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ABSTRACT

Given that more and more wearable devices focus on continuous real-
time health monitoring, energy-efficient embedded processor design
is needed to ensure that systems meet consumers expectations in
areas such as reliability and power and performance requirements.
This article is an implementation, design, and demonstration of an
ultra-low-power embedded processor optimally designed towards
biomedical signal acquisition and analysis of wearable healthcare
apps. The recommended architecture combines with sub-threshold
logic sets, on-die non-volatile ferroelectric RAM (FRAM), dynamic-
clock gating, and event-driven wake-up engine, so very high energy
efficiency can be achieved without losing real time responsiveness.
To authenticate the processor performance, prototype system was
created and connected with physiological sensors with low power
consumption comprising of ECG electrodes, thermistors, and pulse
oximetry modules. The processor carries out very lightweight machine
learning inference including arrhythmia detection and temperature
anomaly classification on quantized neural networks and decision trees
through CMSIS-NN and uBoost libraries respectively. The trials were
performed on both the MIT-BIH arrhythmia database and hypothetical
and novel-gathered vital data incorporated into actual operational
execution situations. The findings show that the suggested system has
as much as 65 per cent fewer active power consumption than that
of ARM Cortex-M4 or MSP430FR platform, with an average inference
time of 7.8 milliseconds and overall classification accuracy of over
95 per cent on all the observed parameters. Also, the battery life
was increased to more than 130 hours on a typical 240 mAh Li-ion
cell, proving its applicability to long, maintenance-free wearable
applications. The architecture is effective with respect to balancing
computing performance and energy savings hence demonstrating the
possibility of integrating the intelligent health monitoring abilities in
systems that require small size and power. This paper has made a step
forward in achieving low-power edge intelligence within a digital health
application since it presents a highly-flexible processor architecture
upon which future components that are currently envisioned to be
required in biometric sensing and safe communications can be added
allowing next-generation self-sustainable wearable digital health
technologies to emerge in the future.

SCCTS Journal of Embedded Systems Design and Applications | Jan - Jun 2026



Nisha Milind Shrirao and Sumit Ramswami Punam : Ultra-Low-Power Embedded Processor for
Wearable Healthcare Monitoring

How to cite this article: Shrirao N M, Punam S R (2026). Ultra-Low-
Power Embedded Processor for Wearable Healthcare Monitoring.
SCCTS Journal of Embedded Systems Design and Applications, Vol. 3,
No. 1, 2026, 28-38

INTRODUCTION

The current advancement of wearable healthcare
technologies has revolutionized the field of patient
monitoring, chronic diseases, fitness and preventive
care. Such devices as smart watches and fitness bands,
as well as medical-grade ones, are being more and more
widely used due to their capability to continuously
monitor vital physiologic parameters, including the
heart rate, the electrocardiogram (ECG), the amount
of oxygen in the blood (Sp0,), body temperature, and
activity in real-time. These features are essential
in the realization of proactive and remote medical
services, lowering the rate of hospitalizations as well
as enhancing the outcome of patients due to early
detection of deviations.

Yet, large-scale use of wearable equipment has
serious engineering issues, with energy efficiency,
physical size limitations, and ability to reason real-
time in the spotlight. The majority of wearable
products, especially portable versions, rely on small
batteries which should work uninterrupted during
days or even weeks. That is why ultra-low-power
consumption is not only an attractive feature but a
must. Traditional embedded processors, although not
lacking in sufficient computational throughput, usually
lack in energy efficiency, particularly when required
to continuously monitor and attached locally inferring
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Fig. 1: Overview of wearable healthcare monitoring
using an ultra-low-power embedded processor

on biosignals. Additionally, the energy drain is also
compounded by the frequent transfer of wireless data
to offload processing capabilities making devices have
short battery life.

