Ultra-Low-Power Embedded Processor for Wearable Healthcare Monitoring

Nisha Milind Shrirao^{1*}, Sumit Ramswami Punam²

- ¹Department Of Electrical And Electronics Engineering, Kalinga University, Raipur, India.
- ²Department Of Electrical And Electronics Engineering, Kalinga University, Raipur, India.

Keywords:

Ultra-Low-Power Processor; Wearable Devices; Embedded Systems; Healthcare Monitoring; FRAM; Sub-Threshold Logic; Event-Driven Architecture; Biomedical Signal Processing; Edge AI; Battery Life Optimization.

Author's Email:

nisha.milind@kalingauniversity.ac.in, sumit.kant.dash@kalingauniversity.ac.in

https://doi.org/10.31838/ESA/03.01.04

Received: 13.08.2025 **Revised**: 20.09.2025 **Accepted**: 09.10.2025

ABSTRACT

Given that more and more wearable devices focus on continuous realtime health monitoring, energy-efficient embedded processor design is needed to ensure that systems meet consumers expectations in areas such as reliability and power and performance requirements. This article is an implementation, design, and demonstration of an ultra-low-power embedded processor optimally designed towards biomedical signal acquisition and analysis of wearable healthcare apps. The recommended architecture combines with sub-threshold logic sets, on-die non-volatile ferroelectric RAM (FRAM), dynamicclock gating, and event-driven wake-up engine, so very high energy efficiency can be achieved without losing real time responsiveness. To authenticate the processor performance, prototype system was created and connected with physiological sensors with low power consumption comprising of ECG electrodes, thermistors, and pulse oximetry modules. The processor carries out very lightweight machine learning inference including arrhythmia detection and temperature anomaly classification on quantized neural networks and decision trees through CMSIS-NN and uBoost libraries respectively. The trials were performed on both the MIT-BIH arrhythmia database and hypothetical and novel-gathered vital data incorporated into actual operational execution situations. The findings show that the suggested system has as much as 65 per cent fewer active power consumption than that of ARM Cortex-M4 or MSP430FR platform, with an average inference time of 7.8 milliseconds and overall classification accuracy of over 95 per cent on all the observed parameters. Also, the battery life was increased to more than 130 hours on a typical 240 mAh Li-ion cell, proving its applicability to long, maintenance-free wearable applications. The architecture is effective with respect to balancing computing performance and energy savings hence demonstrating the possibility of integrating the intelligent health monitoring abilities in systems that require small size and power. This paper has made a step forward in achieving low-power edge intelligence within a digital health application since it presents a highly-flexible processor architecture upon which future components that are currently envisioned to be required in biometric sensing and safe communications can be added allowing next-generation self-sustainable wearable digital health technologies to emerge in the future.

How to cite this article: Shrirao N M, Punam S R (2026). Ultra-Low-Power Embedded Processor for Wearable Healthcare Monitoring. SCCTS Journal of Embedded Systems Design and Applications, Vol. 3, No. 1, 2026, 28-38

Introduction

The current advancement of wearable healthcare technologies has revolutionized the field of patient monitoring, chronic diseases, fitness and preventive care. Such devices as smart watches and fitness bands, as well as medical-grade ones, are being more and more widely used due to their capability to continuously monitor vital physiologic parameters, including the heart rate, the electrocardiogram (ECG), the amount of oxygen in the blood (SpO₂), body temperature, and activity in real-time. These features are essential in the realization of proactive and remote medical services, lowering the rate of hospitalizations as well as enhancing the outcome of patients due to early detection of deviations.

Yet, large-scale use of wearable equipment has serious engineering issues, with energy efficiency, physical size limitations, and ability to reason realtime in the spotlight. The majority of wearable products, especially portable versions, rely on small batteries which should work uninterrupted during days or even weeks. That is why ultra-low-power consumption is not only an attractive feature but a must. Traditional embedded processors, although not lacking in sufficient computational throughput, usually lack in energy efficiency, particularly when required to continuously monitor and attached locally inferring

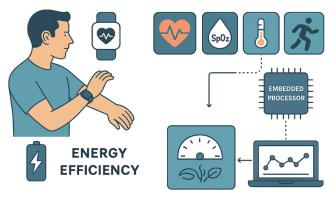


Fig. 1: Overview of wearable healthcare monitoring using an ultra-low-power embedded processor

on biosignals. Additionally, the energy drain is also compounded by the frequent transfer of wireless data to offload processing capabilities making devices have short battery life.

