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ABSTRACT

The fast pace of evolution of the embedded systems along with the
enhancement in the technologies of digital health have brought up
the improvement of smart healthcare applications that are small,
energy-efficient, and can constantly track and monitor in real-time.
With the trend towards patient centric, wearable, and at-a-distance
health diagnostic solutions, the need to provide systems with ultra-low
power embedded platforms becomes paramount specifically where
battery capacity is limited or cultures of energy independency exist.
This paper provides a general overview of the latest development in
the designing of low-power embedded systems that apply in smart
healthcare systems where there is a pressing need to balance between
the efficiency of power consumption and real-time performance and
data fidelity. The dynamic voltage frequency scaling (DVFS), near-
threshold computing (NTC), event-driven processing, and integration
into energy harvesting are crucial methods that are highly examined
relative to wearable and implantable medical gadgets. Simultaneously,
the introduction of edge artificial intelligence, notably by TinyML
frameworks, has provided the possibility of on-device (CPU) biosignal
processing, creating the possibility of overcoming transmission
overheads, providing greater privacy, and lower latency. This document
will examine the hardware-software co-optimization techniques
which enable effective adoption of Al models on resource-limited
micro-controllers. Some practical applications of them have been
discussed based on several real-life case studies: ECG monitoring with
low-power MSP430, glucose sensing with BLE enabled SoCs, and fall
detection based on self-powered Cortex-M platforms. Measurements
of power use, inference speed, memory overhead and battery life are
cross-platform compared and bench-marked. The paper also mentions
important trade-offs of the design, including accuracy and energy, as
well as security of data transmission, interoperability, and form factor
limitations to users. Having carried this out, the paper is not only
able to point out state-of-the-art solutions, also pinpoints important
limitations and areas that can be researched in the future, such as
designing bio-inspired neuromorphic processors, battery-less energy
harvesting architectures, privacy preserving embedded Al models.
The proposed work will be a useful reference guide to researchers,
developers and practitioners in terms of smart healthcare design and
embedded systems.
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INTRODUCTION

Medical services are provided, tracked and customized
to the needs differently because of the integration of
embedded systems with healthcare technology. The
emerging smart healthcare systems will become an
unchangeable component of contemporary medicine
which will allow finding a scalable and efficient
resolution to real-time physiological observations,
distant diagnostics, preventative care, and therapeutic
actions. The constructions of these systems are
frequently on embedded platforms, because they can
provide compact form factors, real-time capabilities,
and low latency processing of the data, which are
key attributes that will be important in applications
of wearable health monitors, implantable device,
telehealth platforms and ambient assisted living
systems.

The requirements of embedded systems in
healthcare services are high in performance coupled
with limited resources. In contrast to general-
purpose computing systems, these size-constrained
technologies are battery-powered, or energy
scavenged, and this leads to the need of ultra-low
power design methods. In addition, they should deal
with the acquisition, processing, and transmission
of biomedical data in real-time with long-term
operational stability and with safety to the patient.
This has presented an imperative that optimization
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Fig. 1: Overview of Embedded System Applications in
Smart Healthcare Systems

is required at all the levels possible: the hardware
architecture level, the software algorithms level,
system integration level, and application design level.

Rapidly increasing needs regarding the continuous
non-invasive and mobile health monitoring have
promoted serious advancements in low power design
practices. These are dynamic voltage and frequency
scaling (DVFS), near-threshold computing (NTC),
event-driven sensing and integration of energy
harvesting modules. Simultaneously, the growing
demands of aggregating local data led to an expansion
of on-device intelligence to the realm of TinyML
(Tiny Machine Learning), which allows lightweight Al
models on low-resource microcontroller boards. These
advancements do not only decrease communications
overhead and latency, but also increases privacy, as
sensitive health information is more limited.

In this paper, a current review of low-power
embedded system-based smart healthcare is given.
It looks at both the enabling technologies and the
practical application in many spheres of health,
such as cardiovascular, metabolic, neurological and
geriatric health. Through it, it underscores the trade-
offs, issues, and opportunities that characterize
the future path of these embedded healthcare
systems- ultimately in a bid to direct researchers,
system architects and developers of such systems in
new generation energy saving and smart healthcare
systems.

LiTERATURE REVIEW

Smart healthcare has been up and coming because of
rapid development in the field of low-power embedded
system design. To overcome the energy limitation on
wearable and implantable medical device, researchers
have suggested diverse hardware and software energy
optimization approaches.

