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AbstrAct 
The fast pace of evolution of the embedded systems along with the 
enhancement in the technologies of digital health have brought up 
the improvement of smart healthcare applications that are small, 
energy-efficient, and can constantly track and monitor in real-time. 
With the trend towards patient centric, wearable, and at-a-distance 
health diagnostic solutions, the need to provide systems with ultra-low 
power embedded platforms becomes paramount specifically where 
battery capacity is limited or cultures of energy independency exist. 
This paper provides a general overview of the latest development in 
the designing of low-power embedded systems that apply in smart 
healthcare systems where there is a pressing need to balance between 
the efficiency of power consumption and real-time performance and 
data fidelity. The dynamic voltage frequency scaling (DVFS), near-
threshold computing (NTC), event-driven processing, and integration 
into energy harvesting are crucial methods that are highly examined 
relative to wearable and implantable medical gadgets. Simultaneously, 
the introduction of edge artificial intelligence, notably by TinyML 
frameworks, has provided the possibility of on-device (CPU) biosignal 
processing, creating the possibility of overcoming transmission 
overheads, providing greater privacy, and lower latency. This document 
will examine the hardware-software co-optimization techniques 
which enable effective adoption of AI models on resource-limited 
micro-controllers. Some practical applications of them have been 
discussed based on several real-life case studies: ECG monitoring with 
low-power MSP430, glucose sensing with BLE enabled SoCs, and fall 
detection based on self-powered Cortex-M platforms. Measurements 
of power use, inference speed, memory overhead and battery life are 
cross-platform compared and bench-marked. The paper also mentions 
important trade-offs of the design, including accuracy and energy, as 
well as security of data transmission, interoperability, and form factor 
limitations to users. Having carried this out, the paper is not only 
able to point out state-of-the-art solutions, also pinpoints important 
limitations and areas that can be researched in the future, such as 
designing bio-inspired neuromorphic processors, battery-less energy 
harvesting architectures, privacy preserving embedded AI models. 
The proposed work will be a useful reference guide to researchers, 
developers and practitioners in terms of smart healthcare design and 
embedded systems.
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is required at all the levels possible: the hardware 
architecture level, the software algorithms level, 
system integration level, and application design level.

Rapidly increasing needs regarding the continuous 
non-invasive and mobile health monitoring have 
promoted serious advancements in low power design 
practices. These are dynamic voltage and frequency 
scaling (DVFS), near-threshold computing (NTC), 
event-driven sensing and integration of energy 
harvesting modules. Simultaneously, the growing 
demands of aggregating local data led to an expansion 
of on-device intelligence to the realm of TinyML 
(Tiny Machine Learning), which allows lightweight AI 
models on low-resource microcontroller boards. These 
advancements do not only decrease communications 
overhead and latency, but also increases privacy, as 
sensitive health information is more limited.

In this paper, a current review of low-power 
embedded system-based smart healthcare is given. 
It looks at both the enabling technologies and the 
practical application in many spheres of health, 
such as cardiovascular, metabolic, neurological and 
geriatric health. Through it, it underscores the trade-
offs, issues, and opportunities that characterize 
the future path of these embedded healthcare 
systems- ultimately in a bid to direct researchers, 
system architects and developers of such systems in 
new generation energy saving and smart healthcare 
systems.

LiterAture review
Smart healthcare has been up and coming because of 
rapid development in the field of low-power embedded 
system design. To overcome the energy limitation on 
wearable and implantable medical device, researchers 
have suggested diverse hardware and software energy 
optimization approaches.

The best known approaches to control power 
consumption in embedded healthcare systems can 
be classified to Dynamic Voltage and Frequency 
Scaling (DVFS) and power gating. Turning to DVFS 

introduction
Medical services are provided, tracked and customized 
to the needs differently because of the integration of 
embedded systems with healthcare technology. The 
emerging smart healthcare systems will become an 
unchangeable component of contemporary medicine 
which will allow finding a scalable and efficient 
resolution to real-time physiological observations, 
distant diagnostics, preventative care, and therapeutic 
actions. The constructions of these systems are 
frequently on embedded platforms, because they can 
provide compact form factors, real-time capabilities, 
and low latency processing of the data, which are 
key attributes that will be important in applications 
of wearable health monitors, implantable device, 
telehealth platforms and ambient assisted living 
systems.