In order to overcome these shortcomings, this
study shows how a wearable healthcare monitor-
specific  ultra-low-power embedded processor
can be designed and implemented. The proposed
architecture in contrast to general-purpose
microcontrollers is specifically designed to allow
event-driven computation, low-energy memory
access, and lightweight machine learning inference on
the edge device. To achieve this, the processor works
on multiple strategies to reduce the energy content
of the circuits and the strategies are; operation in
sub-threshold voltages, non-volatile FRAM storage and
the presence of a wake-up engine that is hardware
accelerated and keeps the system in the state of sleep
until the biosignals exhibit significant changes.

The provided solution is justified in the context
of the extensive experimental setup (real data
obtained in physiological conditions and comparisons
with the benchmarks of the current state-of-the-art
low-power processors). All this work in producing
remarkable results in energy efficiency as well as the
real time responsiveness is a contribution to more
future wearable health monitoring devices that are
non-responsive, can last during a long period and
are intelligent. Also, the design has the modularity
and scalability of the fabric to be used with future
wearable systems, such as multimodal sensing, secure
communication, and edge Al systems.

ReLATED WORK

The energy-efficient embedded systems created to
wearable healthcare monitoring have drawn huge
interests within the last ten years. Current commercial
microcontroller designs have been well adopted into
wearable application, including the ARM Cortex-M
family and Texas Instruments MSP430, with moderate
power efficiency and many software tools. The ARM
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Cortex-M4 especially is good on the balance between
performance and low power, supporting digital signal
processing (DSP) and floating-point operations.
Nevertheless, the real-time signal processing
demanded by an application like ECG classification
or temperature anomaly detection may still leave an
energy overhead that restricts battery life in wearable
devices that are always on.[!

In overcoming power consumption, other methods
have been examined in the past which involves
Dynamic Voltage and Frequency Scaling (DVFS).[
power gating,’® non-volatile memory integration,®
as well as, event-driven architecture.! As an example,
Zhang et al.! have shown how DVFS can be applied to
a microcontroller to save energy when idle and Patel
et al.B¥! have generated power-gated architectures in
an intermittent computing battery-powered medical
device. However, such methods typically demand
precise control logic, and might incur unacceptable
latency overheads to time-sensitive healthcare
systems.

Other works have presented biomedical signal
processing using ASIC-based custom solutions, as well.
To give an instance of a low-energy SoC implemen-
tation, Banerjee et al.!! have portrayed a low-power
ECG processing SoC that could detect arrhythmia with

90 percent less energy as compared to software imple-
mentation. On the same note, Park et al.”! were able
to design an ultra-low-power seizure detection ASIC
based on an analog front-end processing. Although this
yields great power statistics, these methods do not
allow modifying algorithms after deployment, or much
less add new biosensors.

Microcontroller-compatible frameworks were re-
cently achieved by TinyML and on-device machine
learning inference in TensorFlow Lite for Microcontrol-
lers (TFLM) and CMSIS-NN.® These allow the deploy-
ment of light deep learning models on edge devices.
Nevertheless, the present hardware platforms do not
have architecture improvements which could utilize
these models fully with no power overheads. Biosignal
classification in real-time further requires optimized
memory hierarchies, and inference accelerations,
which may not be in generic MCUs.

Regarding memory technologies, Non-volatile
memory technologies like FRAM have become a
sensible alternative to SRAM and Flash owing to its low
energy-write procedures and increased endurance [9].
Combining FRAM with embedded processors allows
efficient context retentions and power-down schemes
which are especially useful in wearable applications.

