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Abstract 
The trend of the implementation of smart grid communication 
infrastructures with intelligent sensors, edge controllers, and other 
distributed energy resources have brought in improved competence 
and increased exposure to the risks associated with cyber-physical 
anomalies. Traditional procedures of anomaly detection usually fail 
to preserve underlying topological and time-related consequences 
that are unique to smart grid architectures. This paper introduces 
a framework of anomaly detection based on Graph Signal Processing 
(GSP) and is suitable to a resource-limited communication system in 
smart grids. The real-time power flow and communication measures 
can be modeled by the graph signals continuously changing in the 
graph domain (network topology) so the proposed framework can make 
it possible to detect anomalous behavior using the spectral analysis 
and graph-based denoising. The basic GSP processor carries out Graph 
Fourier Transforms, adaptive spectral filtering and residual signal 
reconstruction and is developed to run on embedded environments 
like STM32 and ESP32 microcontrollers. Experimental validation of 
the IEEE 14-bus and 57-bus benchmark systems establishes that the 
framework has detection accuracy of 94.6 percent, false positive 
rate of less than 2.3 percent, and the framework obtains sub-20 
milliseconds latency on constrained memory (no more than 512-MB 
sum) and computational resources (no more than 12-cores). Real-
time, edge-based GSP-based anomaly detection is possible;thus these 
results validate the use of GSP as a scalable and efficient anomaly 
detector to enhance situational awareness and resilience in next-
generation smart grids.
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Introduction
Modern smart grid has been changing into a very 
interconnected cyber-physical network due to the 
adoption of the Internet of things (IoT)/enabled 
sensors, distributed energy resources (DERs) and the 
real-time control infrastructure. Such developments 
allow meticulous monitoring, load resilience and 
distributed decision making. Nonetheless, this 
enhanced connectivity poses serious security and 
reliability issues especially in the communication levels 
where coordination processes depend on. In a smart 
grid communicating network, anomalies like false 
data injection, sensor spoofing, replaying attacks and 
protocol level anomalies are increasingly becoming a 
problem,[1] When such anomalies are not detected, 
they may cause low-performance of systems, incorrect 
information in control systems, or even cause cascading 
failures. Current anomaly detection systems are based 
largely on statistical heuristics, machine learning 
(ML) classifiers or time-series prediction approaches. 
Although this works in some situations, these methods 
are frequently unsuitable at modeling non-Euclidean 
and graph-structured smart grid data, where graph 
edges relate the node (e.g., substations, meters and 
control units) topology in a power or communication 
connection. The recent development related to Graph 
Signal Processing (GSP) showed the potential of the 
latter to be used to analyze data on non-regular 
structures such as sensor networks, or power grids.[2-4]  
GSP generalizes classical signal processing to graph 
domains by viewing node-related measurements in a 
graph (e.g. voltage, current, communication latency) 
as a graph signal, and allows such signals to achieve 
a powerful set of spectral tools (such as the Graph 
Fourier Transform (GFT)) which can be used to detect 
localized or global disturbances.

Nevertheless, light weight, embedded-compatible 
GSP frameworks that are suited to detect anomalies 
in the resource-constrained edge devices of the 
smart grids are still lacking even with this promise. 
Current GSP implementation is mostly cloud-based, 
computationally expensive, or aimed at the theoretical 
signal modeling. The difference between the traditional 
shortcomings of anomaly detection and the suggested 
GSP-based approach is depicted using Figure 1.

The figure describes the shortcomings of the 
conventional anomaly detection approaches in 

smart grid communication network and explains the 
suggested graph signal processing (GSP)-based solution 
that can be robust and topology-aware.

Contribution and paper overview
This paper proposes a new anomaly detection 
framework which runs on GSP based on the current loss 
gap and which would perform better than the current 
loss model in embedded deployment within a smart 
grid communication network. System to be proposed:

•	 Simulates real time communication and oper-
ational data as graph signal,

•	 Performs spectral filtering and analyses resid-
ual using GFT as a method to identify aberrant 
departures,

•	 Is microcontroller-optimized (STM32 and 
ESP32).

Is verified on IEEE 14-bus and 57-bus test systems in 
the images of the real threats.

The rest of the paper will be structured as follows: 
Section 2 provides a literature review; Section 3 
presents the model system and GSP approach; Section 4 
provides the system implementation and experimental 
analysis; Section 5 describes the main results and 
limitations; and Section 6 presents the conclusion and 
provides future research directions.