The requirements of embedded systems in 
healthcare services are high in performance coupled 
with limited resources. In contrast to general-
purpose computing systems, these size-constrained 
technologies are battery-powered, or energy 
scavenged, and this leads to the need of ultra-low 
power design methods. In addition, they should deal 
with the acquisition, processing, and transmission 
of biomedical data in real-time with long-term 
operational stability and with safety to the patient. 
This has presented an imperative that optimization 
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Fig. 1: Overview of Embedded System Applications in 
Smart Healthcare Systems
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An implementation of DVFS involves flexible micro -
controllers, that is, microcontrollers with DVFS 
characteristics, which changes the micro controller 
operating frequency and voltage level with the 
processing load, leading to the real-time energy 
savings rather large at run-time without affecting the 
real-time performance.[1]

Circuit operation at just above the transistor 
threshold, using near-threshold logic (NTL) has also 
proved to be energy efficient. Chen et al.[2] surveyed 
some low-voltage design techniques and pointed 
out their suitability in low- duty-cycle healthcare 
applications like continuous glucose monitors and 
ambulatory ECG recorders.

Advanced technology in this area is turning out 
to be incorporating energy harvesting modules into 
embedded platforms. Zhao and Li[3] have been able 
to prove that a self-powered wearable device can 
maintain continuous physiological monitoring without 
having to rely on replenishing of the battery or chargers 
as they did by way of piezoelectric energy harvesting.

On software side, the emergence of Tiny Machine 
Learning (TinyML) frameworks has seen local inference 
possible on ultra-low-power microcontrollers. Micro 
Nets is a family of miniaturized neural networks 

specialised to run on microcontrollers, referenced in 
Banbury et al.[4] They are illustrated by the example 
of the classification of synthetic acoustic features 
(devised by Banbury et al., to try the various networks) 
with high accuracy using very little memory and power 
overhead.

These developments are also enhanced by 
recent practical applications. Future designs in ECG 
monitoring have demonstrated the operation of ultra-
low-power systems based on the MSP430 platform 
of Texas Instruments at below 50 50 micro-watts, 
to provide signal fidelity.[5] A different paper used a 
Cortex-M0+ MCU in combination with a MEMS sensor-
based fall detection system, where optimization 
was made on interrupt-driven processing, to extend 
battery life.[6] The third implementation aimed at 
glucose monitoring, with Bluetooth Low Energy (BLE) 
SoC meant to optimise the sleeping state aggressively 
to prolong the device uptime.[7]

Taken together these studies reflect the viability 
and efficacy of power-aware design in embedded 
healthcare systems. They are good frameworks to 
put on-device intelligence, energy independence and 
sustained stability in future wearable and implantable 
medical-grade devices.

Table 1: Summary of Key Literature on Low-Power Embedded Healthcare Systems

Ref No. Focus Area Key Contribution Platform/Technology

[1] Dynamic Voltage and Frequency 
Scaling (DVFS)

Adaptive power scaling for energy-
efficient microcontrollers in 
healthcare

IoT Microcontrollers with DVFS

[2] Near-Threshold Logic (NTL) Low-voltage operation techniques 
for energy-constrained biomedical 
systems

Low-Voltage Embedded Logic

[3] Energy Harvesting with Piezoelectric 
Modules

Self-powered wearable system 
for continuous monitoring using 
harvested energy

Piezoelectric Energy Harvesting

[4] TinyML Frameworks (MicroNets) Compact AI models for 
microcontroller-level inference with 
low resource usage

ARM Cortex-M + MicroNets

[5] Ultra-Low-Power ECG Monitoring 
(MSP430)

ECG system operating under 50 µW 
with high signal fidelity

MSP430 MCU

[6] MEMS-based Fall Detection 
(Cortex-M0+)

Interrupt-driven processing to 
reduce power in fall detection 
systems

Cortex-M0+ with MEMS Sensors

[7] BLE-based Glucose Monitoring with 
Sleep Optimization

Extended uptime through BLE sleep 
mode tuning in glucose monitoring

BLE SoC
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bAckground And MotivAtion
The world healthcare environment is experiencing a 
paradigm shift owing to increment in the prevalence 
of chronic diseases like cardiovascular diseases, 
diabetes and respiratory diseases as well as the fact 
that the aging populations are growing at an alarming 
rate. This change of demographics has enhanced the 
pinnacle of constant and real-time health capturing 
and personal care in the medics that strays away 
beyond the confines of a clinical facility. In order to 
respond to those requirements, healthcare settings are 
appealing to smart technologies, the most prominent 
being embedded systems incorporated in wearable, 
implantable, portable medical devices.

Embedded systems are central to making such 
innovations possible through the ability to acquire, 
process, store and communicate data at real-time under 
and within small space and power-limited conditions. 
They offer central computing functions of all systems 
like ambulatory ECG monitoring systems, glucose level 
detectors, pulse oximetry, fall detectors, and tele-
rehabilitation systems. Nevertheless, the application 
of nanotechnology into the fields of the healthcare 
environment, specifically into wearable and implantable 
devices, offers a number of daunting challenges.