Although these have been made possible, a key

Table 1. Comparative Analysis of Related Platforms for Wearable Healthcare Monitoring

Work / Platform Power Efficiency Real-Time Infer- Hardware Flexi- Use of FRAM / Wake-Up Logic
ence bility NVM

ARM Cortex-M4 Moderate Limited Moderate No No

TI MSP430 High Basic Low Yes Limited

Zhang et al. [2] Improved via DVFS | No High control No No

(DVFS) complexity

Patel et al. [3] Highly efficient in | No Low No No

(Power Gating) bursts

Banerjee et al. [6] | Very High Yes Fixed-function No No

(ECG SoC)

Park et al. [7] Very High Yes Fixed-function No No

(Seizure ASIC)

TensorFlow Lite / | Dependent on Yes (software Flexible (SW only) | No No

CMSIS-NN hardware only)

FRAM Integration | Very High Supported Requires integra- | Yes Possible

tion

Proposed Work Ultra High Yes (TinyML opti- | High (reconfigu- Yes Yes
mized) rable)
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gap that is yet to be closed entails development of
a unified embedded platform, capable of integrating
all of the following: (i) ultralow-power operation, (ii)
real-time physiological signal analysis, (iii) integrated
wake-up mechanisms, and (iv) native TinyML inference
support. This need is partially fulfilled by the proposed
work in terms of introducing a tailored embedded
processor covering all these features and providing
a versatile and realistic solution to next-generation
wearable healthcare system.

SYSTEM ARCHITECTURE

Processor Core

The very core of the proposed ultra-low-power
embedded system is a self-designed and self-developed
RISC-based processor core, which is designed and
developed on the basis of the ground up as the
highly efficient processor core operating even in the
power-constrained wearable environments. The core
has a simplified set of instructions and a reduction
in the amount of control logic so that the switching
activity is far less, which is directly proportional to
the dynamic power usage. In an additional attempt
to optimize energy consumption, the processor is
configured to run in the sub-threshold region, namely
at supply voltage of 0.3V allowing exponential
reduction in power consumption yet guaranteeing
the required reliability performance in terms of
computation (by computation reliability we mean a
sufficient dependence of the computed results upon
the inputs to the processor). Although sub-threshold
operation normally causes timing instabilities and
reduced performance, the pipeline of the processor
has been optimized by strict timing margins in order to
support real-time responsiveness. Furthermore, clock
gating mechanisms disabling the unused functional
blocks, including the arithmetic unit, memory
controller, and 1/0 interfaces, during idle periods,
are integrated in the core, hence removing any
unnecessary power consumption. Dynamic Voltage and
Frequency Scaling (DVFS) has been included as well
that enables the processor to scale its performance
in accordance to the intensity of the workload. The
processor scales down to low frequency and voltage
during low periods of activity (e.g. routine sampling)
and scales up dynamically during high-load periods
(e.g. machine learning inference) to meet timing

deadlines. Context-awareness and the ability to
self-adjust allow that energy would only be used in
the direst need. Moreover, the core also features
simple hardware accelerators of multiply-accumulate
operations, frequently applied in signal-processing /
neural-network-inference, to offload computation in
the primary ALU, minimise latency even further and
save additional power. Collectively, the processor
core can be regarded as an energy-friendly basis of
computing facilities that can sustain regular exercise
data collection and processing in low-resource based
wearable systems.

RISC CORE INACTIVE
| BLOCKS _ )| ALY, 10
ALU INSTRUCTION
DECODER |
CLOCK SYSTEM
REGISTER | GATING ™ gyge
FILE - llE CONTROL
! LOGIC
v i
OVES T ol
CONTROLLER MEMORY  IfO
[
SUB-THRESHOLD HARDWARE HARDWARE
POWER DOMAIN ] ACCELERATOR ACCELERATOR[—>

03V MAC BLOCK
R REAL-TIME PIPELINE PATH —|r

(Low-latency signal processingg)

Fig. 2: Block diagram of the ultra-low-power RISC core
with DVFS, clock gating, and hardware acceleration.

