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AbstrAct 
Given that more and more wearable devices focus on continuous real-
time health monitoring, energy-efficient embedded processor design 
is needed to ensure that systems meet consumers expectations in 
areas such as reliability and power and performance requirements. 
This article is an implementation, design, and demonstration of an 
ultra-low-power embedded processor optimally designed towards 
biomedical signal acquisition and analysis of wearable healthcare 
apps. The recommended architecture combines with sub-threshold 
logic sets, on-die non-volatile ferroelectric RAM (FRAM), dynamic-
clock gating, and event-driven wake-up engine, so very high energy 
efficiency can be achieved without losing real time responsiveness. 
To authenticate the processor performance, prototype system was 
created and connected with physiological sensors with low power 
consumption comprising of ECG electrodes, thermistors, and pulse 
oximetry modules. The processor carries out very lightweight machine 
learning inference including arrhythmia detection and temperature 
anomaly classification on quantized neural networks and decision trees 
through CMSIS-NN and uBoost libraries respectively. The trials were 
performed on both the MIT-BIH arrhythmia database and hypothetical 
and novel-gathered vital data incorporated into actual operational 
execution situations. The findings show that the suggested system has 
as much as 65 per cent fewer active power consumption than that 
of ARM Cortex-M4 or MSP430FR platform, with an average inference 
time of 7.8 milliseconds and overall classification accuracy of over 
95 per cent on all the observed parameters. Also, the battery life 
was increased to more than 130 hours on a typical 240 mAh Li-ion 
cell, proving its applicability to long, maintenance-free wearable 
applications. The architecture is effective with respect to balancing 
computing performance and energy savings hence demonstrating the 
possibility of integrating the intelligent health monitoring abilities in 
systems that require small size and power. This paper has made a step 
forward in achieving low-power edge intelligence within a digital health 
application since it presents a highly-flexible processor architecture 
upon which future components that are currently envisioned to be 
required in biometric sensing and safe communications can be added 
allowing next-generation self-sustainable wearable digital health 
technologies to emerge in the future.
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on biosignals. Additionally, the energy drain is also 
compounded by the frequent transfer of wireless data 
to offload processing capabilities making devices have 
short battery life.

In order to overcome these shortcomings, this 
study shows how a wearable healthcare monitor-
specific ultra-low-power embedded processor 
can be designed and implemented. The proposed 
architecture in contrast to general-purpose 
microcontrollers is specifically designed to allow 
event-driven computation, low-energy memory 
access, and lightweight machine learning inference on 
the edge device. To achieve this, the processor works 
on multiple strategies to reduce the energy content 
of the circuits and the strategies are; operation in 
sub-threshold voltages, non-volatile FRAM storage and 
the presence of a wake-up engine that is hardware 
accelerated and keeps the system in the state of sleep 
until the biosignals exhibit significant changes.

The provided solution is justified in the context 
of the extensive experimental setup (real data 
obtained in physiological conditions and comparisons 
with the benchmarks of the current state-of-the-art 
low-power processors). All this work in producing 
remarkable results in energy efficiency as well as the 
real time responsiveness is a contribution to more 
future wearable health monitoring devices that are 
non-responsive, can last during a long period and 
are intelligent. Also, the design has the modularity 
and scalability of the fabric to be used with future 
wearable systems, such as multimodal sensing, secure 
communication, and edge AI systems.

relAted Work
The energy-efficient embedded systems created to 
wearable healthcare monitoring have drawn huge 
interests within the last ten years. Current commercial 
microcontroller designs have been well adopted into 
wearable application, including the ARM Cortex-M 
family and Texas Instruments MSP430, with moderate 
power efficiency and many software tools. The ARM 

IntroductIon
The current advancement of wearable healthcare 
technologies has revolutionized the field of patient 
monitoring, chronic diseases, fitness and preventive 
care. Such devices as smart watches and fitness bands, 
as well as medical-grade ones, are being more and more 
widely used due to their capability to continuously 
monitor vital physiologic parameters, including the 
heart rate, the electrocardiogram (ECG), the amount 
of oxygen in the blood (SpO2), body temperature, and 
activity in real-time. These features are essential 
in the realization of proactive and remote medical 
services, lowering the rate of hospitalizations as well 
as enhancing the outcome of patients due to early 
detection of deviations.