The battery capacity is also a decisive drawback 
to begin with. Implantable and wearable devices 
should have a long mission without much charging and 
battery replenishing. Surgical procedures go hand in 
hand with replacement of batteries in implantable 
devices hence energy efficient systems are critical. 
Therefore, there is the necessity of ultra-low-power 
which should be done so as to give the device a better 
life span and also lower the maintenance cost.

Secondly, wireless data relay (which is needed to 
allow remote monitoring and diagnostics) is one of 
the most energy-demanding tasks in the embedded 
devices. Sending physiological data to off-site 
gateways or cloud systems requires considerable 
amounts of power, particularly on the continuous 
basis. Consequently, smart data compression, adaptive 
sampling and on-device preprocessing are critical 
in reducing network overheads and compromise the 
diagnostic performance.

Thirdly, there is an increasing need of on-device 
intelligence, i.e., functionality that serves to measure 
arrhythmias on the device or forecast seizures without 

needing an always-on connection to the cloud. Not 
only does this decreasing latency and bandwidth NIC 
consumption, but it also enhances both patient privacy 
and system reliability in low-connectivity settings.

Their combination drives the requirements of 
new design methods, such as low-power solutions, 
energy harvesting, integration, and energy-efficient 
machine learning models adapted to resource-
constrained microcontrollers. The combined approach 
to these techniques would allow creating smart and 
autonomous embedded systems, which fulfill the 
changing needs of smart healthcare. This essay depicts 
these developments to establish a course of action to 
future developments in this important field.

Fig. 2: Conceptual Overview of Challenges and Design 
Drivers in Low-Power Embedded Healthcare Systems

MethodoLogy
In order to adequately establish the recent 
developments in the design of low-power embedded 
systems with regards to smart healthcare, a systematic 
multi-stage approach was followed and included:

Review and selection of literature
In a bid to develop a total picture of the current state-
of-the-art in low-power embedded design system of 
smart healthcare, a Systematic Literature Review 
(SLR) approach has been used. The structure will help 
to provide findings and analysis in this paper with 
the basis of systematic and objective review of the 
available academic and technical literature.

Data Sources Search Strategy
The review carried out the literature review section 
using a specific and systematic method to identify the 
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most recent and related trends in the area of low-
power embedded systems to smart healthcare. The 
search to peer-reviewed journal articles, conference 
proceedings, white papers, and technical reports was 
conducted considering the publishing date between 
2018 and 2025. In order to have a broad coverage, 
the established digital libraries and indexing sources 
whose credibility is not questioned, including IEEE 
Xplore, ACM Digital Library, Elsevier ScienceDirect, 
SpringerLink, and Scopus, were used. To filter the 
search, a combination of keywords and search strings 
was used with such terms as a low-power embedded 
system, smart healthcare, TinyML in wearables, DVFS 
in biomedical systems, event-driven processing, energy 
harvesting in IoT healthcare, and ultra-low power 
medical devices. The keywords have been chosen to 
cover a wide range of literature in such areas as power 
optimization methodologies, hardware-software 
co-design, integration of AI in the edge, and real-
life implementations in the field of healthcare. This 
specific approach was sufficient to have the review 
cover the basic source of research and new ideas 
that could be used in the design and execution of an 
energy-aware embedded healthcare system.

Inclusion and exclusion criteria
A series of rigid inclusion and exclusion criteria were 
used during the review to guarantee the relevance, 
the technical rigor, and the reasonableness of the 
chosen literature. The papers were included when 
they addressed specifically the low-power embedded 
systems and were related to the practical areas of 
biomedical signal acquisition, signal processing, 
monitoring, or actuating. The preference was made 
towards the research that proposed or compared 
the design methods, including the dynamic voltage 
and frequency scaling (DVFS), the near-threshold 
computing, the event-driven computer, TinyML, or 
energy harvesting. Also, the chosen works had to have 
quantitative values- power consumption, latency, and 
memory etc.- or give specific architectural information 
that might be used to implement a similar design into 
practice. On the other hand, the papers were rejected 
in case they focused on cloud-based health Moreover, 
they failed to complete peer-review validation or they 
were too theoretical without enunciating a practical 
design applicability or implementation possibilities. 

This to the extreme scope of filtering limited the 
studies that came in the final analysis to only the most 
relevant and effective studies.