Memory Subsystem

Our proposed ultra-low-power embedded processor
has been assigned a memory subsystem that has been
focused highly on minimising the energy consumption,
making the data storage as large as possible and
making memory access simple. It has a core processor
incorporating on-chip Ferroelectric RAM (FRAM), a
non-volatile form of memory that has an ultralow
Write energy, fast access time and high endurance.
In contrast to standard Flash or EEPROM however,
the write operation speed and energy consumption
using FRAM is almost equal to the read operation
speed and energy consumption, offering a better fit to
continuous logging of biomedical data including ECG
waves, temperature patterns, or heart rate variability.
This non-volatility is there to make sure critical health
information is included even when there is power loss
or in a situation of energy harvest where power can
be sporadically available. Also, the system supports
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hierarchical cache-less structure, reducing the
requirement of the complex cache coherence protocol
and also decreasing leakage power during idle state.
Rather than SRAM-based L1 or L2 caches, the memory
can be accessed with fixed latency and deterministic
behavior through a unified memory map literally at any
address enabling treating the memory as a predictable
source unified with the rest of memory space, which
is essential to real-time healthcare applications. With
the elimination of cache layers, the architecture
accomplishes not only the saving of silicon area, but also
the reduction of energy overhead required by caching
to handle misses and control logic. To alleviate the
inefficiencies further, those values that are frequently
used, i.e., when a threshold value or ML model weight
is needed, are cached on small FRAM scratchpads
that can be written dynamically at execution time.
Such a direct and deterministic access model makes
memory management simple and allows ultra-low
duty cycles since the processor will only wake up in
response to meaningful data events. Essentially, the
single-device, cache-less memory architecture offers
a powerful, many-minded and energy-conserving
building block that tradeoffs performance with the
essential requirement of ensuring data persistence
and resilience of the wearable healthcare systems.

Wake-Up Engine

The wake-up engine is a critical component in allowing
the processor to run on ultra-low-power since the
wake-up is designed to make sure that, meaningfully,
computational resources are funded only during the
occurrence of relevant physiological events. The
pattern recognition mechanism in this module is based
on hardware in that it always monitors the incoming

FRAM

Non-Voitalle, Uitra-Low-Power

Unified
Memory [
Map

Processor Main Storage

Core

Scratchpad Memory|
T
v
Power Management
Interface

Idle Power Savings,
Event-Driven Wake—-up

Fig. 3: Cacheless memory subsystem with FRAM for
low-power, non-volatile biomedical data storage.

analog signals which may be ECG, SpO, or body
temperature via a lightweight signal pre-processor
on-board the analog front-end (AFE). In contrast to a
software-based polling scheme, the wake-up engine
is asynchronous and draws an insignificant amount of
power during idle conditions. It has direct interface to
the biomedical sensor array and has low-complexity
thresholding, slope detection and signal envelope
tracking at the analog or mixed-signal level. As an
example, it can identify a sharp R-peak of ECG signals
or rapid increase of temperature implying fever. When
it detects such physiological signatures, the engine
will produce an MSYS interrupt signal to wake the main
processor out of its deep sleep state so that it can do
some data logging, classification, or wireless data send.
This event based computation model is substantially
low in power consumption since it does not lead to
frequent processor wake-ups, thus the system can only
be active when the clinical conditions are at hand.
Also, the wake-up engine is configurable, and dynamic
pattern thresholds or time limits can be dynamic
customized in the wake-up engine to implement
personalized healthcare applications. Through the
integration of low-power analog signal surveillance
and smart digital trigger control, the wake-up engine
makes the system both very responsive and energy-
efficient simultaneously. This is an especially crucial
design in wearable and implantable aspects where
energy independence in the long-term and constant
supervision is largely important in the application.

ECG ANALOG
FRONT-END .
(AFE)  |»| FILTERS chikeet bl
SpO: '_' PRE-ELTLS l
ENVELOPE
TRACKER WAKE-UP |_,| EMBEDDED
SLOPE ENGENERA PROCESSOR
DETECTOR |
7 INTERRUPT
WAKE-UP GENERATOR
ENGINE
PATTERN | |«
RECOGHITION

Fig. 4: Event-driven wake-up engine architecture for
physiological signal-triggered activation.