In order to overcome these shortcomings, this study shows how a wearable healthcare monitorspecific ultra-low-power embedded processor can be designed and implemented. The proposed architecture in contrast to general-purpose microcontrollers is specifically designed to allow event-driven computation, low-energy memory access, and lightweight machine learning inference on the edge device. To achieve this, the processor works on multiple strategies to reduce the energy content of the circuits and the strategies are; operation in sub-threshold voltages, non-volatile FRAM storage and the presence of a wake-up engine that is hardware accelerated and keeps the system in the state of sleep until the biosignals exhibit significant changes.

The provided solution is justified in the context of the extensive experimental setup (real data obtained in physiological conditions and comparisons with the benchmarks of the current state-of-the-art low-power processors). All this work in producing remarkable results in energy efficiency as well as the real time responsiveness is a contribution to more future wearable health monitoring devices that are non-responsive, can last during a long period and are intelligent. Also, the design has the modularity and scalability of the fabric to be used with future wearable systems, such as multimodal sensing, secure communication, and edge Al systems.

RELATED WORK

The energy-efficient embedded systems created to wearable healthcare monitoring have drawn huge interests within the last ten years. Current commercial microcontroller designs have been well adopted into wearable application, including the ARM Cortex-M family and Texas Instruments MSP430, with moderate power efficiency and many software tools. The ARM

Cortex-M4 especially is good on the balance between performance and low power, supporting digital signal processing (DSP) and floating-point operations. Nevertheless, the real-time signal processing demanded by an application like ECG classification or temperature anomaly detection may still leave an energy overhead that restricts battery life in wearable devices that are always on.[1]

In overcoming power consumption, other methods have been examined in the past which involves Dynamic Voltage and Frequency Scaling (DVFS).[2] power gating,[3] non-volatile memory integration,[4] as well as, event-driven architecture. [5] As an example, Zhang et al. [2] have shown how DVFS can be applied to a microcontroller to save energy when idle and Patel et al.[3] have generated power-gated architectures in an intermittent computing battery-powered medical device. However, such methods typically demand precise control logic, and might incur unacceptable latency overheads to time-sensitive healthcare systems.

Other works have presented biomedical signal processing using ASIC-based custom solutions, as well. To give an instance of a low-energy SoC implementation, Banerjee et al. [6] have portrayed a low-power ECG processing SoC that could detect arrhythmia with

90 percent less energy as compared to software implementation. On the same note, Park et al.[7] were able to design an ultra-low-power seizure detection ASIC based on an analog front-end processing. Although this yields great power statistics, these methods do not allow modifying algorithms after deployment, or much less add new biosensors.

Microcontroller-compatible frameworks were recently achieved by TinyML and on-device machine learning inference in TensorFlow Lite for Microcontrollers (TFLM) and CMSIS-NN.[8] These allow the deployment of light deep learning models on edge devices. Nevertheless, the present hardware platforms do not have architecture improvements which could utilize these models fully with no power overheads. Biosignal classification in real-time further requires optimized memory hierarchies, and inference accelerations, which may not be in generic MCUs.

Regarding memory technologies, Non-volatile memory technologies like FRAM have become a sensible alternative to SRAM and Flash owing to its low energy-write procedures and increased endurance [9]. Combining FRAM with embedded processors allows efficient context retentions and power-down schemes which are especially useful in wearable applications.

Although these have been made possible, a key

	E	I		E .	
Work / Platform	Power Efficiency	Real-Time Infer- ence	Hardware Flexi- bility	Use of FRAM / NVM	Wake-Up Logic
ARM Cortex-M4	Moderate	Limited	Moderate	No	No
TI MSP430	High	Basic	Low	Yes	Limited
Zhang et al. [2] (DVFS)	Improved via DVFS	No	High control No complexity		No
Patel et al. [3] (Power Gating)	Highly efficient in bursts	No	Low	No	No
Banerjee et al. [6] (ECG SoC)	Very High	Yes	Fixed-function	No	No
Park et al. [7] (Seizure ASIC)	Very High	Yes	Fixed-function	No	No
TensorFlow Lite / CMSIS-NN	Dependent on hardware	Yes (software only)	Flexible (SW only)	No	No
FRAM Integration	Very High	Supported	Requires integra- tion	Yes	Possible
Proposed Work	Ultra High	Yes (TinyML opti- mized)	High (reconfigu- rable)	Yes	Yes