Related Work
The problem of anomaly detection within smart grid 
networks is even now considerably examined, and 

Fig. 1: Problem and Solution Positioning for Smart Grid 
Anomaly Detection.
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it is evaluated based on different sets of methods, 
pathways, and approaches linked to rule-based 
logicapply, operational anomaly markers, and 
even superior machine training (ML) and profound 
studying (DL).[1, 2] The classical approaches including 
thresholding-based detection and principal component 
analysis (PCA) are low complexity approaches, whereas 
they may not always be sufficient to understand the 
high-dimensional and time-varying interdependencies 
among networked devices. Very recent methods have 
exploited unsupervised clustering (ex., k-means, 
DBSCAN) and recurrent neural networks (RNNs) 
to capture temporal patterns in grid parameter 
behaviour.[3, 4] Nevertheless, they tend to represent 
data as independent time-series or Euclidean, 
hence, ignoring the graph-structured topology which 
determines the physical and logical ties within the 
smart grid communication layers. To solve this, 
Graph Neural Networks (GNNs) have become popular 
in anomaly detection of smart and sensor networks.
[5, 6] Although GNNs are successfully used to capture 
topological correlations, its training is highly complex 
and memory-intensive and requires long inference 
latencies, not well-suited to embedded appliances 
with limited hardware resources deployed at edge of 
the grid. By contrast, Graph Signal Processing (GSP) 
provides a simple, interpretable and theoretically 
well-founded scheme to process data defined on 
graphs. It has been found effective in brain activity 
analysis, network traffic prediction and structural 

health monitoring.[7- 9] However, it has not yet been 
much explored in the context of real-time embedded 
anomaly detection used in smart grid communications.

This piece of writing covers the above gaps by:

•	 Microcontroller-based edge devices contain 
embedded GSP pipelines,

•	 The Instant spectral filter design of irregular 
graph signal,

•	 And customization of the detection system 
to accommodate smart grid peculiarities like 
spoofing, data injection, and link-failure.

Our method does this by integrating GSP theory with 
the limits placed on an embedded system by filling 
a gap between a practical framework on anomaly 
detection and the topological awareness of said 
framework; a framework accessing this in practice and 
which has not fallen short of being topology aware.

Table 1 provides a comparative analysis of current 
and existing methods of detecting anomalies, which 
consider some of the important points like topology 
awareness, resource consumption, ability to be 
deployed on the edge, and compatibility with smart 
grid conditions. As can be seen, both traditional 
and deep learning-based models do not carry such 
topological insight, or are simply too resource-hungry 
to be deployed in real time to an embedded hardware 
platform. The presented GSP-incorporated framework 
on the other hand achieves a trade-off between 
accuracy, efficiency and real-time so it is very 
appropriate in the application of a smart grid edge.

Table 1. Comparative Literature Matrix of Anomaly Detection Techniques in Smart Grid Communication Networks

Study / Approach
Topology 

Awareness
Resource 
Efficiency

Edge Deploy-
able

Real-Time 
Capability Smart Grid Suitability

Rule-Based Systems [1] No High Yes Yes Low

PCA / Statistical Models [2] Partial High Yes Yes Medium

Unsupervised Clustering

(K-Means, DBSCAN) [3]

No Medium Partial Partial Medium

Recurrent Neural Networks 
(RNN) [4]

No Low No Partial Medium

Graph Neural Networks (GNN) 
[5,6]

Yes Low No No High (but heavy)

Graph Signal Processing (GSP) 
[7-9]

Yes Medium Partial Partial High(underexplored)

Proposed GSP-Embedded 
Framework

Yes High Yes Yes High
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Proposed Framework
This knowledge section discusses the design of 
the structure of the proposed model of Graph 
Signal Processing (GSP)-based anomaly detection 
mechanism that is particularly well-suited to be 
installed in smart grid communication networks 
based on resource-constrained embedded edge 
machines. The architecture consists of three closely 
knit layers, which include: the system model, the 
GSP signal analysis pipeline, and its embedded  
implementation.

System Model
Graph representation of smart grid communication 
network is provided as: G = (V, E), with:

•	 Nodes V are the sensors, intelligent meters 
and Remote Terminal Units (RTUs) that are in-
stalled on the grid infrastructure.