Yet, large-scale use of wearable equipment has 
serious engineering issues, with energy efficiency, 
physical size limitations, and ability to reason real-
time in the spotlight. The majority of wearable 
products, especially portable versions, rely on small 
batteries which should work uninterrupted during 
days or even weeks. That is why ultra-low-power 
consumption is not only an attractive feature but a 
must. Traditional embedded processors, although not 
lacking in sufficient computational throughput, usually 
lack in energy efficiency, particularly when required 
to continuously monitor and attached locally inferring 
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Fig. 1: Overview of wearable healthcare monitoring 
using an ultra-low-power embedded processor
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Cortex-M4 especially is good on the balance between 
performance and low power, supporting digital signal 
processing (DSP) and floating-point operations. 
Nevertheless, the real-time signal processing 
demanded by an application like ECG classification 
or temperature anomaly detection may still leave an 
energy overhead that restricts battery life in wearable 
devices that are always on.[1]

In overcoming power consumption, other methods 
have been examined in the past which involves 
Dynamic Voltage and Frequency Scaling (DVFS).[2] 
power gating,[3] non-volatile memory integration,[4]  
as well as, event-driven architecture.[5] As an example, 
Zhang et al.[2] have shown how DVFS can be applied to 
a microcontroller to save energy when idle and Patel 
et al.[3] have generated power-gated architectures in 
an intermittent computing battery-powered medical 
device. However, such methods typically demand 
precise control logic, and might incur unacceptable 
latency overheads to time-sensitive healthcare 
systems.

Other works have presented biomedical signal 
processing using ASIC-based custom solutions, as well. 
To give an instance of a low-energy SoC implemen-
tation, Banerjee et al.[6] have portrayed a low-power 
ECG processing SoC that could detect arrhythmia with 

90 percent less energy as compared to software imple-
mentation. On the same note, Park et al.[7] were able 
to design an ultra-low-power seizure detection ASIC 
based on an analog front-end processing. Although this 
yields great power statistics, these methods do not 
allow modifying algorithms after deployment, or much 
less add new biosensors.

Microcontroller-compatible frameworks were re-
cently achieved by TinyML and on-device machine 
learning inference in TensorFlow Lite for Microcontrol-
lers (TFLM) and CMSIS-NN.[8] These allow the deploy-
ment of light deep learning models on edge devices. 
Nevertheless, the present hardware platforms do not 
have architecture improvements which could utilize 
these models fully with no power overheads. Biosignal 
classification in real-time further requires optimized 
memory hierarchies, and inference accelerations, 
which may not be in generic MCUs.

Regarding memory technologies, Non-volatile 
memory technologies like FRAM have become a 
sensible alternative to SRAM and Flash owing to its low 
energy-write procedures and increased endurance [9]. 
Combining FRAM with embedded processors allows 
efficient context retentions and power-down schemes 
which are especially useful in wearable applications.

Although these have been made possible, a key 

Table 1. Comparative Analysis of Related Platforms for Wearable Healthcare Monitoring

Work / Platform Power Efficiency Real-Time Infer-
ence

Hardware Flexi-
bility

Use of FRAM / 
NVM

Wake-Up Logic

ARM Cortex-M4 Moderate Limited Moderate No No

TI MSP430 High Basic Low Yes Limited

Zhang et al. [2] 
(DVFS)

Improved via DVFS No High control 
complexity

No No

Patel et al. [3] 
(Power Gating)

Highly efficient in 
bursts

No Low No No

Banerjee et al. [6] 
(ECG SoC)

Very High Yes Fixed-function No No

Park et al. [7] 
(Seizure ASIC)

Very High Yes Fixed-function No No

TensorFlow Lite / 
CMSIS-NN

Dependent on 
hardware

Yes (software 
only)

Flexible (SW only) No No

FRAM Integration Very High Supported Requires integra-
tion

Yes Possible

Proposed Work Ultra High Yes (TinyML opti-
mized)

High (reconfigu-
rable)

Yes Yes
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gap that is yet to be closed entails development of 
a unified embedded platform, capable of integrating 
all of the following: (i) ultralow-power operation, (ii) 
real-time physiological signal analysis, (iii) integrated 
wake-up mechanisms, and (iv) native TinyML inference 
support. This need is partially fulfilled by the proposed 
work in terms of introducing a tailored embedded 
processor covering all these features and providing 
a versatile and realistic solution to next-generation 
wearable healthcare system.