Selection Results
As a first step, 136 documents were randomly selected 
and after the rigorous screening process was performed 
to guarantee the quality and relevance of reviewed 
literature. Eighty-nine papers were not included due 
to screening of the abstract, duplication, and failure 
to follow the preset inclusion criteria. The rest 47 
publications were marked as the most relevant to 
the sphere of low-power embedded systems of smart 
health care. An accurate scouring of these papers 
was performed in search of their contribution within 
four primary dimensions of how to design to achieve 
energy efficiency, what kind of hardware platforms 
can be used (ARM Cortex-M, RISC-V, and MSP430), 
how to implement AI models on microcontrollers, and 
what are the reported trade-offs in terms of energy 
consumption, latency, and system performance. The 
synthesis of studies also gave vital clues on the existing 

Fig. 3: Systematic Literature Review Process for 
Low-Power Embedded Healthcare Systems
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best practices, technological trends and application 
specifications. Also, the review manifested significant 
research gaps such as a lack of desirable standards 
when analyzing embedded AI performance in medical 
situations and a mild inclination toward battery-free 
or energy-independent healthcare systems. These 
gaps outline the necessity of future innovations and 
standardization, which is discussed in the final parts 
of this paper.

Taxonomical Framework
A taxonomical method of classification of literature 
was constructed in order to compare the literature 
reviewed and analyse it systematically. This 
framework made possible the classifications of studies 
in various dimensions that were considered in low-
power embedded system design in smart healthcare 
applications. Grouping the papers reviewed along the 
mentioned axes, the framework offered an organized 
methodology to find trends, evaluate the level of 
technology development, and outline priorities in 
particular domains of design.

The initial classification dimension was on the type 
of hardware platform used in each of the studies. These 
were microcontroller units (MCUs), system-on-chips 
(SoCs), and field-programmable gate array (FPGA). 
Wearable biomedical sensors were typically designed 
using MCUs like ARM Cortex-M series, and MSP430 
which used little power and had a real-time processing 
capability. Integrated wireless communication (e.g. 
BLE, Wi-Fi), SOCs were common in portable medical 

equipment whereas FPGAs were employed in more 
involved or customizable tasks e.g. EEG classification 
or multi-channel processing of a biosignal.

The second criterion of classification was the 
power optimization method used. These included 
techniques such as dynamic voltage and frequency 
scaling (DVFS), near-threshold computing (NTC), 
event-driven processing and energy harvesting. Studies 
were categorized as so; whether these techniques 
were utilized at the hardware level, via a firmware 
or a software based approach or in an integrated co-
design approach.

The third one was the healthcare application 
dimension in which the studies were classified as use 
cases, that is, cardiac monitoring (e.g. ECG), neurological 
disorders (e.g. seizure or sleep detection), metabolic 
monitoring (e.g. glucose monitoring), general wellness or 
elderly care. This was useful in quantifying the design 
specifications and power restrictions that differ between 
physiological signals and targets of monitoring.

Lastly, the papers were categorized according 
to their deployment contexts that is, whether the 
system being embedded was to be worn, implanted or 
ambient. Wearable and body implanted applications 
required very low power usage and miniaturization, 
whereas ambient applications (e.g. in-home 
monitoring) required non-obstructive placements and 
long-range wireless communication.

The taxonomical design contributed to the multi-
sided comparative review of the literature which 
was compiled on the basis of this multi-faceted 
taxonomical framework that generated the grounds of 

Table 2: Taxonomical Classification of Selected Studies in Low-Power Embedded Healthcare Systems

Study Ref Hardware Platform
Power Optimization 

Technique Healthcare Domain Deployment Context

[1] ARM Cortex-M MCU DVFS Cardiac Monitoring Wearable

[2] Low-Voltage Logic Near-Threshold Com-
puting

Glucose Monitoring Implantable

[3] SoC + BLE Energy Harvesting Wellness Tracking Wearable

[4] ARM Cortex-M + TinyML Event-Driven + Model 
Pruning

Fall Detection Wearable

[5] MSP430 Ultra-Low-Power MCU ECG Monitoring Wearable

[6] Cortex-M0+ Interrupt-Based Sched-
uling

Fall Detection Wearable

[7] BLE SoC BLE Sleep State Optimi-
zation

Glucose Monitoring Portable
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the synthesis and insights in the following parts of the 
paper.

Experimental Validation

A controlled experimental validation was performed 
to consolidate on the findings made in the literature 
review, and to empirically test low-power design 
strategies in real world conditions. Three examples of 
real low-power embedded platforms were assembled 
to form a representative testbed, each representing 
one particular application scenario of the smart 
healthcare. These were selected because of their 
popularity in the biomedical IoT systems and that 
they can be used to implement sophisticated power 
management capabilities and on-device intelligence.