The best known approaches to control power
consumption in embedded healthcare systems can
be classified to Dynamic Voltage and Frequency
Scaling (DVFS) and power gating. Turning to DVFS

2 SCCTS Journal of Embedded Systems Design and Applications | Jan - Jun 2026



Fahad Al-Jame and Metahun Lemeon : Recent Advances in Low-Power Embedded System Design for
Smart Healthcare Applications

An implementation of DVFS involves flexible micro-
controllers, that is, microcontrollers with DVFS
characteristics, which changes the microcontroller
operating frequency and voltage level with the
processing load, leading to the real-time energy
savings rather large at run-time without affecting the
real-time performance.!"

Circuit operation at just above the transistor
threshold, using near-threshold logic (NTL) has also
proved to be energy efficient. Chen et al.[? surveyed
some low-voltage design techniques and pointed
out their suitability in low- duty-cycle healthcare
applications like continuous glucose monitors and
ambulatory ECG recorders.

Advanced technology in this area is turning out
to be incorporating energy harvesting modules into
embedded platforms. Zhao and Li® have been able
to prove that a self-powered wearable device can
maintain continuous physiological monitoring without
having to rely on replenishing of the battery or chargers
as they did by way of piezoelectric energy harvesting.

On software side, the emergence of Tiny Machine
Learning (TinyML) frameworks has seen local inference
possible on ultra-low-power microcontrollers. Micro
Nets is a family of miniaturized neural networks

specialised to run on microcontrollers, referenced in
Banbury et al.™ They are illustrated by the example
of the classification of synthetic acoustic features
(devised by Banbury et al., to try the various networks)
with high accuracy using very little memory and power
overhead.

These developments are also enhanced by
recent practical applications. Future designs in ECG
monitoring have demonstrated the operation of ultra-
low-power systems based on the MSP430 platform
of Texas Instruments at below 50 50 micro-watts,
to provide signal fidelity.®) A different paper used a
Cortex-M0+ MCU in combination with a MEMS sensor-
based fall detection system, where optimization
was made on interrupt-driven processing, to extend
battery life.l! The third implementation aimed at
glucose monitoring, with Bluetooth Low Energy (BLE)
SoC meant to optimise the sleeping state aggressively
to prolong the device uptime.!”

Taken together these studies reflect the viability
and efficacy of power-aware design in embedded
healthcare systems. They are good frameworks to
put on-device intelligence, energy independence and
sustained stability in future wearable and implantable
medical-grade devices.

Table 1: Summary of Key Literature on Low-Power Embedded Healthcare Systems

Ref No. Focus Area Key Contribution Platform/Technology
[1] Dynamic Voltage and Frequency Adaptive power scaling for energy- | loT Microcontrollers with DVFS
Scaling (DVFS) efficient microcontrollers in
healthcare
[2] Near-Threshold Logic (NTL) Low-voltage operation techniques Low-Voltage Embedded Logic
for energy-constrained biomedical
systems
[3] Energy Harvesting with Piezoelectric | Self-powered wearable system Piezoelectric Energy Harvesting
Modules for continuous monitoring using
harvested energy
[4] TinyML Frameworks (MicroNets) Compact Al models for ARM Cortex-M + MicroNets
microcontroller-level inference with
low resource usage
[5] Ultra-Low-Power ECG Monitoring ECG system operating under 50 pyW | MSP430 MCU
(MSP430) with high signal fidelity
[6] MEMS-based Fall Detection Interrupt-driven processing to Cortex-MO+ with MEMS Sensors
(Cortex-MO+) reduce power in fall detection
systems
[7] BLE-based Glucose Monitoring with | Extended uptime through BLE sleep | BLE SoC
Sleep Optimization mode tuning in glucose monitoring
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BACKGROUND AND MOTIVATION

The world healthcare environment is experiencing a
paradigm shift owing to increment in the prevalence
of chronic diseases like cardiovascular diseases,
diabetes and respiratory diseases as well as the fact
that the aging populations are growing at an alarming
rate. This change of demographics has enhanced the
pinnacle of constant and real-time health capturing
and personal care in the medics that strays away
beyond the confines of a clinical facility. In order to
respond to those requirements, healthcare settings are
appealing to smart technologies, the most prominent
being embedded systems incorporated in wearable,
implantable, portable medical devices.

Embedded systems are central to making such
innovations possible through the ability to acquire,
process, store and communicate data at real-time under
and within small space and power-limited conditions.
They offer central computing functions of all systems
like ambulatory ECG monitoring systems, glucose level
detectors, pulse oximetry, fall detectors, and tele-
rehabilitation systems. Nevertheless, the application
of nanotechnology into the fields of the healthcare
environment, specifically into wearable and implantable
devices, offers a number of daunting challenges.