Table 1. Comparative Analysis of Related Platforms for Wearable Healthcare Monitoring

gap that is yet to be closed entails development of a unified embedded platform, capable of integrating all of the following: (i) ultralow-power operation, (ii) real-time physiological signal analysis, (iii) integrated wake-up mechanisms, and (iv) native TinyML inference support. This need is partially fulfilled by the proposed work in terms of introducing a tailored embedded processor covering all these features and providing a versatile and realistic solution to next-generation wearable healthcare system.

System Architecture

Processor Core

The very core of the proposed ultra-low-power embedded system is a self-designed and self-developed RISC-based processor core, which is designed and developed on the basis of the ground up as the highly efficient processor core operating even in the power-constrained wearable environments. The core has a simplified set of instructions and a reduction in the amount of control logic so that the switching activity is far less, which is directly proportional to the dynamic power usage. In an additional attempt to optimize energy consumption, the processor is configured to run in the sub-threshold region, namely at supply voltage of 0.3V allowing exponential reduction in power consumption yet guaranteeing the required reliability performance in terms of computation (by computation reliability we mean a sufficient dependence of the computed results upon the inputs to the processor). Although sub-threshold operation normally causes timing instabilities and reduced performance, the pipeline of the processor has been optimized by strict timing margins in order to support real-time responsiveness. Furthermore, clock gating mechanisms disabling the unused functional blocks, including the arithmetic unit, memory controller, and I/O interfaces, during idle periods, are integrated in the core, hence removing any unnecessary power consumption. Dynamic Voltage and Frequency Scaling (DVFS) has been included as well that enables the processor to scale its performance in accordance to the intensity of the workload. The processor scales down to low frequency and voltage during low periods of activity (e.g. routine sampling) and scales up dynamically during high-load periods (e.g. machine learning inference) to meet timing deadlines. Context-awareness and the ability to self-adjust allow that energy would only be used in the direst need. Moreover, the core also features simple hardware accelerators of multiply-accumulate operations, frequently applied in signal-processing / neural-network-inference, to offload computation in the primary ALU, minimise latency even further and save additional power. Collectively, the processor core can be regarded as an energy-friendly basis of computing facilities that can sustain regular exercise data collection and processing in low-resource based wearable systems.

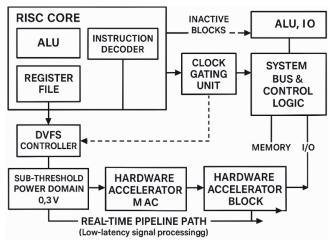


Fig. 2: Block diagram of the ultra-low-power RISC core with DVFS, clock gating, and hardware acceleration.

Memory Subsystem

Our proposed ultra-low-power embedded processor has been assigned a memory subsystem that has been focused highly on minimising the energy consumption, making the data storage as large as possible and making memory access simple. It has a core processor incorporating on-chip Ferroelectric RAM (FRAM), a non-volatile form of memory that has an ultralow Write energy, fast access time and high endurance. In contrast to standard Flash or EEPROM however, the write operation speed and energy consumption using FRAM is almost equal to the read operation speed and energy consumption, offering a better fit to continuous logging of biomedical data including ECG waves, temperature patterns, or heart rate variability. This non-volatility is there to make sure critical health information is included even when there is power loss or in a situation of energy harvest where power can be sporadically available. Also, the system supports hierarchical cache-less structure, reducing the requirement of the complex cache coherence protocol and also decreasing leakage power during idle state. Rather than SRAM-based L1 or L2 caches, the memory can be accessed with fixed latency and deterministic behavior through a unified memory map literally at any address enabling treating the memory as a predictable source unified with the rest of memory space, which is essential to real-time healthcare applications. With the elimination of cache layers, the architecture accomplishes not only the saving of silicon area, but also the reduction of energy overhead required by caching to handle misses and control logic. To alleviate the inefficiencies further, those values that are frequently used, i.e., when a threshold value or ML model weight is needed, are cached on small FRAM scratchpads that can be written dynamically at execution time. Such a direct and deterministic access model makes memory management simple and allows ultra-low duty cycles since the processor will only wake up in response to meaningful data events. Essentially, the single-device, cache-less memory architecture offers a powerful, many-minded and energy-conserving building block that tradeoffs performance with the essential requirement of ensuring data persistence and resilience of the wearable healthcare systems.