AppLICATION Use Case: WEArRABLE ECG
AND TEMPERATURE MONITORING

To show the practical viability of the proposed
ultra-low-power embedded processor, a prototype
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application was done to show real time monitoring
of two critical parameters: electrocardiogram (ECG)
and the body temperature as a typical depiction of
what wearable healthcare can entail. To continuously
sample physiological signals the system makes use of
low-noise ECG electrodes applied to the chest and
miniature thermistors along the interface between
the skin and a sampling electrode. These sensors drive
directly to a low-power low-noise analog front-End
(AFE) chip that converts the raw data to digital form
and performs signal filtering, then sending it to the
processor. Baseline wander correction is made using
high-pass filter and power line noise is removed by
filtering at 50/60 Hz frequencies. At the same time,
movements of the body temperature measurements
will be smoothed using moving average filters to
eliminate temporary high-value spikes.

The data once preprocessed gets ingested into
the light on-device inference engines. In ECG analysis,
a 1D Convolutional Neural Network (CNN) trained to
detect arrhythmia and identify abnormal heartbeat
sequences, e.g. premature ventricular contractions
(PVC), atrial fibrillation (AF), and bradycardia runs
on the processor. To optimize the appearance of the
CNN, the CMSIS-NN library, to prevent exceeding the
memory, was quantized and optimized leading to
memory footprint minimization and to the adoption of
sub-10 ms inference latency. A trivial threshold-based

Analog Front-End

High-Pass Fliter
Notoh Filter
Moving Avrage Filter

ECG
Electrodes

OO0O—™

y

Temperaturre Embedded Processor
Thermistor ID CNN
Arryithmia Detection
Thresdaud Based
Local FRAM
Anomaly
Anomaly
[ N—
Detected? Detected?
BLE
Communication

Fig. 5: Workflow of real-time ECG and temperature moni-
toring using the proposed ultra-low-power processor.

anomaly detector as applied to body temperature
alerts of possible fever. The outcomes of these
analyses can be recorded locally in non-volatile FRAM
and wirelessly sent then optionally.

In the name of saving energy, the Bluetooth Low
Energy (BLE) module of the system will stay off when
performing routine tasks and turn on only when an
incident of notable anomaly occurs, like abnormal ECG
signal or a swift increase in temperature. Such selective
transmission strategy can save transmission overheads
by significant margins and prolong battery life. By
the example of the whole pipeline, including sensing,
preprocessing, intelligent decision-making coupled
with energy-saving communication, the present paper
shows that it is possible and most efficient to go on
with the proposed embedded processor in everyday,
long-term, wearable healthcare contexts.

METHODOLOGY

To prove the usefulness of the suggested embedded
processor to the wearable medical care observing,
we elaborated a schematic approach that manages
on system emulation, data collection, and live time
evaluation. Testing of the system was conducted in
very realistic setting where biomedical signals were
used to create constant operation conditions.

Prototyping and Design of the processor
The specified embedded processor had been
designed entirely to address the very high power
and performance requirements of wearable devices
to support continuous as well as health monitoring.
Throughout the processor core and system architecture
was a custom RISC-like architecture instruction set
architecture (ISA) designed to minimize switching
activity, simplicity and predictability of instruction
execution. This lowly complex ISA was selected so
as to allow the use of aggressive power optimization
strategies, yet possessing the required computing
capabilities needed to perform signal processing and
inference with light machine learning. The hardware
design was specified in verilog Hardware description
language and implemented on Synopsys Design
Compiler in 65nm low-power (LP) CMOS process,
owing to its mediocre logic performance, low energy
consumption and cost in silicon realization.
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A number of the architectural elements have been
incorporated to reduce dynamic and static power
dissipation. Operation close to the threshold voltage
that varied between 0.3V and 0.5V was used in our
critical datapaths and memory modules, and was
used because it could achieve exponential reductions
in power with modest, if not slight, reductions in
functionality. There was also much finer grained clock
gating at the clock trees: functional clock gating on
idle parts like the arithmetic logic unit (ALU), memory
interface controller, and the communication modules
themselves was also introduced to further reduce
unnecessary switching at times of low workload.