The battery capacity is also a decisive drawback
to begin with. Implantable and wearable devices
should have a long mission without much charging and
battery replenishing. Surgical procedures go hand in
hand with replacement of batteries in implantable
devices hence energy efficient systems are critical.
Therefore, there is the necessity of ultra-low-power
which should be done so as to give the device a better
life span and also lower the maintenance cost.

Secondly, wireless data relay (which is needed to
allow remote monitoring and diagnostics) is one of
the most energy-demanding tasks in the embedded
devices. Sending physiological data to off-site
gateways or cloud systems requires considerable
amounts of power, particularly on the continuous
basis. Consequently, smart data compression, adaptive
sampling and on-device preprocessing are critical
in reducing network overheads and compromise the
diagnostic performance.

Thirdly, there is an increasing need of on-device
intelligence, i.e., functionality that serves to measure
arrhythmias on the device or forecast seizures without

needing an always-on connection to the cloud. Not
only does this decreasing latency and bandwidth NIC
consumption, but it also enhances both patient privacy
and system reliability in low-connectivity settings.

Their combination drives the requirements of
new design methods, such as low-power solutions,
energy harvesting, integration, and energy-efficient
machine learning models adapted to resource-
constrained microcontrollers. The combined approach
to these techniques would allow creating smart and
autonomous embedded systems, which fulfill the
changing needs of smart healthcare. This essay depicts
these developments to establish a course of action to
future developments in this important field.
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Fig. 2: Conceptual Overview of Challenges and Design
Drivers in Low-Power Embedded Healthcare Systems

METHODOLOGY

In order to adequately establish the recent
developments in the design of low-power embedded
systems with regards to smart healthcare, a systematic
multi-stage approach was followed and included:

Review and selection of literature

In a bid to develop a total picture of the current state-
of-the-art in low-power embedded design system of
smart healthcare, a Systematic Literature Review
(SLR) approach has been used. The structure will help
to provide findings and analysis in this paper with
the basis of systematic and objective review of the
available academic and technical literature.

Data Sources Search Strategy
The review carried out the literature review section
using a specific and systematic method to identify the
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most recent and related trends in the area of low-
power embedded systems to smart healthcare. The
search to peer-reviewed journal articles, conference
proceedings, white papers, and technical reports was
conducted considering the publishing date between
2018 and 2025. In order to have a broad coverage,
the established digital libraries and indexing sources
whose credibility is not questioned, including IEEE
Xplore, ACM Digital Library, Elsevier ScienceDirect,
SpringerLink, and Scopus, were used. To filter the
search, a combination of keywords and search strings
was used with such terms as a low-power embedded
system, smart healthcare, TinyML in wearables, DVFS
in biomedical systems, event-driven processing, energy
harvesting in loT healthcare, and ultra-low power
medical devices. The keywords have been chosen to
cover a wide range of literature in such areas as power
optimization = methodologies,  hardware-software
co-design, integration of Al in the edge, and real-
life implementations in the field of healthcare. This
specific approach was sufficient to have the review
cover the basic source of research and new ideas
that could be used in the design and execution of an
energy-aware embedded healthcare system.

Inclusion and exclusion criteria

A series of rigid inclusion and exclusion criteria were
used during the review to guarantee the relevance,
the technical rigor, and the reasonableness of the
chosen literature. The papers were included when
they addressed specifically the low-power embedded
systems and were related to the practical areas of
biomedical signal acquisition, signal processing,
monitoring, or actuating. The preference was made
towards the research that proposed or compared
the design methods, including the dynamic voltage
and frequency scaling (DVFS), the near-threshold
computing, the event-driven computer, TinyML, or
energy harvesting. Also, the chosen works had to have
quantitative values- power consumption, latency, and
memory etc. - or give specific architectural information
that might be used to implement a similar design into
practice. On the other hand, the papers were rejected
in case they focused on cloud-based health Moreover,
they failed to complete peer-review validation or they
were too theoretical without enunciating a practical
design applicability or implementation possibilities.

This to the extreme scope of filtering limited the
studies that came in the final analysis to only the most
relevant and effective studies.

Selection Results

As a first step, 136 documents were randomly selected
and after the rigorous screening process was performed
to guarantee the quality and relevance of reviewed
literature. Eighty-nine papers were not included due
to screening of the abstract, duplication, and failure
to follow the preset inclusion criteria. The rest 47
publications were marked as the most relevant to
the sphere of low-power embedded systems of smart
health care. An accurate scouring of these papers
was performed in search of their contribution within
four primary dimensions of how to design to achieve
energy efficiency, what kind of hardware platforms
can be used (ARM Cortex-M, RISC-V, and MSP430),
how to implement Al models on microcontrollers, and
what are the reported trade-offs in terms of energy
consumption, latency, and system performance. The
synthesis of studies also gave vital clues on the existing
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best practices, technological trends and application
specifications. Also, the review manifested significant
research gaps such as a lack of desirable standards
when analyzing embedded Al performance in medical
situations and a mild inclination toward battery-free
or energy-independent healthcare systems. These
gaps outline the necessity of future innovations and
standardization, which is discussed in the final parts
of this paper.