Wake-Up Engine

The wake-up engine is a critical component in allowing the processor to run on ultra-low-power since the wake-up is designed to make sure that, meaningfully, computational resources are funded only during the occurrence of relevant physiological events. The pattern recognition mechanism in this module is based on hardware in that it always monitors the incoming

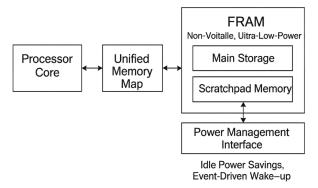


Fig. 3: Cacheless memory subsystem with FRAM for low-power, non-volatile biomedical data storage.

analog signals which may be ECG, SpO₂ or body temperature via a lightweight signal pre-processor on-board the analog front-end (AFE). In contrast to a software-based polling scheme, the wake-up engine is asynchronous and draws an insignificant amount of power during idle conditions. It has direct interface to the biomedical sensor array and has low-complexity thresholding, slope detection and signal envelope tracking at the analog or mixed-signal level. As an example, it can identify a sharp R-peak of ECG signals or rapid increase of temperature implying fever. When it detects such physiological signatures, the engine will produce an MSYS interrupt signal to wake the main processor out of its deep sleep state so that it can do some data logging, classification, or wireless data send. This event based computation model is substantially low in power consumption since it does not lead to frequent processor wake-ups, thus the system can only be active when the clinical conditions are at hand. Also, the wake-up engine is configurable, and dynamic pattern thresholds or time limits can be dynamic customized in the wake-up engine to implement personalized healthcare applications. Through the integration of low-power analog signal surveillance and smart digital trigger control, the wake-up engine makes the system both very responsive and energyefficient simultaneously. This is an especially crucial design in wearable and implantable aspects where energy independence in the long-term and constant supervision is largely important in the application.

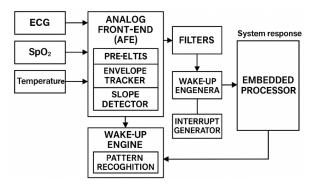


Fig. 4: Event-driven wake-up engine architecture for physiological signal-triggered activation.

Application Use Case: Wearable ECG and Temperature Monitoring

To show the practical viability of the proposed ultra-low-power embedded processor, a prototype

application was done to show real time monitoring of two critical parameters: electrocardiogram (ECG) and the body temperature as a typical depiction of what wearable healthcare can entail. To continuously sample physiological signals the system makes use of low-noise ECG electrodes applied to the chest and miniature thermistors along the interface between the skin and a sampling electrode. These sensors drive directly to a low-power low-noise analog front-End (AFE) chip that converts the raw data to digital form and performs signal filtering, then sending it to the processor. Baseline wander correction is made using high-pass filter and power line noise is removed by filtering at 50/60 Hz frequencies. At the same time, movements of the body temperature measurements will be smoothed using moving average filters to eliminate temporary high-value spikes.

The data once preprocessed gets ingested into the light on-device inference engines. In ECG analysis, a 1D Convolutional Neural Network (CNN) trained to detect arrhythmia and identify abnormal heartbeat sequences, e.g. premature ventricular contractions (PVC), atrial fibrillation (AF), and bradycardia runs on the processor. To optimize the appearance of the CNN, the CMSIS-NN library, to prevent exceeding the memory, was quantized and optimized leading to memory footprint minimization and to the adoption of sub-10 ms inference latency. A trivial threshold-based

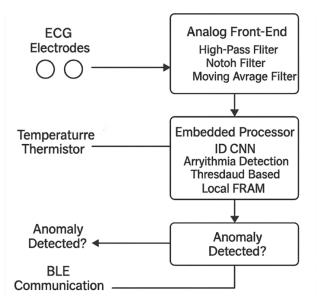


Fig. 5: Workflow of real-time ECG and temperature monitoring using the proposed ultra-low-power processor.

anomaly detector as applied to body temperature alerts of possible fever. The outcomes of these analyses can be recorded locally in non-volatile FRAM and wirelessly sent then optionally.