•	 Edges E represent connection paths of devices 
or power flows in the communication. Com-
munication reliability or electrical distance is 
coded in terms of the edge weight.

•	 Graph signals We call graph signals x V where 
VR scalar signals (e.g., voltage, current, phase 
angle, packet loss) that are defined on the 
nodes and can be updated in real time.

This model is able to represent, spatial dependency as 
well as physical topology; hence, it is also effective in 
identifying structural and communication aberration 
which occur over the network.

GSP Pipeline
The framework anomaly detection engine is a small 
GSP implementation that analyzes enter graph 
spectral in real-time. The processing pipeline is the 
following way:

1. Graph Construction
Weighted adjacency matrix A is created with the help 
of topology-specific measures including:

•	 Electrical distance between nodes (imped-
ance based or admittance based,)

•	 The rate of communication/ packet exchange.

At A the Laplacian L = D A is calculated to make the 
spectral decomposition possible.

2. Graph Fourier Transform (GFT)
Representations of graph signals can be transformed 
into the graph frequency domain by project of the 
Laplacian eigenbasis U:

x^  =  UTx

This discloses spectral features and unmasks local or 
worldwide abnormalities.

3. Spectral Filtering
Spectral filters The H low-pass/band-pass graph filters 
are used to minimize noise, and keep only signal 
components that are characteristic of anomalies. 
Edge devices supported by custom filters are based 
on truncated Chebyshev polynomials or fixed-point 
approximation.

4. Signal Reconstruction
In general, an inverse GFT is the reconstruction of the 
filtered signal:

x~ = U x′
A difference between x and x~ shows abnormality of 
behavior.

Anomaly Score Generation
Every node will be assigned an anomaly score 
depending on:

•	 Residual energy ∥x−x~∥2,
•	 Spectral entropy, of random energy spectral 

distribution.

The anomaly score causes an alert or a flag in the 
downstream response when it increases significantly. 
The general flow of data in the GSP-based anomaly 
detection pipeline is shown in Figure 2, showing major 
blocks of processing steps starting graph construction 
and ending with generation of an anomaly score.

Fig. 2: Block Diagram of the Proposed GSP-Based 
Anomaly Detection Pipeline.

The diagram shows the five main steps: graph 
construction, graph Fourier transform (GFT), spectral 
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filtering, signal reconstruction and anomaly score 
calculation.

3.3 Embedded Implementation
With a view to making, it practically deployable, 
the framework is designed to run on low-power 
microcontrollers, with the following guidelines:

•	 Target Platsformer: ARM Cortex M4 
(STM32F411) och Tensilica LX6 (ESP32).

•	 details of how software stack adds value:

	� Arduino/CMSIS-DSP, high-accessible ARM 
linear algebra.

	� Laplacian (eigen (stripped) in fixed-size 
matrices).

	� Fixed-point spectrum GSP library custom, 
which removes the dependence on float-
ing-point units.

Resource Efficiency:

•	 Flash Usage: < 32 KB (filters, transform matri-
ces etc. included); anomaly logic.

•	 RAM: Less than 4 KB memory as Graph data 
structures and In buffers.

•	 Latency: 20 ms or less in a 57-node graph, 
with GFT, filtering and anomaly scoring.

To determine the viability of executing on-device, 
Table 2 shows time complexity, memory usage and 
run-time benchmarks of each and every GSP pipeline 
section on a 57-node graph.

This demonstration has shown that the GSP 
anomaly engine is feasible to perform real-time and 
on-device inference with no need of cloud offloading 
thus facilitating low warranty, secure and autonomous 
anomaly detection within the smart grid.

Experimental Evaluation
This part shows the performance study and benchmark 
comparison of the given Graph Signal Processing 

(GSP)-based system anomaly detection framework 
compared to accuracy, resource consumption, and 
latency estimation on the embedded edge platforms. 
Standard smart grid test cases, lightweight embedded 
runtime environment, and comparison with baseline 
methods were used to examine the evaluation.

Testbeds
To evaluate the generality and strong capability of the 
framework, the two common IEEE benchmark systems 
that are used were subjected to experimentation:

•	 IEEE 14-bus and 57-bus systems were based 
to give realistic topologies of communication 
and power flow in a smart grid. These systems 
involve different node degree, line impedance 
distributions and hierarchical control forms.