The initial configuration was based on 
STM32L476RG microcontroller, a low power ARM 
Cortex-M4-based microcontroller unit to simulate 
wearable ECG assembly. The device was designed to 
have an external instrumentation amplifier and high 
bitrate ADC to capture analog signals of ECG, real-
time processing was done by a finite-state machine 
and number of thresholds to identify the beat. The 
sleep modes and wake-up timers were done by the 
STM32L4 due to its ultra-low-power consumption 
whilst on sleep mode, which in this case was required 
in order to reduce the standby power interspersing the 
sampling periods.

The second board (nRF52840 BLE SoC) has been 
used to emulate a glucose-monitoring device. This 

Nordic Semiconductor chip is an ARM Cortex-M4-
coreplus integrated Bluetooth Low Energy (BLE) radio. 
To test it, a glucose sensor emulator was set up to 
provide synthetic data and optimized sleep state 
changes were used to reduce active time during BLE 
transmission cycles. The advertising and connection 
intervals in the BLE stack were made power efficient 
as well.

The third system was comprised of a Texas 
Instruments MSP430FR5969 microcontroller in 
combination with a dual-source energy harvesting 
module (which integrated a solar energy source as well 
as a piezoelectric energy source). This configuration 
was a mockup of self-powered ambient temperature 
and heart-rate sensing system that demonstrated 
autonomous functionality without a battery. Non-
volatile FRAM-based design of MSP430 also allowed 
quick wake-up and low leakage current consumption 
when left idling over extended time.

All the platforms were powered down to monitor 
power at each platform using the Monsoon Power 
Monitor; this allowed high-resolution current profiling of 
the system at all levels of operation, and was performed 
at multiple points: sensing, processing, wireless 
transmission and standby. At the same time, a Support 
Vector Machine (SVM), a decision tree, and a pruned 
Convolutional Neural Network (CNN) were uploaded to 
both platforms through the Edge Impulse SDK to perform 
similar resource-constrained inference tests.

The benchmarking process was based on the real-

Table 3: Summary of Experimental Platforms and Optimization Techniques

Platform Application Features Power Optimization Technique

STM32L476RG ECG Monitoring Cortex-M4 MCU, ADC input, 
real-time signal processing

Sleep modes, finite-state machine 
processing

nRF52840 BLE SoC Glucose Monitoring BLE-enabled SoC, Cortex-M4, 
synthetic data simulation

BLE sleep states, optimized TX inter-
vals

MSP430FR5969 + EH HR + Temperature 
Sensing

FRAM-based MCU, solar and 
piezo harvesting module, bat-
tery-less

Energy harvesting, event-driven sensing

Table 4. TinyML Model Benchmark Results on Embedded Platforms

Model Accuracy (%) Inference Time (ms)
Memory Footprint 

(KB)
Power Consumption 

(mW)

SVM 92.1 1.3 21 1.4

Decision Tree 89.8 0.9 18 1.2

Pruned CNN 94.7 3.4 49 2.1
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world data concerning biomedical data sets provided 
by PhysioNet, such as ECG signals and PPG waveforms. 
The latency of inference, accuracy of classification, 
memory requirement as well as energy required per 
inference was assessed on each model. These findings 
formed a practice-based confirmation of the trade-
offs discussed in the literature and were informative 
in design recommendations made in later sections. 
Not limiting the experimental results to feasibility of 
running intelligent healthcare functions on low-power 
embedded platforms, they also allow to pinpoint 
the challenges that need to be overcome in order to 
deploy it long-term in the field conditions.

Low-Power design techniques
Dynamic Voltage and Frequency Scaling (DVFS) may be 
one of the best methods of energy optimization in case 
of embedded healthcare systems. This method has 
the ability of changing the processor operating clock 
frequency and operating voltage dynamically that 
depends on the computational requirements of the 
work load. The system can run at lower frequencies 
and voltages during low activity times, i.e. during idle 
monitoring or when checking signal thresholds using 
much less dynamic power dissipation. When more 
intensive functions however have to be executed 
such as signal processing or wireless transmission, 
the system can temporarily enhance itself. Near-
Threshold Computing(NTC) is an extension of DVFS, 
which allows digital circuits to operate at voltages 
near transistor threshold. This significantly lowers 
dynamic and static power dissipation, at the expense 
of lower performance, and being more vulnerable to 
noise and delay variance. However, when throughput 
requirements are low e.g. in continuous health 
monitoring applications where data rates are relatively 
modest and latency is tolerated, NTC can be a very 
viable technique in energy maximisation.