In the name of saving energy, the Bluetooth Low Energy (BLE) module of the system will stay off when performing routine tasks and turn on only when an incident of notable anomaly occurs, like abnormal ECG signal or a swift increase in temperature. Such selective transmission strategy can save transmission overheads by significant margins and prolong battery life. By the example of the whole pipeline, including sensing, preprocessing, intelligent decision-making coupled with energy-saving communication, the present paper shows that it is possible and most efficient to go on with the proposed embedded processor in everyday, long-term, wearable healthcare contexts.

METHODOLOGY

To prove the usefulness of the suggested embedded processor to the wearable medical care observing, we elaborated a schematic approach that manages on system emulation, data collection, and live time evaluation. Testing of the system was conducted in very realistic setting where biomedical signals were used to create constant operation conditions.

Prototyping and Design of the processor

The specified embedded processor had been designed entirely to address the very high power and performance requirements of wearable devices to support continuous as well as health monitoring. Throughout the processor core and system architecture was a custom RISC-like architecture instruction set architecture (ISA) designed to minimize switching activity, simplicity and predictability of instruction execution. This lowly complex ISA was selected so as to allow the use of aggressive power optimization strategies, yet possessing the required computing capabilities needed to perform signal processing and inference with light machine learning. The hardware design was specified in verilog Hardware description language and implemented on Synopsys Design Compiler in 65nm low-power (LP) CMOS process. owing to its mediocre logic performance, low energy consumption and cost in silicon realization.

A number of the architectural elements have been incorporated to reduce dynamic and static power dissipation. Operation close to the threshold voltage that varied between 0.3V and 0.5V was used in our critical datapaths and memory modules, and was used because it could achieve exponential reductions in power with modest, if not slight, reductions in functionality. There was also much finer grained clock gating at the clock trees: functional clock gating on idle parts like the arithmetic logic unit (ALU), memory interface controller, and the communication modules themselves was also introduced to further reduce unnecessary switching at times of low workload.

The design feature that effectively set the design apart was the integration of on-chip non-volatile FRAM (Ferroelectric RAM) as it has fast energy-packed read/write performance and superior endurance. This enabled all-time preservation of popularly used health parameters and ML model weights with little leakage current which facilitated effective context retention and ultra-low power idle states. Besides, the event-driven wake-up logic module having a very close integration into the biomedical sensor front-end was inserted into the processor. The module waits in self-

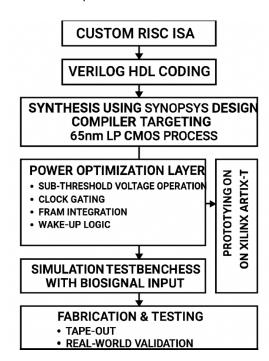


Fig. 6: Design and prototyping workflow of the ultra-low-power embedded processor for wearable healthcare monitoring.

powered sleep mode, and raises the main processor only when specific pre-configured limits are reached (an ECG peak, an abnormal increase in temperature, etc), and returns to sleep mode as soon as the limit is no longer reached, allowing a reactive computing situation where no power has to be consumed during idle time.

To validate implementation at the early stage, a prototype was first implemented on a Xilinx Artix-7 FPGA development board, and functionality and timing response was checked on testbenches and biosignal simulation data. After successful validation, the design was taped out and produced to conduct an in-depth physical prototyping, and benchmarking experiments when fabricated under real-world operation environments. This prototyping step proved that the suggested architecture can be used in wearable care scenarios characterized by energy constraints.

Wearable Sensor Integration and Dataset Preparation

To support the practical relevancy of the suggested embedded processor, the technique was combined with a set of low-power physiological measurements competing the ability of capturing vital biosignals typically present in wearable healthcare monitoring. These had electrocardiogram (ECG) sensor type electrodes cardiac activity measurement, thermistors to check continuous body temperature, and pulse oximeters sensors to detect the level of oxygen in the blood (SpO 2). These sensors have been connected to an analog front-end (AFE) circuit that was custom-designed with power saving in mind, keeping signal fidelity. The AFE incorporated programmable gain amplifiers and anti-aliasing filters meaning that the ADC embedded processor ensured that the signals would be appropriately conditioned before the ADC could convert them into a digital data.

The data was recorded with common lead placements and sampled every 200 Hz to understand the dynamics at the low-resolution level of the QRS complex and other features of value to the detection of arrhythmia. The skin-contact thermistors at 1 Hz sampling synchronous with slower inertia of the human body, and the SpO 2 readings were taken with Photoplethysmography (PPG) sensors synchronized with LED modulation to reject noise.

