
image was deliberately changed after it has been
signed either with changing the payload or by altering
the metadata. When the tampered image was received
the secure bootloader on the device noted a signature
mismatch (or hash difference) and halted the update.
This system makes it through that any firmware that
is not explicitly signed by the trusted party cannot
be entered, so the protection against code injection,
man-in-the-middle, or adversarial downgrade is quite
good.

In the power loss recovery case, resilience of the
system against update interruptions was tested. At the
time of firmware installation, the device was powered
off during the course of writing. Bootloader in the
device, which is secure and contains fault-tolerant
recovery logic, recognized the partial/bad update
at the next boot. It went back to a previously known
good version of the firmware or; failed update started
again at a known-good checkpoint (depending on the
available features in the microcontroller; e.g. dual-
bank flash memory; write-verify mechanism). This
prevented the problems of sending the device into
a bricked or unbootable state and so has guaranteed

operating continuity and long-term stability even in
less than stable power conditions. All these assessment
environments collectively validate the efficiency and
reliability of the proposed OTA system in an operating
environment of real and unfavorable conditions.

Results and Discussion
Experimental analysis of the proposed secure OTA
firmware update method was completions with the
use of a contrasting baseline system that deploys a
fundamental unsecured update procedure. The trade-
offs made on adding security and marginal performance
overhead are well balanced as revealed by the results
and this affirms the feasibility of the framework
proposed to be used on constrained embedded devices.
As it can be seen in the results table, the portion of
flash memory occupied by the flash in the baseline
system was about 48 KB, and the secure OTA needed
about 62 KB, so the flash memory required 14 KB
less. This growth is to cover the addition of AES-GCM
encryption functions, ECDSA signature checks, secure
bootloader functionality, and version management
codes. In a similar fashion, the RAM consumption rose
by 3.5 KB up to 11.5 KB because of buffer allocations
to store cryptographic work and temporary material of
images which were to be validated. In spite of these
additions, the overall memory footprint is contained
by the available memory size of platforms such as
STM32L4 and nRF52840, proving that not even ultra-
low-power devices need hardware enhancements to
implement the secure OTA protocol.

On the performance side, a verification of 256 KB
of firmware image took about 180 milliseconds, and
was added exclusively by the cryptographic hash (SHA-
256) computation, and the ECDSA signature validation.
Whereas the baseline system did not involve any wait,
keeping in mind the preventive measure in a secure
mechanism caused this tradeoff which effectively
implied delay in verifying the system to have sound
firmware. Similarly, the overall update time rose to
3.8 seconds in the secure system as compared to 2.1
seconds in the baseline system an overhead of 1.7
seconds. It owes this to a great extent to encryption/
decryption procedures and verification of signatures.
Yet, since firmware updates are rarely done and mostly
do so during their regularly scheduled maintenance
windows, the small increment is insignificant under

Fig. 8: Evaluati5on Scenarios for Secure OTA
Update Validation

Raveendra H Patil and Hartwig Henry Hochmair : Secure Over-the-Air (OTA) Firmware Update Mechanism for
Resource-Constrained Embedded Devices

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 202624

normal circumstances. The total latency of the secure
system is still within an acceptable range in terms of
IoT and industrial applications in which it is of mission-
critical importance to maintain the integrity of the
firmware.

Regarding the assessment of security, the
suggested framework can severely improve the system
resistance to different types of attacks, these are
attacks of interfering with a system, replay, man-
the-middle (MITM), and rollback. The 2 encryptions
AES-GCM encryption and signature belief ECDSA
provide confidentiality (data cannot be changed) and
confirmation that it is sent by the original person
(minority). It is also protected against replay (restart
attacks) and downgrade attacks (this protection
operates by including monotonic version counters

which prohibit reinstituting older firmware images).
The embedded device was tested with altered and old
firmware packages and each and every one of them was
rejected during the validation process. The presence
of visualizing aids like the update flow diagram and
memory usage bar graphs also through light on stages
of the work of the secure OTA system as well as on the
feasible growth of the new consumption of resources.
On the whole, the obtained findings identify the
proposed OTA mechanism as a sound, effective, and
secure solution applicable to the modern embedded
systems functioning in hostile environments that are
dynamically changing.

Conclusion
This paper proposes light and full-featured, yet
specialized Over-the-Air (OTA) firmware update
functionality particularly on low-power and resource-
constrained embedded systems. Embedding current
cryptographic systems, like AES-GCM method to
create authenticated encryption, ECDSA to check
digital signatures and monotonic version counters
to provide protection against rollback, the proposed
framework can reach end-to-end, that is, offer
protection to firmware upgrade against modifications,
unauthorized access and also against downgrade
attack. The system has been fully deployed and
tested to maintain popular embedded systems such
as STM32L4, nRF52840, and MSP430FR, which proves
that robust security assurances are possible even with
little resource footprintin using only 14 KB of flash and
3.5 KB of RAM. Performance tests also confirm that
the extra update latency is likewise working within
the desirable minimum limits of real-time embedded

Table 2: Comparative Evaluation of Baseline and Secure OTA Firmware Update Mechanisms

Metric
Baseline Sys-

tem
Secure OTA

System Delta / Comment

Flash Usage (KB) 48 KB 62 KB +14 KB (Crypto + Boot Enhancements)

RAM Usage (KB) 8 KB 11.5 KB +3.5 KB (Buffer & Key Handling)

Firmware Verification Time (ms) N/A 180 ms +180 ms (ECDSA + SHA-256)