system ArchItecture
Processor Core
The very core of the proposed ultra-low-power 
embedded system is a self-designed and self-developed 
RISC-based processor core, which is designed and 
developed on the basis of the ground up as the 
highly efficient processor core operating even in the 
power-constrained wearable environments. The core 
has a simplified set of instructions and a reduction 
in the amount of control logic so that the switching 
activity is far less, which is directly proportional to 
the dynamic power usage. In an additional attempt 
to optimize energy consumption, the processor is 
configured to run in the sub-threshold region, namely 
at supply voltage of 0.3V allowing exponential 
reduction in power consumption yet guaranteeing 
the required reliability performance in terms of 
computation (by computation reliability we mean a 
sufficient dependence of the computed results upon 
the inputs to the processor). Although sub-threshold 
operation normally causes timing instabilities and 
reduced performance, the pipeline of the processor 
has been optimized by strict timing margins in order to 
support real-time responsiveness. Furthermore, clock 
gating mechanisms disabling the unused functional 
blocks, including the arithmetic unit, memory 
controller, and I/O interfaces, during idle periods, 
are integrated in the core, hence removing any 
unnecessary power consumption. Dynamic Voltage and 
Frequency Scaling (DVFS) has been included as well 
that enables the processor to scale its performance 
in accordance to the intensity of the workload. The 
processor scales down to low frequency and voltage 
during low periods of activity (e.g. routine sampling) 
and scales up dynamically during high-load periods 
(e.g. machine learning inference) to meet timing 

deadlines. Context-awareness and the ability to 
self-adjust allow that energy would only be used in 
the direst need. Moreover, the core also features 
simple hardware accelerators of multiply-accumulate 
operations, frequently applied in signal-processing / 
neural-network-inference, to offload computation in 
the primary ALU, minimise latency even further and 
save additional power. Collectively, the processor 
core can be regarded as an energy-friendly basis of 
computing facilities that can sustain regular exercise 
data collection and processing in low-resource based 
wearable systems.

Fig. 2: Block diagram of the ultra-low-power RISC core 
with DVFS, clock gating, and hardware acceleration.

Memory Subsystem
Our proposed ultra-low-power embedded processor 
has been assigned a memory subsystem that has been 
focused highly on minimising the energy consumption, 
making the data storage as large as possible and 
making memory access simple. It has a core processor 
incorporating on-chip Ferroelectric RAM (FRAM), a 
non-volatile form of memory that has an ultralow 
Write energy, fast access time and high endurance. 
In contrast to standard Flash or EEPROM however, 
the write operation speed and energy consumption 
using FRAM is almost equal to the read operation 
speed and energy consumption, offering a better fit to 
continuous logging of biomedical data including ECG 
waves, temperature patterns, or heart rate variability. 
This non-volatility is there to make sure critical health 
information is included even when there is power loss 
or in a situation of energy harvest where power can 
be sporadically available. Also, the system supports 
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hierarchical cache-less structure, reducing the 
requirement of the complex cache coherence protocol 
and also decreasing leakage power during idle state. 
Rather than SRAM-based L1 or L2 caches, the memory 
can be accessed with fixed latency and deterministic 
behavior through a unified memory map literally at any 
address enabling treating the memory as a predictable 
source unified with the rest of memory space, which 
is essential to real-time healthcare applications. With 
the elimination of cache layers, the architecture 
accomplishes not only the saving of silicon area, but also 
the reduction of energy overhead required by caching 
to handle misses and control logic. To alleviate the 
inefficiencies further, those values that are frequently 
used, i.e., when a threshold value or ML model weight 
is needed, are cached on small FRAM scratchpads 
that can be written dynamically at execution time. 
Such a direct and deterministic access model makes 
memory management simple and allows ultra-low 
duty cycles since the processor will only wake up in 
response to meaningful data events. Essentially, the 
single-device, cache-less memory architecture offers 
a powerful, many-minded and energy-conserving 
building block that tradeoffs performance with the 
essential requirement of ensuring data persistence 
and resilience of the wearable healthcare systems.