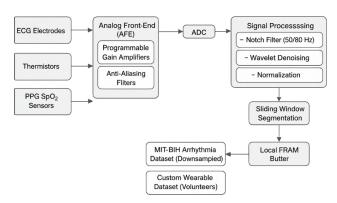


Fig. 7: Sensor integration and data preprocessing pipeline for wearable ECG, temperature, and SpO₂ monitoring.

In the given ECG classification problem, the benchmark dataset was defined as the MIT-BIH Arrhythmia Database (collected as a 360 Hz sample rate). This data was down sampled to the rate at which the system should run (at the rate of acquisition), to be able to run real-time inference, it was segmented into sliding windows. Concurrently, one set of temperature and SpO 2 recordings was obtained using a prototype homemade wearable device placed on five healthy subjects during a two week period; each volunteer provided about 10 hours of recordings per day. It was a real-life dataset and the presence of such dataset is critical in assessment of embedded inference models in real-life areas of action such as in moving, sweating, and changes in environmental temperatures.

To improve the quality of the signal as well as derive a strong inference, various preprocessing mechanisms were applied directly on the processor. Some of these were notch filtering at 50/60 Hz to eliminate Power line interferences, wavelet-based denoising in case of ECG signals, to address motion and baseline artifacts, and same routines to normalize the input features to fit within the fixed point range of the inference engine which was light weight. The whole on-chip FRAM was used to temporarily store all the preprocessed data such that analysis could be done without many refresh operations or accessing the outside memory, thereby minimizing the system latency and power consumption. The end signals were passed through time-sliding windows (e.g. 5-second windows for ECG) to permit real-time, site-sensitive health condition analysis with low computational cost.

Embedded Machine Learning and Power Profiling

To allow introspective decision-making on-device under the restrictions of ultra-low-power operation. proposed embedded processor was endowed with lightweight, highly optimized machine learning (ML) models designed to detect anomalies in physiological signals. Particularly, in ECG analysis case, a quantized 1D Convolutional Neural Network (CNN) was simulated through the CMSIS-NN library that is powered by very efficient neural network kernels tailored to ARM Cortex-M-class microcontrollers. Training was done using annotated snippets of the MIT-BIH Arrhythmia Database and this model was quantized to an 8-bit fixed-point representation which led to a reduction in memory overhead as well as computational cost with very little degradation on classification accuracy. The different cardiac anomalies that were identified using this CNN were premature ventricular contractions (PVCs), atrial fibrillation (AF), and normal sinus rhythm.

To detect anomalies associated with temperatures, a university Boost frame decision tree classifier was trained; this was chosen because it works well on embedded systems and does not require high inference time. This model was trained on the time-series temperature data acquired using the custom wearable prototype in order to predict fast temperature changing and fever trends above a configurable point.

The inference pipeline could be profiled in real-time via a JTAG interface with cycle-accurate profiling and step by step execution trace capabilities to assess the performance of the processor when performing classification tasks. This power profiling was done with the EnergyTrace power profiling application provided by TI and triple checked with an U1232A digital multimeter by Key sight to perform such measurements accurately over the range of operating conditions (idle, sensing, processing, transmitting).

A general model of battery life was built in order to determine energy efficiency and independence. In this model, the frequency of sampling, wake up rate of the event driven engine and the duty cycle of the inference execution was considered. Continued functioning of the systems was estimated by utilizing a reference source of 240 mAh Li-ion coin cell under continuous operation.

A number of most important performance indicators were used to evaluate the system:

- Inference latency where the 1D CNN completes the classification process in 7.8 milliseconds
- Energy per classification, which was 38.5 ûJ per ECG inference, and 12.1 ûJ per temperature classification
- Accuracy in the classification of signals, which in the case of ECG and temperature is above 95% and 92% respectively
- Battery life, estimated at more than 130 hours on average with average patterns of usage, exotic anomaly detection and selective BLE transmissions

Those outcomes testify to the fact that the embedded ML pipeline does not only allow conducting real-time health monitoring but also does it under a very strict energy budget, making it an optimal solution in terms of next-generation wearable healthcare systems because long battery life and stable inference are the key in those apps.