The design feature that effectively set the design
apart was the integration of on-chip non-volatile
FRAM (Ferroelectric RAM) as it has fast energy-packed
read/write performance and superior endurance. This
enabled all-time preservation of popularly used health
parameters and ML model weights with little leakage
current which facilitated effective context retention
and ultra-low power idle states. Besides, the event-
driven wake-up logic module having a very close
integration into the biomedical sensor front-end was
inserted into the processor. The module waits in self-

CUSTOM RISC ISA
¥
VERILOG HDL CODING
v
SYNTHESIS USING SYNOPSYS DESIGN
COMPILER TARGETING
65nm LP CMOS PROCESS
[
POWER OPTIMIZATION LAYER| | z +
- SUB-THRESHOLD VOLTAGE OPERATION [ &
« CLOCK GATING RER-
* FRAM INTEGRATION t :
- WAKE-UP LOGIC o =
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SIMULATION TESTBENCHESS s
WITH BIOSIGNAL INPUT
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FABRICATION & TESTING
« TAPE-OUT
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Fig. 6: Design and prototyping workflow of the
ultra-low-power embedded processor for wearable
healthcare monitoring.

powered sleep mode, and raises the main processor
only when specific pre-configured limits are reached
(an ECG peak, an abnormal increase in temperature,
etc), and returns to sleep mode as soon as the limit
is no longer reached, allowing a reactive computing
situation where no power has to be consumed during
idle time.

To validate implementation at the early stage, a
prototype was first implemented on a Xilinx Artix-7
FPGA development board, and functionality and timing
response was checked on testbenches and biosignal
simulation data. After successful validation, the design
was taped out and produced to conduct an in-depth
physical prototyping, and benchmarking experiments
when fabricated under real-world operation
environments. This prototyping step proved that the
suggested architecture can be used in wearable care
scenarios characterized by energy constraints.

Wearable Sensor Integration and Dataset
Preparation

To support the practical relevancy of the suggested
embedded processor, the technique was combined
with a set of low-power physiological measurements
competing the ability of capturing vital biosignals
typically present in wearable healthcare monitoring.
These had electrocardiogram (ECG) sensor type
electrodes on cardiac activity measurement,
thermistors to check continuous body temperature,
and pulse oximeters sensors to detect the level of
oxygen in the blood (SpO 2). These sensors have been
connected to an analog front-end (AFE) circuit that was
custom-designed with power saving in mind, keeping
signal fidelity. The AFE incorporated programmable
gain amplifiers and anti-aliasing filters meaning that
the ADC embedded processor ensured that the signals
would be appropriately conditioned before the ADC
could convert them into a digital data.

The data was recorded with common lead
placements and sampled every 200 Hz to understand
the dynamics at the low-resolution level of the QRS
complex and other features of value to the detection
of arrhythmia. The skin-contact thermistors at 1 Hz
sampling synchronous with slower inertia of the
human body, and the SpO 2 readings were taken with
Photoplethysmography (PPG) sensors synchronized
with LED modulation to reject noise.
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Fig. 7: Sensor integration and data preprocessing
pipeline for wearable ECG, temperature, and SpO2
monitoring.

In the given ECG classification problem, the
benchmark dataset was defined as the MIT-BIH
Arrhythmia Database (collected as a 360 Hz sample
rate). This data was down sampled to the rate at which
the system should run (at the rate of acquisition), to be
able to run real-time inference, it was segmented into
sliding windows. Concurrently, one set of temperature
and SpO 2 recordings was obtained using a prototype
homemade wearable device placed on five healthy
subjects during a two week period; each volunteer
provided about 10 hours of recordings per day. It was
a real-life dataset and the presence of such dataset is
critical in assessment of embedded inference models
in real-life areas of action such as in moving, sweating,
and changes in environmental temperatures.