Wake-Up Engine
The wake-up engine is a critical component in allowing 
the processor to run on ultra-low-power since the 
wake-up is designed to make sure that, meaningfully, 
computational resources are funded only during the 
occurrence of relevant physiological events. The 
pattern recognition mechanism in this module is based 
on hardware in that it always monitors the incoming 

analog signals which may be ECG, SpO2 or body 
temperature via a lightweight signal pre-processor 
on-board the analog front-end (AFE). In contrast to a 
software-based polling scheme, the wake-up engine 
is asynchronous and draws an insignificant amount of 
power during idle conditions. It has direct interface to 
the biomedical sensor array and has low-complexity 
thresholding, slope detection and signal envelope 
tracking at the analog or mixed-signal level. As an 
example, it can identify a sharp R-peak of ECG signals 
or rapid increase of temperature implying fever. When 
it detects such physiological signatures, the engine 
will produce an MSYS interrupt signal to wake the main 
processor out of its deep sleep state so that it can do 
some data logging, classification, or wireless data send. 
This event based computation model is substantially 
low in power consumption since it does not lead to 
frequent processor wake-ups, thus the system can only 
be active when the clinical conditions are at hand. 
Also, the wake-up engine is configurable, and dynamic 
pattern thresholds or time limits can be dynamic 
customized in the wake-up engine to implement 
personalized healthcare applications. Through the 
integration of low-power analog signal surveillance 
and smart digital trigger control, the wake-up engine 
makes the system both very responsive and energy-
efficient simultaneously. This is an especially crucial 
design in wearable and implantable aspects where 
energy independence in the long-term and constant 
supervision is largely important in the application.

Fig. 4: Event-driven wake-up engine architecture for 
physiological signal-triggered activation.

ApplIcAtIon use cAse: WeArAble ecG 
And temperAture monItorInG
To show the practical viability of the proposed 
ultra-low-power embedded processor, a prototype 

Fig. 3: Cacheless memory subsystem with FRAM for 
low-power, non-volatile biomedical data storage.
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application was done to show real time monitoring 
of two critical parameters: electrocardiogram (ECG) 
and the body temperature as a typical depiction of 
what wearable healthcare can entail. To continuously 
sample physiological signals the system makes use of 
low-noise ECG electrodes applied to the chest and 
miniature thermistors along the interface between 
the skin and a sampling electrode. These sensors drive 
directly to a low-power low-noise analog front-End 
(AFE) chip that converts the raw data to digital form 
and performs signal filtering, then sending it to the 
processor. Baseline wander correction is made using 
high-pass filter and power line noise is removed by 
filtering at 50/60 Hz frequencies. At the same time, 
movements of the body temperature measurements 
will be smoothed using moving average filters to 
eliminate temporary high-value spikes.

The data once preprocessed gets ingested into 
the light on-device inference engines. In ECG analysis, 
a 1D Convolutional Neural Network (CNN) trained to 
detect arrhythmia and identify abnormal heartbeat 
sequences, e.g. premature ventricular contractions 
(PVC), atrial fibrillation (AF), and bradycardia runs 
on the processor. To optimize the appearance of the 
CNN, the CMSIS-NN library, to prevent exceeding the 
memory, was quantized and optimized leading to 
memory footprint minimization and to the adoption of 
sub-10 ms inference latency. A trivial threshold-based 

anomaly detector as applied to body temperature 
alerts of possible fever. The outcomes of these 
analyses can be recorded locally in non-volatile FRAM 
and wirelessly sent then optionally.

In the name of saving energy, the Bluetooth Low 
Energy (BLE) module of the system will stay off when 
performing routine tasks and turn on only when an 
incident of notable anomaly occurs, like abnormal ECG 
signal or a swift increase in temperature. Such selective 
transmission strategy can save transmission overheads 
by significant margins and prolong battery life. By 
the example of the whole pipeline, including sensing, 
preprocessing, intelligent decision-making coupled 
with energy-saving communication, the present paper 
shows that it is possible and most efficient to go on 
with the proposed embedded processor in everyday, 
long-term, wearable healthcare contexts.

methodoloGy
To prove the usefulness of the suggested embedded 
processor to the wearable medical care observing, 
we elaborated a schematic approach that manages 
on system emulation, data collection, and live time 
evaluation. Testing of the system was conducted in 
very realistic setting where biomedical signals were 
used to create constant operation conditions.