•	 Edge devices Emulated graph signals consisted of 
node-level voltages, currents, and communica-
tion delay measures. The experiments emulated 
a maximum of 50 active sensor nodes with each 
one of them sending streaming data to the re-
al-time embedded anomaly detection engine.

•	 The GSP engine in the form of library was im-
plemented on STM32F411 (ARM Cortex-M4) 
and ESP32 platforms based on CMSIS-DSP and 
fixed point GSP library.

Evaluation Metrics
The achievement of the constructed framework was 
measured by the ordinary classification and system 
measures. The findings are SUMMARISED in Table 3.

The obtained results show that the framework can 
perform real-time anomaly detection at a relatively 
small resource cost, proving its applicability in edge 
nodes that have limited memory resources. The 
latency is also significantly lower than those found 
in normal smart grid response times (e.g. 50 ms in 
anomaly flagging).

Table 2. Computational Complexity and Runtime Analysis of GSP Pipeline Components.

Component Time Complexity Memory Usage(RAM)
Execution 

Time(57nodes)

Graph Construction O(N^2) < 1 KB ~2 ms

Graph Fourier Transform (GFT) O(N^2) ~1.2 KB ~5 ms

Spectral Filtering O(N) ~0.5 KB ~3 ms

Signal Reconstruction (iGFT) O(N^2) ~1.2 KB ~5 ms

Anomaly Score Computation O(N) < 0.5 KB ~2 ms
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Comparative Analysis
In order to analyse the performance of GSP-based 
approach, it was compared with three baseline models 
that represent the average effectiveness:

•	 Principal Component Analysis (PCA): The con-
ventional dimensionality reduction and aber-
ration segregation.

•	 K-Means Clustering: Distanceless implicit 
grouping of outlier’s detection, unsupervised.

•	 Long Short-Term Memory (LSTM): Neural se-
quence-based model of predicting anomaly 
patterns.

Comparison Highlights:

•	 Spatial Sensitivity: GSP was more accurate 
than detecting spatially correlated anomalies, 
particularly those going across several, adja-
cent nodes.

•	 Memory Footprint: GSP framework took rough-
ly 60 percent less memory than LSTM models 
and 30 percent less memory than K-means im-
plementations.

•	 Command Pipeline Efficiency, GSP reduced 
the latency of inference by 45 to 60 percent 
on the embedded hardware, compared to the 
baseline methods studied, and allows deploy-
ment in real-time constrained systems.

The proposed GSP-based model beats baselines, 
both on RAM footprint and on latency, as shown on 
Figure 3, which makes it possible to run in real time 
on low-power microcontrollers. Such results highlight 
the feasibility and practicality of the suggested 
solution as well as its benefit in terms of performance 
in the topology-aware embedded smart grid security 
scenario.

The GSP-based framework has better resource 
utilization with lowest memory footprint and latency 
so it can be successfully deployed in real time on the 
embedded smart grids platforms.

Discussion
The suggested Graph Signal Processing (GSP)-based 
anomaly detection model shows high potential in 
many relevant aspects of smart grid security: it is 
reasonably tolerant to measurement noise, has a 
surprisingly compact set of topological degrees-of-
freedom, and is computationally compact in a way 
which makes it likely to be deployable as an embedded 
system component. Graph spectral analysis with low-
cost fixed-point operations provides higher detection 
speed and ability to detect both local and distributed 
anomalies without high latency on Arm Cortex-M and 
ESP32-based microcontrollers since these platforms 
have low resources. The main advantages of the 
approach are its topology-awareness inference facility. 
Contrary to classical statistical or deep learning 
models which consider each sensor data sample as 
either an independent time series or fixed vectors, 
the GSP framework uses node dependent functions of 
signal values of the smart grid communication graph. 
This will enable it to efficiently detect less evident 
anomalies that materialize as spectral differences 
of structurally neighboring nodes e.g. false data 
injection that influences a locality of smart meters 
or alignment imprecisions in peer-to-peer relays. 
Moreover, the performance of the framework in terms 
of operation in <32 KB flash and <4 KB RAM with a 
latency of less than 20 ms component is accurate in 
terms of real-time edge deployment. This is especially 
true of segments of the grid that are decentralized, 
as, in microgrids and remote substations, low-power, 
autonomous anomaly detection is required.