To improve the quality of the signal as well as
derive a strong inference, various preprocessing
mechanisms were applied directly on the processor.
Some of these were notch filtering at 50/60 Hz to
eliminate Power line interferences, wavelet-based
denoising in case of ECG signals, to address motion
and baseline artifacts, and same routines to normalize
the input features to fit within the fixed point range
of the inference engine which was light weight. The
whole on-chip FRAM was used to temporarily store
all the preprocessed data such that analysis could be
done without many refresh operations or accessing
the outside memory, thereby minimizing the system
latency and power consumption. The end signals were
passed through time-sliding windows (e.g. 5-second
windows for ECG) to permit real-time, site-sensitive
health condition analysis with low computational
cost.

Embedded Machine Learning and Power
Profiling

To allow introspective decision-making on-device
under the restrictions of ultra-low-power operation,
proposed embedded processor was endowed with
lightweight, highly optimized machine learning (ML)
models designed to detect anomalies in physiological
signals. Particularly, in ECG analysis case, a quantized
1D Convolutional Neural Network (CNN) was simulated
through the CMSIS-NN library that is powered by
very efficient neural network kernels tailored to ARM
Cortex-M-class microcontrollers. Training was done
using annotated snippets of the MIT-BIH Arrhythmia
Database and this model was quantized to an 8-bit
fixed-point representation which led to a reduction in
memory overhead as well as computational cost with
very little degradation on classification accuracy. The
different cardiac anomalies that were identified using
this CNN were premature ventricular contractions
(PVCs), atrial fibrillation (AF), and normal sinus
rhythm.

To detect anomalies associated with temperatures,
a university Boost frame decision tree classifier was
trained; this was chosen because it works well on
embedded systems and does not require high inference
time. This model was trained on the time-series
temperature data acquired using the custom wearable
prototype in order to predict fast temperature
changing and fever trends above a configurable point.

The inference pipeline could be profiled in real-
time via a JTAG interface with cycle-accurate profiling
and step by step execution trace capabilities to assess
the performance of the processor when performing
classification tasks. This power profiling was done
with the EnergyTrace power profiling application
provided by Tl and triple checked with an U1232A
digital multimeter by Key sight to perform such
measurements accurately over the range of operating
conditions (idle, sensing, processing, transmitting).

A general model of battery life was built in order
to determine energy efficiency and independence.
In this model, the frequency of sampling, wake up
rate of the event driven engine and the duty cycle
of the inference execution was considered. Continued
functioning of the systems was estimated by utilizing
a reference source of 240 mAh Li-ion coin cell under
continuous operation.
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A number of most important performance
indicators were used to evaluate the system:

» Inference latency where the 1D CNN com-
pletes the classification process in 7.8 milli-
seconds

o Energy per classification, which was 38.5 (J
per ECG inference, and 12.1 (J per tempera-
ture classification

e Accuracy in the classification of signals, which
in the case of ECG and temperature is above
95% and 92% respectively

o Battery life, estimated at more than 130 hours
on average with average patterns of usage,
exotic anomaly detection and selective BLE
transmissions

Those outcomes testify to the fact that the
embedded ML pipeline does not only allow conducting
real-time health monitoring but also does it under a
very strict energy budget, making it an optimal solution
in terms of next-generation wearable healthcare
systems because long battery life and stable inference
are the key in those apps.
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Fig. 8: Performance metrics of embedded ML
models for ECG and temperature monitoring on the
ultra-low-power processor.

REesuLTs AND DiscussiON

The proposed ultralow-power embedded processor
performance was benchmarked minutely against two
of the most popular low-power microcontrollers:
ARM Cortex-M0 and MSP430FR5969. The reduction
in the average power consumption was one of the
greatest outcomes. Proposed system consumed a
minimum amount of power of 0.34 mW in active state
whereas Cortex-M0 and MSP430FR5969 consumed

1.08 mW and 0.65 mW respectively. This stands to
achieve an astonishing 65-percent reduction in active
power over the Cortex-M0. This degree of energy
optimization was possible through a combination of
sub-threshold voltage operation, aggressive clock
gating and non-volatile FRAM. Even in this case,
savings are of particular importance with wearables
that are always-on devices, because one milliwatt
saved is one less milliwatt of power consumed by the
device over 10 or more hours, and also one less time
to recharge.