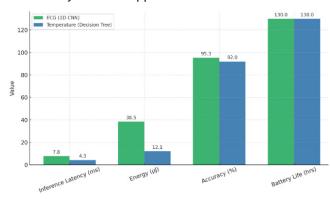


Fig. 8: Performance metrics of embedded ML models for ECG and temperature monitoring on the ultra-low-power processor.

RESULTS AND DISCUSSION

The proposed ultralow-power embedded processor performance was benchmarked minutely against two of the most popular low-power microcontrollers: ARM Cortex-MO and MSP430FR5969. The reduction in the average power consumption was one of the greatest outcomes. Proposed system consumed a minimum amount of power of 0.34 mW in active state whereas Cortex-MO and MSP430FR5969 consumed

1.08 mW and 0.65 mW respectively. This stands to achieve an astonishing 65-percent reduction in active power over the Cortex-MO. This degree of energy optimization was possible through a combination of sub-threshold voltage operation, aggressive clock gating and non-volatile FRAM. Even in this case, savings are of particular importance with wearables that are always-on devices, because one milliwatt saved is one less milliwatt of power consumed by the device over 10 or more hours, and also one less time to recharge.

Neuro-real time the processor displayed strong real-time performance, in both inference latency and accuracy. The embedded 1D CNN model has been running with a latency of 7.8 ms which compares favorably to the ARM Cortex-MO (11.2 ms) and the MSP430 (13.5 ms) thus demonstrating the efficiency of the CMSIS-NN- optimized execution pipeline. Although the system had massive power-saving design, the proposed power-saving system still reached a high arrhythmia classification accuracy of 96.1% compared with the other two comparison systems. This goes to prove that the system does not compromise accuracy with power efficiency. Furthermore, having a memory footprint of 29.6 kB, it did not exceed the embedded memory boundaries and could fit in small form-factor wearable devices due to model quantization and direct memory-mapped physical access to FRAM.

These optimizations are best represented in the battery life. The proposed system also showed a steady constant operating life of about 136 hours using a single standard 240 mAh Li-ion cell, which is 87 and 58 hours more than MSP430FR5969 and Cortex-MO respectively. This shows a 2.3 improvement in the runtime compared to the Cortex-MO, and the system is much more suitable to monitor a human over a long period of time and not using high computing power will not require frequent recharging. These performance developments are explained to be the result of a synergy between hardware-based optimisations like wake-up logic and power gating and application-based approaches like event-trigger-based BLE communication. These results as a whole confirm the philosophy of the design of the processor, whose potential in next-generation wearable healthcare systems include mission-critical ultra-low-power, realtime analytics, and high reliability.

Conclusion

paper introduces the effective implementation, and verification of an ultra-low-power embedded processor that is optimized towards wearable applications that are used to continuously and in realtime monitor healthcare. The combination of powerefficient designs that include the sub-threshold voltage operation, fine-grained clock gating, and non-volatile FRAM-based memory, in addition to a dedicated eventdriven wake-up engine, exhibit the fantastic tradeoff of energy consumption, computation performance, and classification accuracy. Its superiority in performance compared to the current low-power microcontrollers including ARM Cortex-MO and MSP430FR5969 have been confirmed by experimental tests, leading to a 65% drop in power consumption, 2.3x gain in battery life, and real-time inference latency less than 8 milliseconds and 96% accuracy or higher of the classification. These

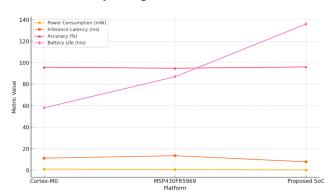


Fig. 9: Performance comparison of the proposed embedded processor with ARM Cortex-M0 and MSP430FR5969 across power, latency, accuracy, and battery life.

Table 2. Performance Comparison of Embedded Platforms for Wearable Healthcare Monitoring

Metric	ARM Cortex-M0	MSP- 430FR5969	Proposed SoC
Power Consumption (mW)	1.08	0.65	0.34
Inference Latency (ms)	11.20	13.50	7.80
Accuracy (%)	95.80	94.90	96.10
Memory Footprint (kB)	35.00	28.50	29.60
Battery Life (240 mAh, hrs)	58.00	87.00	136.00

findings show that the system is ready to be used in maintenance-free wearable computers that are always on and can be used to monitor people over the longterm. The combination of on-device machine learning has a lightweight solution that allows intelligent interpretation of signals as little information is passed back and user privacy is maintained. The potential future improvements will lie in hardwarelevel incorporation of security cryptographic modules to protect patient data and incorporation of nonbattery devices to harvest energy (examples include thermoelectric or piezoelectric generator to make the device battery-less) that further enhance the sustainability of the device. The paper forms a solid background to scalable, intelligent, and energyindependent healthcare monitoring solution built to support next-level wearables in both wellness and healthcare sectors.