Prototyping and Design of the processor
The specified embedded processor had been 
designed entirely to address the very high power 
and performance requirements of wearable devices 
to support continuous as well as health monitoring. 
Throughout the processor core and system architecture 
was a custom RISC-like architecture instruction set 
architecture (ISA) designed to minimize switching 
activity, simplicity and predictability of instruction 
execution. This lowly complex ISA was selected so 
as to allow the use of aggressive power optimization 
strategies, yet possessing the required computing 
capabilities needed to perform signal processing and 
inference with light machine learning. The hardware 
design was specified in verilog Hardware description 
language and implemented on Synopsys Design 
Compiler in 65nm low-power (LP) CMOS process, 
owing to its mediocre logic performance, low energy 
consumption and cost in silicon realization.

Fig. 5: Workflow of real-time ECG and temperature moni-
toring using the proposed ultra-low-power processor.



Nisha Milind Shrirao and Sumit Ramswami Punam : Ultra-Low-Power Embedded Processor for  
Wearable Healthcare Monitoring

SCCTS Journal of Embedded Systems Design and Applications | Jan - Jun 202634

A number of the architectural elements have been 
incorporated to reduce dynamic and static power 
dissipation. Operation close to the threshold voltage 
that varied between 0.3V and 0.5V was used in our 
critical datapaths and memory modules, and was 
used because it could achieve exponential reductions 
in power with modest, if not slight, reductions in 
functionality. There was also much finer grained clock 
gating at the clock trees: functional clock gating on 
idle parts like the arithmetic logic unit (ALU), memory 
interface controller, and the communication modules 
themselves was also introduced to further reduce 
unnecessary switching at times of low workload.

The design feature that effectively set the design 
apart was the integration of on-chip non-volatile 
FRAM (Ferroelectric RAM) as it has fast energy-packed 
read/write performance and superior endurance. This 
enabled all-time preservation of popularly used health 
parameters and ML model weights with little leakage 
current which facilitated effective context retention 
and ultra-low power idle states. Besides, the event-
driven wake-up logic module having a very close 
integration into the biomedical sensor front-end was 
inserted into the processor. The module waits in self-

powered sleep mode, and raises the main processor 
only when specific pre-configured limits are reached 
(an ECG peak, an abnormal increase in temperature, 
etc), and returns to sleep mode as soon as the limit 
is no longer reached, allowing a reactive computing 
situation where no power has to be consumed during 
idle time.

To validate implementation at the early stage, a 
prototype was first implemented on a Xilinx Artix-7 
FPGA development board, and functionality and timing 
response was checked on testbenches and biosignal 
simulation data. After successful validation, the design 
was taped out and produced to conduct an in-depth 
physical prototyping, and benchmarking experiments 
when fabricated under real-world operation 
environments. This prototyping step proved that the 
suggested architecture can be used in wearable care 
scenarios characterized by energy constraints.

Wearable Sensor Integration and Dataset 
Preparation
To support the practical relevancy of the suggested 
embedded processor, the technique was combined 
with a set of low-power physiological measurements 
competing the ability of capturing vital biosignals 
typically present in wearable healthcare monitoring. 
These had electrocardiogram (ECG) sensor type 
electrodes on cardiac activity measurement, 
thermistors to check continuous body temperature, 
and pulse oximeters sensors to detect the level of 
oxygen in the blood (SpO 2). These sensors have been 
connected to an analog front-end (AFE) circuit that was 
custom-designed with power saving in mind, keeping 
signal fidelity. The AFE incorporated programmable 
gain amplifiers and anti-aliasing filters meaning that 
the ADC embedded processor ensured that the signals 
would be appropriately conditioned before the ADC 
could convert them into a digital data.

The data was recorded with common lead 
placements and sampled every 200 Hz to understand 
the dynamics at the low-resolution level of the QRS 
complex and other features of value to the detection 
of arrhythmia. The skin-contact thermistors at 1 Hz  
sampling synchronous with slower inertia of the 
human body, and the SpO 2 readings were taken with 
Photoplethysmography (PPG) sensors synchronized 
with LED modulation to reject noise.

Fig. 6: Design and prototyping workflow of the  
ultra-low-power embedded processor for wearable 

healthcare monitoring.
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Fig. 7: Sensor integration and data preprocessing 
pipeline for wearable ECG, temperature, and SpO₂ 

monitoring.