In a bid to further boost the lifetime of operations 
particularly of battery-restricted wearables and 
implants, energy harvesting methods are becoming 
part and parcel of embedded systems. These 
systems scavenge energy around them (warm bodies: 
thermoelectric, movement: piezoelectric, or light: 
photovoltaic) in order to compliment battery power 
or eliminate it completely. Another very important 
paradigm is event-driven processing which enables 

the system to keep itself in an ultra-low-power sleep 
state until some meaningful event has occurred such 
as an arrhythmia or a fall. This reduces power wastage 
and increases battery life extensively. Finally, when 
integrated into microcontrollers, non-volatile memory 
technologies (in the form of Ferroelectric RAM 
(FRAM) and Magneto resistive RAM (MRAM)) enable 
very low leakage current, rapid wake-up times, and 
data preserving energy-saving over power cycles. 
These memories find their perfect use in healthcare 
applications having data integrity, low standby power 
and fast responsiveness as the key factors. These 
techniques are so complementary in their nature 
that they can be viewed together as a comprehensive 
portfolio of techniques to design energy-efficient 
embedded systems with high demands of continuous 
real-time healthcare monitoring.

Ai At the edge in heALthcAre 
APPLicAtions
TinyML (Tiny Machine Learning) is a new and upcoming 
discipline, which transfers artificial intelligence 
capabilities in the form of more autonomous edge 
computing to embed systems at the ultra-low power 

Fig. 4:  Key Low-Power Design Techniques for Embedded 
Healthcare Systems
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limits and beyond, so that inference can happen on 
device, with no need to connect to a cloud system. The 
paradigm shift finds a particular value in the healthcare 
applications where real-time decision-making, low 
latency, and privacy of data are paramount. TinyML 
enables devices with underpowered microcontrollers 
like ARM cortex-M series to support demanding processes 
of biomedical signal processing, like the detection of 
arrhythmia, classification of anomalies in respiratory 
patterns, sleep monitoring, etc. Through conducting 
inference with sensors, these systems experience a 
substantial decrease in energy use and communication 
burden that would otherwise be generated during 
the transmission of raw sensor sensor data to remote 
server. That has been made possible by the existence 
of tinyML frameworks such as TensorFlow Lite Micro, 
Edge Impulse, and CMSIS-NN that provide optimized 
libraries and toolchains tailored to devices with limited 
processing capabilities and memory (frequently less 
than 100 KB of RAM). These frameworks also enable 
model quantization, pruning, and architecture 
optimization towards enabling complex machine 
learning models to work in constrained embedded 
tools and systems, without accuracy compromise.

Fig. 5: Role of TinyML in Enabling AI at the Edge for 
Smart Healthcare Systems

One of the most convincing TinyML use cases providing 
fall detection healthcare service is developed based 
on the Cortex-M4 microcontroller. The system has a 
triaxial accelerometer to constantly track data on 
motion and a lightweight model of Support Vector 

Machine (SVM), which is used in the classification 
of fall events. The model was trained on a dataset 
publicly available and optimized to optimize inference 
accuracy performance and power. Used with Edge 
Impulse, the system was able to reach a classification 
accuracy of 95.4%, but has a power consumption of 
less than 1.8 milliwatts, and thus should fit well into 
long-term wearable care applications in the elderly 
population. These examples make it clear that the 
TinyML concept complements not only helps to 
address computational and energy requirements of 
embedded healthcare systems but also results in their 
additional independence and responsiveness. The 
optimisation of machine learning algorithms to edge 
environments brings practicability to the idea that the 
next-generation wearable and implantable medical 
devices will integrate TinyML to allow within-the-limit 
intelligent, always-on health supervision without the 
impact on power consumption and privacy risks.

resuLts And discussion
Testing of the three prototypes developed in the field 
of embedded healthcare shed major light on the aspect 
of power efficiency and system sustainability. Of the 
platforms that were tested, the MSP430FR5969 with 
solar energy and piezoelectric harvesters powered the 
platform longer than any other as it ran continuously 
and did not require a battery change or recharging. 
The platform managed to use an event-driven wake-
up mechanism, and non-volatile FRAM memory, which 
is a perfect solution in ambient or passive monitoring 
applications. In the meantime, the STM32L476RG 
microcontroller provided an advantageous trade-off 
between the functionality and the power consumption, 
with the average current consumed by the device 
being 1.95 mW as it receives and processes the ECG 
signal. It has a run time of about 122 hours of use on 
a standard dedicated 240 mAh battery. On the same 
note, glucose monitoring was simulated using the 
nRF52840 SoC that focuses on BLE communication. 
Power consumption averaged only 2.10 mW, which it 
attained due to competitive power state transitions 
and adaptive BLE intervals, resulting in longer than 
114 hours in use. Such results confirm the possibility of 
low-power embedded system integration into real life 
health care containing longer lifetime operating nodes 
and having low maintenance requirements.
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Fig. 6: Power and Runtime Comparison of Embedded 
Healthcare Platforms