Update Duration (256 KB firm-
ware) (sec)

2.1 sec 3.8 sec +1.7 sec (Decryption + Verification)

Security Level Low High Improved Confidentiality & Integrity

Tampered Firmware Rejection No Yes Rejected Malicious Firmware

Power Loss Recovery Support No Yes Graceful Recovery or Rollback

Fig. 9 Flash Memory Distribution between Baseline and
Secure OTA Implementation

Raveendra H Patil and Hartwig Henry Hochmair : Secure Over-the-Air (OTA) Firmware Update Mechanism for
Resource-Constrained Embedded Devices

SCCTS Journal of Embedded Systems Design and Applications | Jul - Dec 2026 25

applications. Moreover, the framework supports low-
power communication protocols, including LoRaWAN
and BLE, and therefore its applications will fit in a
wide range of IoT contexts. Noteworthy, under various
operational conditions, OTA process was verified, and
tampered firmware was successfully managed, and
proper power-offs were gracefully restored, thus,
proving its confidence and stability. This mechanism of
OTA update has a secure, scalable, and fault-tolerant
design, and it is perfectly applicable to tasks that
cannot afford any vulnerable system integrity and lost
consequences of an operational breakdown such as
in situations of smart cities, industries, automation,
remote sensing, and healthcare monitoring. The
work has not only filled the current gaps in secure
deployment of OTA to embedded systems, but also
preconditions further development, including remote
attestation and the possibility of running OTA in
combination with a blockchain-based provenance
tracking of firmware.

References
1.	 Hui, J., & Culler, D. (2004). The dynamic behavior of a

data dissemination protocol for network programming
at scale. Proceedings of the 2nd International Confer-
ence on Embedded Networked Sensor Systems (SenSys),
81–94. ACM.

2.	 Rahman, A., & Rahman, M. A. (2018). Lightweight firm-
ware update protocol for resource-constrained IoT
devices. IEEE Access, 6, 47961–47971. https://doi.
org/10.1109/ACCESS.2018.2868242

3.	 Zhang, Y., He, J., & Qiu, R. G. (2019). A blockchain-based
process provenance for secure firmware updates in em-
bedded systems. IEEE Transactions on Industrial Infor-
matics, 15(6), 3510–3519. https://doi.org/10.1109/
TII.2019.2899606

4.	 Armknecht, F., Girao, J., Hessler, A., & Asokan, N.
(2014). Secure firmware update for constrained embed-
ded devices. In Proceedings of the 4th ACM Conference
on Data and Application Security and Privacy (CODASPY)
(pp. 239–250). ACM.

5.	 Hossain, M., Fotouhi, M., & Hassan, R. (2019). Towards
end-to-end secure communication in IoT: Transport

layer security challenges and approaches. Future Gen-
eration Computer Systems, 100, 100–117. https://doi.
org/10.1016/j.future.2019.05.009

6.	 Raza, S., Seitz, L., Sitenkov, D., & Selander, G. (2017).
Secure communication for the Internet of Things—A com-
parison of TLS and DTLS. IEEE Security & Privacy, 15(3),
68–74. https://doi.org/10.1109/MSP.2017.3481061

7.	 Luo, L., Liu, J., Jin, W., Wang, L., & Zhao, Y. (2020). Se-
cure and efficient firmware update for embedded devices
using incremental reprogramming. In Proceedings of the
IEEE International Conference on Industrial Informatics
and Embedded Systems (ICIIE) (pp. 142–147). IEEE.

8.	 Jeong, J., & Lee, J. (2018). Optimized differential firm-
ware updates for resource-limited embedded systems.
IEEE Transactions on Consumer Electronics, 64(3), 351–
358. https://doi.org/10.1109/TCE.2018.2858720

9.	 O’Flynn, B., Popovici, K., & Barton, J. (2008). Wireless
sensor network architecture for secure and efficient
firmware updates. Sensors, 8(11), 7369–7392. https://
doi.org/10.3390/s8117369

10.	Yassein, M. B., Shatnawi, M. Q., & Al-Zoubi, S. Y. (2017).
Over-the-air programming for wireless sensor networks:
A survey. Journal of Network and Computer Applications,
81, 67–84. https://doi.org/10.1016/j.jnca.2016.12.024

11.	Martínez, G. (2024). Cultural Heritage Tourism: Bal-
ancing Preservation with Visitor Experience. Journal
of Tourism, Culture, and Management Studies, 1(2),
17-27.

12.	Sadulla, S. (2024). Next-generation semiconductor de-
vices: Breakthroughs in materials and applications. Prog-
ress in Electronics and Communication Engineering, 1(1),
13–18. https://doi.org/10.31838/PECE/01.01.03

13.	Rahim, R. (2024). Scalable architectures for real-time
data processing in IoT-enabled wireless sensor networks.
Journal of Wireless Sensor Networks and IoT, 1(1), 44-49.
https://doi.org/10.31838/WSNIOT/01.01.07

14.	El Haj, A., & Nazari, A. (2025). Optimizing renewable
energy integration for power grid challenges to nav-
igating. Innovative Reviews in Engineering and Sci-
ence, 3(2), 23–34. https://doi.org/10.31838/INES/
03.02.03

15.	Kavitha, M. (2024). Enhancing security and privacy in re-
configurable computing: Challenges and methods. SCCTS
Transactions on Reconfigurable Computing, 1(1), 16-20.
https://doi.org/10.31838/RCC/01.01.04