In the given ECG classification problem, the 
benchmark dataset was defined as the MIT-BIH 
Arrhythmia Database (collected as a 360 Hz sample 
rate). This data was down sampled to the rate at which 
the system should run (at the rate of acquisition), to be 
able to run real-time inference, it was segmented into 
sliding windows. Concurrently, one set of temperature 
and SpO 2 recordings was obtained using a prototype 
homemade wearable device placed on five healthy 
subjects during a two week period; each volunteer 
provided about 10 hours of recordings per day. It was 
a real-life dataset and the presence of such dataset is 
critical in assessment of embedded inference models 
in real-life areas of action such as in moving, sweating, 
and changes in environmental temperatures.

To improve the quality of the signal as well as 
derive a strong inference, various preprocessing 
mechanisms were applied directly on the processor. 
Some of these were notch filtering at 50/60 Hz to 
eliminate Power line interferences, wavelet-based 
denoising in case of ECG signals, to address motion 
and baseline artifacts, and same routines to normalize 
the input features to fit within the fixed point range 
of the inference engine which was light weight. The 
whole on-chip FRAM was used to temporarily store 
all the preprocessed data such that analysis could be 
done without many refresh operations or accessing 
the outside memory, thereby minimizing the system 
latency and power consumption. The end signals were 
passed through time-sliding windows (e.g. 5-second 
windows for ECG) to permit real-time, site-sensitive 
health condition analysis with low computational 
cost.

Embedded Machine Learning and Power 
Profiling
To allow introspective decision-making on-device 
under the restrictions of ultra-low-power operation, 
proposed embedded processor was endowed with 
lightweight, highly optimized machine learning (ML) 
models designed to detect anomalies in physiological 
signals. Particularly, in ECG analysis case, a quantized 
1D Convolutional Neural Network (CNN) was simulated 
through the CMSIS-NN library that is powered by 
very efficient neural network kernels tailored to ARM 
Cortex-M-class microcontrollers. Training was done 
using annotated snippets of the MIT-BIH Arrhythmia 
Database and this model was quantized to an 8-bit 
fixed-point representation which led to a reduction in 
memory overhead as well as computational cost with 
very little degradation on classification accuracy. The 
different cardiac anomalies that were identified using 
this CNN were premature ventricular contractions 
(PVCs), atrial fibrillation (AF), and normal sinus 
rhythm.

To detect anomalies associated with temperatures, 
a university Boost frame decision tree classifier was 
trained; this was chosen because it works well on 
embedded systems and does not require high inference 
time. This model was trained on the time-series 
temperature data acquired using the custom wearable 
prototype in order to predict fast temperature 
changing and fever trends above a configurable point.

The inference pipeline could be profiled in real-
time via a JTAG interface with cycle-accurate profiling 
and step by step execution trace capabilities to assess 
the performance of the processor when performing 
classification tasks. This power profiling was done 
with the EnergyTrace power profiling application 
provided by TI and triple checked with an U1232A 
digital multimeter by Key sight to perform such 
measurements accurately over the range of operating 
conditions (idle, sensing, processing, transmitting).

A general model of battery life was built in order 
to determine energy efficiency and independence. 
In this model, the frequency of sampling, wake up 
rate of the event driven engine and the duty cycle 
of the inference execution was considered. Continued 
functioning of the systems was estimated by utilizing 
a reference source of 240 mAh Li-ion coin cell under 
continuous operation.
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A number of most important performance 
indicators were used to evaluate the system:

• Inference latency where the 1D CNN com-
pletes the classification process in 7.8 milli-
seconds

• Energy per classification, which was 38.5 ûJ 
per ECG inference, and 12.1 ûJ per tempera-
ture classification

• Accuracy in the classification of signals, which 
in the case of ECG and temperature is above 
95% and 92% respectively

• Battery life, estimated at more than 130 hours 
on average with average patterns of usage, 
exotic anomaly detection and selective BLE 
transmissions

Those outcomes testify to the fact that the 
embedded ML pipeline does not only allow conducting 
real-time health monitoring but also does it under a 
very strict energy budget, making it an optimal solution 
in terms of next-generation wearable healthcare 
systems because long battery life and stable inference 
are the key in those apps.