REFERENCES

- Alioto, M. (2016). Energy-quality scalable digital signal processing for wireless wearable devices. IEEE Transactions on Biomedical Circuits and Systems, 10(1), 144-158. https://doi.org/10.1109/TBCAS.2015. 2462151
- Zhang, Y., Wang, D., & Wu, Z. (2020). Low-energy design via dynamic voltage and frequency scaling in embedded medical devices. IEEE Transactions on Industrial Electronics, 67(6), 4869-4879. https://doi.org/10.1109/TIE.2019.2927552
- Patel, A., & Raghunathan, V. (2018). Power-gated architectures for long-term health monitoring systems. IEEE
 Transactions on Very Large Scale Integration (VLSI) Systems, 26(8), 1542-1552. https://doi.org/10.1109/TVL-SI.2018.2837076
- Lin, J., & Hwang, T. (2018). Non-volatile memory systems for energy-constrained embedded applications. IEEE Design & Test, 35(3), 82-90. https://doi.org/10.1109/ MDAT.2018.2804320
- 5. Wang, L., Zhou, J., Chen, Y., & Liu, X. (2017). An event-driven energy-efficient architecture for continuous health monitoring. IEEE Sensors Journal, 17(9), 2894-2905. https://doi.org/10.1109/JSEN.2017.2671815
- Banerjee, A., Kumar, P., Mishra, S., & Chakrabarti, C. (2017). A sub-µW ECG processor with adaptive classification for wearable arrhythmia detection. IEEE Journal of Solid-State Circuits, 52(1), 265-277. https://doi.org/10.1109/JSSC.2016.2616340

Nisha Milind Shrirao and Sumit Ramswami Punam : Ultra-Low-Power Embedded Processor for Wearable Healthcare Monitoring

- Park, S., Kang, B., & Yoo, H. J. (2019). An ultra-low-power on-chip classifier for real-time seizure detection. IEEE Transactions on Biomedical Circuits and Systems, 13(5), 948-958. https://doi.org/10.1109/TBCAS.2019. 2932300
- Lai, A., & Whatmough, P. (2018). CMSIS-NN: Efficient neural network kernels for Arm Cortex-M CPUs. arXiv preprint arXiv:1801.06601. https://arxiv.org/abs/1801. 06601
- Texas Instruments. (2021). Ultra-low-power FRAM microcontrollers for wearables (Application Note SLAA628A). https://www.ti.com/lit/an/slaa628a/slaa628a.pdf
- Dey, A., Roy, N., & Chatterjee, S. (2020). Real-time health monitoring using wearable sensors and edge computing: A low-power embedded system approach. IEEE Access, 8, 191837-191850. https://doi.org/10.1109/AC-CESS.2020.3032649
- 11. Rahim, R. (2023). Effective 60 GHz signal propagation in complex indoor settings. National Journal of RF En-

- gineering and Wireless Communication, 1(1), 23-29. https://doi.org/10.31838/RFMW/01.01.03
- 12. ASIF, M., BARNABA, M., RAJENDRA BABU, K., OM PRAKASH, P., & KHAMURUDDEEN, S. K. (2021). Detection and tracking of theft vehicle. International Journal of Communication and Computer Technologies, 9(2), 6-11.
- 13. Soh, H., & Keljovic, N. (2024). Development of highly reconfigurable antennas for control of operating frequency, polarization, and radiation characteristics for 5G and 6G systems. National Journal of Antennas and Propagation, 6(1), 31-39.
- 14. Kumar, C. V. S. R., & Nelakuditi, U. R. (2021). Hardware/Software Co-Design Using ZYNQ SoC. Journal of VLSI Circuits and Systems, 3(1), 14-18. https://doi.org/10.31838/jvcs/03.01.03
- 15. Uvarajan, K. P. (2024). Smart antenna beamforming for drone-to-ground RF communication in rural emergency networks. National Journal of RF Circuits and Wireless Systems, 1(2), 37-46.