The comparison was based on three lightweight 
TinyML models, Support Vector Machine (SVM), a 
Decision Tree, and a hand-pruned 3-layer Convolution 
Neural Network (CNN) deployed on test platforms to 
benchmark their performance in terms of on-device 
intelligence. The CNN model with a pruning rate of 
20-30$\mathrm{th}$ was the most accurate with 
94.7%, which means that CNN model may be used in 
some important diagnosis tasks where arrhythmia or 
falls detection is needed. Nevertheless, it was the 
most power-consuming (2.1 mW) and had the highest 
memory footprint (49 KB), so these characteristics 
might not be good in every edge case. Conversely, 
SVM model returned an acceptable trade-off of 92.1 
percent accuracy at a power consumption of 1.4 mW 
and a memory consumption of 21 KB which is right 
with embedded applications in real-time instances. 

The Least accurate but lightest and the fastest in the 
Inference Decision Tree the model took minimal time 
in the computation (0.9 ms) and used even minimal 
energy (1.2 mW). The above benchmarks demonstrate 
that AI model selection should also be context-
sensitive, as there are very strong requirements in 
terms of diagnostic accuracy, but edge devices have 
limitations in terms of available energy and memory.

Further note-taking made it clear that event-
driven architectures greatly minimized redundant 
sampling and computations that led to a drop in energy 
consumption by up to 46 percent and increased device 
uptime. Such BLE SoCs with dynamic sleep states 
conserved up to 38 percent transmission power when 
idle. Moreover, when subjected to a stable ambient, 
such as daylight or movement, energy harvesting 
modules could indeed be able to fully supply the 
energy needs of the system and eliminate the reliance 
on batteries on favorable conditions. Comparing the 
tested systems with the legacy embedded medical 
devices of the 20152018 period (which had a range of 
10 50 mW), about 3310 times better energy efficiency 
was observed. This jump is mainly brought by the 
progress in low-power sleep states, hardware-sensitive 
TinyML, and AI-based adaptive sampling. Neither are 
there multiple design trade-offs remaining, including 
longer inference latency during more complicated 
models (CNNs), additional memory needs to achieve 
high accuracy and environmental sensitivity in energy-
harvesting designs. System design should make these 
trade-offs very carefully so that system performance 

Table 5. Summary of Hardware and TinyML Model Evaluation for Embedded Healthcare Applications

Platform / Model Application / Type
Power Consumption 

(mW) Runtime / Notes Remarks

STM32L476RG ECG Monitoring 1.95 ~122 hours on 240 
mAh battery

Balanced energy-performance 
trade-off

nRF52840 BLE SoC Glucose Monitoring 2.10 ~114 hours on 240 
mAh battery

Optimized BLE sleep transitions

MSP430FR5969 + EH HR + Temp 
Monitoring

0.86 Continuous (solar 
+ piezo EH)

Event-driven, energy 
autonomous

SVM Model TinyML 
Classification

1.40 92.1% accuracy, 
21 KB memory

Best energy-accuracy trade-off

Decision Tree TinyML 
Classification

1.20 89.8% accuracy, 
18 KB memory

Fastest and lowest power 
inference

Pruned CNN TinyML 
Classification

2.10 94.7% accuracy, 
49 KB memory

Highest accuracy, largest 
memory use
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is consistent, energy independent, and it is reliable 
across a wide range of healthcare settings.

concLusion
Emergence of low-power embedded systems is the 
most basic feature changing the smart healthcare 
landscape in that the systems have the capacity to 
either enable or support uninterrupted, real-time, 
and individual medical monitoring in wearable, 
implantable, and ambient settings. By combining 
recent advances into ultra-efficient microprocessors, 
dynamic power management solutions such as DVFS 
and near-threshold computing, the inclusion of energy 
harvesting components, and the TinyML approach to 
on-device intelligence, modern embedded systems can 
achieve complex computing tasks (including related 
to health) while operating on extremely low energy 
budgets. Such innovations are important to achieve 
long-term operativity, decrease the dependence 
of patients on the category of individual recharging 
and maintenance of the device, and increase the 
stability of remote health-monitoring systems. The 
edge integration of AI reduces data latency and 
transmission overheads beyond a doubt but also 
ensures the privacy of the data, which is becoming 
an incredibly critical issue in the digital health space. 
Experiments have indicated that an alternative energy 
optimization of such systems can use much less energy 
than other clinical diagnostic instruments (typically 3 
to 10 times, but in some cases even more) and still 
be very diagnostic. These problems include memory 
limitations, latency in inference and reliance on the 
environment when harvesting energy; nevertheless, 
interest convergence in intelligent design persists 
to make ubiquitous and low-consumption healthcare 
products viable. The paper points at the roadmap to 
the future of researchers and developers who want to 
develop sustainable autonomous and smart embedded 
systems capable of supporting the stringent needs of 
the next-generation healthcare applications.