Neuro-real time the processor displayed strong
real-time performance, in both inference latency
and accuracy. The embedded 1D CNN model has been
running with a latency of 7.8 ms which compares
favorably to the ARM Cortex-MO (11.2 ms) and the
MSP430 (13.5 ms) thus demonstrating the efficiency of
the CMSIS-NN- optimized execution pipeline. Although
the system had massive power-saving design, the
proposed power-saving system still reached a high
arrhythmia classification accuracy of 96.1% compared
with the other two comparison systems. This goes to
prove that the system does not compromise accuracy
with power efficiency. Furthermore, having a memory
footprint of 29.6 kB, it did not exceed the embedded
memory boundaries and could fit in small form-factor
wearable devices due to model quantization and direct
memory-mapped physical access to FRAM.

These optimizations are best represented in
the battery life. The proposed system also showed
a steady constant operating life of about 136 hours
using a single standard 240 mAh Li-ion cell, which
is 87 and 58 hours more than MSP430FR5969 and
Cortex-MO respectively. This shows a 2.3 improvement
in the runtime compared to the Cortex-M0O, and the
system is much more suitable to monitor a human over
a long period of time and not using high computing
power will not require frequent recharging. These
performance developments are explained to be
the result of a synergy between hardware-based
optimisations like wake-up logic and power gating and
application-based approaches like event-trigger-based
BLE communication. These results as a whole confirm
the philosophy of the design of the processor, whose
potential in next-generation wearable healthcare
systems include mission-critical ultra-low-power, real-
time analytics, and high reliability.
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CONCLUSION

This paper introduces the effective design,
implementation, and verification of an ultra-low-power
embedded processor that is optimized towards wearable
applications that are used to continuously and in real-
time monitor healthcare. The combination of power-
efficient designs that include the sub-threshold voltage
operation, fine-grained clock gating, and non-volatile
FRAM-based memory, in addition to a dedicated event-
driven wake-up engine, exhibit the fantastic tradeoff
of energy consumption, computation performance, and
classification accuracy. Its superiority in performance
compared to the current low-power microcontrollers
including ARM Cortex-MO and MSP430FR5969 have been
confirmed by experimental tests, leading to a 65% drop
in power consumption, 2.3x gain in battery life, and
real-time inference latency less than 8 milliseconds
and 96% accuracy or higher of the classification. These
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Fig. 9: Performance comparison of the proposed
embedded processor with ARM Cortex-MO and
MSP430FR5969 across power, latency, accuracy, and
battery life.

Table 2. Performance Comparison of Embedded Platforms
for Wearable Healthcare Monitoring

ARM MSP- Proposed

Metric Cortex-MO | 430FR5969 SoC
Power Consumption | 1.08 0.65 0.34
(mW)
Inference Latency | 11.20 13.50 7.80
(ms)
Accuracy (%) 95.80 94.90 96.10
Memory Footprint | 35.00 28.50 29.60
(kB)
Battery Life (240 58.00 87.00 136.00
mAh, hrs)

findings show that the system is ready to be used in
maintenance-free wearable computers that are always
on and can be used to monitor people over the long-
term. The combination of on-device machine learning
has a lightweight solution that allows intelligent
interpretation of signals as little information is
passed back and user privacy is maintained. The
potential future improvements will lie in hardware-
level incorporation of security cryptographic modules
to protect patient data and incorporation of non-
battery devices to harvest energy (examples include
thermoelectric or piezoelectric generator to make
the device battery-less) that further enhance the
sustainability of the device. The paper forms a solid
background to scalable, intelligent, and energy-
independent healthcare monitoring solution built to
support next-level wearables in both wellness and
healthcare sectors.
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