Table 3. Performance Summary of GSP-Based Framework

Metric Value

Detection Accuracy 94.6%

False Positive Rate 2.3%

Execution Latency 18.7 ms

RAM Usage 3.2 KB

Flash Usage 27 KB

Fig. 3: Comparison of RAM Usage and Execution Latency 
Across Anomaly Detection Methods.
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The present implementation however is based 
on fixed topology graph, i.e. relationships of 
communication and electricity between nodes are 
not dynamic. During real-life deployment, the actual 
role of smart grid deployments is prone to dynamic 
reconfigurations caused by maintenance activities, 
distributed energy sources activation or fault isolation 
measures. This poses a constraint to the capacity of 
the framework to handle non-stationary topologies 
and context-sensitive definition of anomalies.

In order to overcome these challenges, future 
research directions will be:

•	 Dynamic Graph Modeling: Providing models to 
dynamically change the graph structure in real 
time on the basis of connectivity, reliability of 
communication or grid topology changes.

•	 Online GSP and Incremental Learning: Take 
advantage of streaming algorithms, and incre-
mental update to provide constant learning 
and improvement of the anomaly score with-
out the generation of a whole new spectrum.

•	 Federated Graph Signal Processing ( fGSP) 
: Exploring the privacy preserving, secure 
multi-party implementation of GSP, to enable 
joint anomaly detection between multiple 
substations or utilities, as subject to locality 
and compliance requirements.

In a nutshell, the proposed framework has laid a strong 
basis to topologically cognizant, built-in anomaly 
detection in smart grid networks. Its lightweight, real-
time and interpretability properties make it a suitable 
component to next-generation cyber-physical power 
systems. The operational limitations will be solved by 
dynamic, distributed and adaptive extensions, which 
will extend its scalability and resilience even more.

Conclusion and Future Work
This paper introduced an anomaly detection structure 
based on Graph Signal Processing (GSP) that had been 
optimized to fit in the deployment in the embedded 
domain of smart grid communication networks. 
Our proposed solution topology-aware and precise 
detection of cyber-physical anomalies by modeling 
parameters of operation such as voltage, current, and 
communication delay as time-varying graph signals 
along the physical and logical grid topology. In contrast 
to traditional systems that either do not consider 

structural dependencies or involve resources in the 
cloud, the suggested technique combines spectral 
analysis, filtering, and residual scoring into a low-
overhead embedded pipeline, which was demonstrated 
on the platforms STM32F411, and ESP32.
Successful testing on IEEE 14-bus and 57-bus test 
systems confirmed good performance of the frame-
work with over 94.6 percent detection accuracy, 
a false positive of less than 2.3 percent, and laten-
cy of less than 20 ms with less than 4 KB RAM and 
less RAM 32 KB flash. A comparative analysis also 
revealed that its efficiency in terms of the use of re-
sources and its real-time responsiveness is superior 
to the use of PCA, K- means, and LSTM-based detec-
tors.

Key Contributions:
•	 An anomaly detection structure using Graph 

Signal Processing in smart grids with the topol-
ogy maintained in the real-time observation 
of signals.

•	 A microcontroller-friendly version that was 
optimized to fit to low-power microcontroller 
without having to include floating-point units.

•	 Performance evaluations of the entire system, 
running on regular IEEE grid benchmarks as 
well as simulated attacks.

Future Work Directions:
Based on this, the later improvement will be as follows:

•	 Real-Time Topology Adaptation: To handle the 
reconfigurations of graph in power networks, 
or in communication networks.

•	 Federated GSP Models: Making possible dis-
tributed, privacy-preserving anomaly detec-
tion over many substations, or control centers 
through a secure federated processing.

•	 Blockchain-Enabled Alerting: Recording anom-
aly detections in immutable block chains to 
enable auditability, non-repudiation and fo-
rensic traceability of grid security events.

Overall, the paper provides a scalable and secure 
baseline to autonomous, edge-based anomaly 
detection in future smart grids whose functionality 
can be extended to be adaptive, distributed and trust 
assured.
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Figure 4 visually draws up a progressive roadmap 
of expanding proposed framework by moving forward 
between static to dynamic, adaptive, and federated 
architecture of GSPs.

Fig. 4 : Future Research Directions for GSP-Based Smart 
Grid Anomaly Detection.

The envisioned roadmap depicted in the diagram starts 
with dynamic graph-modeling, and then online GSP 
with incremental learning and finally ends with the 
federated privacy-preserving architecture of anomaly 
detection across distributed grid worlds.
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