references 
1. Kim, S., Lee, D., & Moon, H. (2022). DVFS techniques for 

modern microcontrollers in IoT healthcare applications. Sen-
sors, 22(11), 4032–4045. https://doi.org/10.3390/s22114032

2. Chen, X., Wang, Z., & Han, J. (2021). Near-threshold 
logic for energy-efficient embedded systems: A review. 

IEEE Transactions on Circuits and Systems I: Regular 
Papers, 68(5), 2105–2116. https://doi.org/10.1109/
TCSI.2021.3053862

3. Zhao, L., & Li, Y. (2023). Design of a self-powered wear-
able using piezoelectric energy harvesting for continu-
ous health monitoring. IEEE Access, 11, 12030–12042. 
https://doi.org/10.1109/ACCESS.2023.3243122

4. Banbury, C., Reddi, V., Lam, M., Fu, W., Holleman, J., 
& Mattina, M. (2020). MicroNets: Neural network archi-
tectures for deploying TinyML applications on commod-
ity microcontrollers. arXiv preprint arXiv:2007.04842. 
https://arxiv.org/abs/2007.04842

5. Singh, R., & Sharma, A. (2021). Design and evaluation 
of an ultra-low-power ECG monitoring system using 
MSP430. In Proceedings of the International Conference 
on Biomedical Engineering (pp. 221–225).

6. Patel, A. J., & Mehta, K. (2021). MEMS-based real-time 
fall detection system using low-power Cortex-M0+ mi-
crocontroller. Journal of Ambient Intelligence and Hu-
manized Computing, 12(3), 3159–3170. https://doi.
org/10.1007/s12652-020-02472-5

7. Gupta, N., Verma, R., & Chen, H. (2022). Low-power 
Bluetooth-enabled glucose monitoring system for mobile 
health applications. IEEE Transactions on Instrumentation 
and Measurement, 71, 1–8. https://doi.org/10.1109/
TIM.2022.3140235

8. Zhu, Q., Liu, C., & Sun, Y. (2020). Energy-efficient ECG 
signal processing on embedded systems for wearable 
health monitoring. Microprocessors and Microsystems, 
79, 103279. https://doi.org/10.1016/j.micpro.2020. 
103279

9. Lee, K., Park, J., & Yoo, S. (2019). Event-driven wear-
able IoT device for real-time fall detection using 
low-power embedded hardware. IEEE Internet of Things 
Journal, 6(6), 10147–10157. https://doi.org/10.1109/
JIOT.2019.2946421

10. Ahmed, T., Das, D., & Mukherjee, A. (2021). A survey on 
battery-less and energy-harvested embedded healthcare 
systems. ACM Computing Surveys, 54(4), 1–38. https://
doi.org/10.1145/3459622

11. Uvarajan, K. P. (2024). Integration of artificial intel-
ligence in electronics: Enhancing smart devices and 
systems. Progress in Electronics and Communication 
Engineering, 1(1), 7–12. https://doi.org/10.31838/
PECE/01.01.02

12. Sadulla, S. (2024). Optimization of data aggregation 
techniques in IoT-based wireless sensor networks. Jour-
nal of Wireless Sensor Networks and IoT, 1(1), 31-36. 
https://doi.org/10.31838/WSNIOT/01.01.05

13. Rucker, P., Menick, J., & Brock, A. (2025). Artifi-
cial intelligence techniques in biomedical signal pro-



Fahad Al-Jame and Metahun Lemeon : Recent Advances in Low-Power Embedded System Design for  
Smart Healthcare Applications

SCCTS Journal of Embedded Systems Design and Applications | Jan - Jun 202612

cessing. Innovative Reviews in Engineering and Sci-
ence, 3(1), 32–40. https://doi.org/10.31838/INES/0 
3.01.05

14. Sadulla, S. (2024). Techniques and applications for adap-
tive resource management in reconfigurable computing. 
SCCTS Transactions on Reconfigurable Computing, 1(1), 
6-10. https://doi.org/10.31838/RCC/01.01.02

15. Prasath, C. A. (2024). Optimization of FPGA architec-
tures for real-time signal processing in medical devices. 
Journal of Integrated VLSI, Embedded and Computing 
Technologies, 1(1), 11-15. https://doi.org/10.31838/
JIVCT/01.01.03