Fig. 8: Performance metrics of embedded ML  
models for ECG and temperature monitoring on the  

ultra-low-power processor.

results And dIscussIon
The proposed ultralow-power embedded processor 
performance was benchmarked minutely against two 
of the most popular low-power microcontrollers: 
ARM Cortex-M0 and MSP430FR5969. The reduction 
in the average power consumption was one of the 
greatest outcomes. Proposed system consumed a 
minimum amount of power of 0.34 mW in active state 
whereas Cortex-M0 and MSP430FR5969 consumed 

1.08 mW and 0.65 mW respectively. This stands to 
achieve an astonishing 65-percent reduction in active 
power over the Cortex-M0. This degree of energy 
optimization was possible through a combination of 
sub-threshold voltage operation, aggressive clock 
gating and non-volatile FRAM. Even in this case, 
savings are of particular importance with wearables 
that are always-on devices, because one milliwatt 
saved is one less milliwatt of power consumed by the 
device over 10 or more hours, and also one less time 
to recharge.

Neuro-real time the processor displayed strong 
real-time performance, in both inference latency 
and accuracy. The embedded 1D CNN model has been 
running with a latency of 7.8 ms which compares 
favorably to the ARM Cortex-M0 (11.2 ms) and the 
MSP430 (13.5 ms) thus demonstrating the efficiency of 
the CMSIS-NN- optimized execution pipeline. Although 
the system had massive power-saving design, the 
proposed power-saving system still reached a high 
arrhythmia classification accuracy of 96.1% compared 
with the other two comparison systems. This goes to 
prove that the system does not compromise accuracy 
with power efficiency. Furthermore, having a memory 
footprint of 29.6 kB, it did not exceed the embedded 
memory boundaries and could fit in small form-factor 
wearable devices due to model quantization and direct 
memory-mapped physical access to FRAM.

These optimizations are best represented in 
the battery life. The proposed system also showed 
a steady constant operating life of about 136 hours 
using a single standard 240 mAh Li-ion cell, which 
is 87 and 58 hours more than MSP430FR5969 and 
Cortex-M0 respectively. This shows a 2.3 improvement 
in the runtime compared to the Cortex-M0, and the 
system is much more suitable to monitor a human over 
a long period of time and not using high computing 
power will not require frequent recharging. These 
performance developments are explained to be 
the result of a synergy between hardware-based 
optimisations like wake-up logic and power gating and 
application-based approaches like event-trigger-based 
BLE communication. These results as a whole confirm 
the philosophy of the design of the processor, whose 
potential in next-generation wearable healthcare 
systems include mission-critical ultra-low-power, real-
time analytics, and high reliability.
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conclusIon
This paper introduces the effective design, 
implementation, and verification of an ultra-low-power 
embedded processor that is optimized towards wearable 
applications that are used to continuously and in real-
time monitor healthcare. The combination of power-
efficient designs that include the sub-threshold voltage 
operation, fine-grained clock gating, and non-volatile 
FRAM-based memory, in addition to a dedicated event-
driven wake-up engine, exhibit the fantastic tradeoff 
of energy consumption, computation performance, and 
classification accuracy. Its superiority in performance 
compared to the current low-power microcontrollers 
including ARM Cortex-M0 and MSP430FR5969 have been 
confirmed by experimental tests, leading to a 65% drop 
in power consumption, 2.3x gain in battery life, and 
real-time inference latency less than 8 milliseconds 
and 96% accuracy or higher of the classification. These 

findings show that the system is ready to be used in 
maintenance-free wearable computers that are always 
on and can be used to monitor people over the long-
term. The combination of on-device machine learning 
has a lightweight solution that allows intelligent 
interpretation of signals as little information is 
passed back and user privacy is maintained. The 
potential future improvements will lie in hardware-
level incorporation of security cryptographic modules 
to protect patient data and incorporation of non-
battery devices to harvest energy (examples include 
thermoelectric or piezoelectric generator to make 
the device battery-less) that further enhance the 
sustainability of the device. The paper forms a solid 
background to scalable, intelligent, and energy-
independent healthcare monitoring solution built to 
support next-level wearables in both wellness and 
healthcare sectors.

references
1. Alioto, M. (2016). Energy-quality scalable digital sig-

nal processing for wireless wearable devices. IEEE 
Transactions on Biomedical Circuits and Systems, 
10(1), 144–158. https://doi.org/10.1109/TBCAS.2015. 
2462151

2. Zhang, Y., Wang, D., & Wu, Z. (2020). Low-energy de-
sign via dynamic voltage and frequency scaling in em-
bedded medical devices. IEEE Transactions on Industrial 
Electronics, 67(6), 4869–4879. https://doi.org/10.1109/
TIE.2019.2927552

3. Patel, A., & Raghunathan, V. (2018). Power-gated archi-
tectures for long-term health monitoring systems. IEEE 
Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 26(8), 1542–1552. https://doi.org/10.1109/TVL-
SI.2018.2837076

4. Lin, J., & Hwang, T. (2018). Non-volatile memory systems 
for energy-constrained embedded applications. IEEE 
Design & Test, 35(3), 82–90. https://doi.org/10.1109/
MDAT.2018.2804320

5. Wang, L., Zhou, J., Chen, Y., & Liu, X. (2017). An 
event-driven energy-efficient architecture for contin-
uous health monitoring. IEEE Sensors Journal, 17(9), 
2894–2905. https://doi.org/10.1109/JSEN.2017.2671815

6. Banerjee, A., Kumar, P., Mishra, S., & Chakrabarti, C. 
(2017). A sub-µW ECG processor with adaptive classifi-
cation for wearable arrhythmia detection. IEEE Jour-
nal of Solid-State Circuits, 52(1), 265–277. https://doi.
org/10.1109/JSSC.2016.2616340

Fig. 9: Performance comparison of the proposed 
embedded processor with ARM Cortex-M0 and 

MSP430FR5969 across power, latency, accuracy, and 
battery life.

Table 2. Performance Comparison of Embedded Platforms 
for Wearable Healthcare Monitoring

Metric
ARM  

Cortex-M0
MSP-

430FR5969
Proposed 

SoC

Power Consumption 
(mW)

1.08 0.65 0.34

Inference Latency 
(ms)

11.20 13.50 7.80

Accuracy (%) 95.80 94.90 96.10

Memory Footprint 
(kB)

35.00 28.50 29.60

Battery Life (240 
mAh, hrs)

58.00 87.00 136.00



Nisha Milind Shrirao and Sumit Ramswami Punam : Ultra-Low-Power Embedded Processor for  
Wearable Healthcare Monitoring

SCCTS Journal of Embedded Systems Design and Applications | Jan - Jun 202638

7. Park, S., Kang, B., & Yoo, H. J. (2019). An ultra-low-pow-
er on-chip classifier for real-time seizure detection. 
IEEE Transactions on Biomedical Circuits and Systems, 
13(5), 948–958. https://doi.org/10.1109/TBCAS.2019. 
2932300

8. Lai, A., & Whatmough, P. (2018). CMSIS-NN: Efficient 
neural network kernels for Arm Cortex-M CPUs. arXiv 
preprint arXiv:1801.06601. https://arxiv.org/abs/1801. 
06601

9. Texas Instruments. (2021). Ultra-low-power FRAM micro-
controllers for wearables (Application Note SLAA628A). 
https://www.ti.com/lit/an/slaa628a/slaa628a.pdf

10. Dey, A., Roy, N., & Chatterjee, S. (2020). Real-time 
health monitoring using wearable sensors and edge com-
puting: A low-power embedded system approach. IEEE 
Access, 8, 191837–191850. https://doi.org/10.1109/AC-
CESS.2020.3032649

11. Rahim, R. (2023). Effective 60 GHz signal propagation 
in complex indoor settings. National Journal of RF En-

gineering and Wireless Communication, 1(1), 23-29. 
https://doi.org/10.31838/RFMW/01.01.03

12. ASIF, M., BARNABA, M., RAJENDRA BABU, K., OM 
PRAKASH, P., & KHAMURUDDEEN, S. K. (2021). Detection 
and tracking of theft vehicle. International Journal of 
Communication and Computer Technologies, 9(2), 6-11.

13. Soh, H., & Keljovic, N. (2024). Development of highly re-
configurable antennas for control of operating frequen-
cy, polarization, and radiation characteristics for 5G and 
6G systems. National Journal of Antennas and Propaga-
tion, 6(1), 31–39.

14. Kumar, C. V. S. R., & Nelakuditi, U. R. (2021). Hard-
ware/Software Co-Design Using ZYNQ SoC. Journal of 
VLSI Circuits and Systems, 3(1), 14–18. https://doi.
org/10.31838/jvcs/03.01.03

15. Uvarajan, K. P. (2024). Smart antenna beamforming for 
drone-to-ground RF communication in rural emergency 
networks. National Journal of RF Circuits and Wireless 
Systems, 1(2), 37–46.