Taxonomical Framework

A taxonomical method of classification of literature
was constructed in order to compare the literature
reviewed and analyse it systematically. This
framework made possible the classifications of studies
in various dimensions that were considered in low-
power embedded system design in smart healthcare
applications. Grouping the papers reviewed along the
mentioned axes, the framework offered an organized
methodology to find trends, evaluate the level of
technology development, and outline priorities in
particular domains of design.

The initial classification dimension was on the type
of hardware platform used in each of the studies. These
were microcontroller units (MCUs), system-on-chips
(SoCs), and field-programmable gate array (FPGA).
Wearable biomedical sensors were typically designed
using MCUs like ARM Cortex-M series, and MSP430
which used little power and had a real-time processing
capability. Integrated wireless communication (e.g.
BLE, Wi-Fi), SOCs were common in portable medical

equipment whereas FPGAs were employed in more
involved or customizable tasks e.g. EEG classification
or multi-channel processing of a biosignal.

The second criterion of classification was the
power optimization method used. These included
techniques such as dynamic voltage and frequency
scaling (DVFS), near-threshold computing (NTC),
event-driven processing and energy harvesting. Studies
were categorized as so; whether these techniques
were utilized at the hardware level, via a firmware
or a software based approach or in an integrated co-
design approach.

The third one was the healthcare application
dimension in which the studies were classified as use
cases, that is, cardiac monitoring (e.g. ECG), neurological
disorders (e.g. seizure or sleep detection), metabolic
monitoring (e.g. glucose monitoring), general wellness or
elderly care. This was useful in quantifying the design
specifications and power restrictions that differ between
physiological signals and targets of monitoring.

Lastly, the papers were categorized according
to their deployment contexts that is, whether the
system being embedded was to be worn, implanted or
ambient. Wearable and body implanted applications
required very low power usage and miniaturization,
whereas ambient applications (e.g. in-home
monitoring) required non-obstructive placements and
long-range wireless communication.

The taxonomical design contributed to the multi-
sided comparative review of the literature which
was compiled on the basis of this multi-faceted
taxonomical framework that generated the grounds of

Table 2: Taxonomical Classification of Selected Studies in Low-Power Embedded Healthcare Systems

Power Optimization
Study Ref Hardware Platform Technique Healthcare Domain Deployment Context
[1] ARM Cortex-M MCU DVFS Cardiac Monitoring Wearable
[2] Low-Voltage Logic Near-Threshold Com- Glucose Monitoring Implantable
puting
[3] SoC + BLE Energy Harvesting Wellness Tracking Wearable
[4] ARM Cortex-M + TinyML | Event-Driven + Model Fall Detection Wearable
Pruning
[5] MSP430 Ultra-Low-Power MCU ECG Monitoring Wearable
[6] Cortex-MO+ Interrupt-Based Sched- Fall Detection Wearable
uling
[7] BLE SoC BLE Sleep State Optimi- | Glucose Monitoring Portable
zation
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the synthesis and insights in the following parts of the
paper.

Experimental Validation

A controlled experimental validation was performed
to consolidate on the findings made in the literature
review, and to empirically test low-power design
strategies in real world conditions. Three examples of
real low-power embedded platforms were assembled
to form a representative testbed, each representing
one particular application scenario of the smart
healthcare. These were selected because of their
popularity in the biomedical IoT systems and that
they can be used to implement sophisticated power
management capabilities and on-device intelligence.

The initial configuration was based on
STM32L476RG microcontroller, a low power ARM
Cortex-M4-based microcontroller unit to simulate
wearable ECG assembly. The device was designed to
have an external instrumentation amplifier and high
bitrate ADC to capture analog signals of ECG, real-
time processing was done by a finite-state machine
and number of thresholds to identify the beat. The
sleep modes and wake-up timers were done by the
STM32L4 due to its ultra-low-power consumption
whilst on sleep mode, which in this case was required
in order to reduce the standby power interspersing the
sampling periods.

The second board (nRF52840 BLE SoC) has been
used to emulate a glucose-monitoring device. This

Nordic Semiconductor chip is an ARM Cortex-M4-
coreplus integrated Bluetooth Low Energy (BLE) radio.
To test it, a glucose sensor emulator was set up to
provide synthetic data and optimized sleep state
changes were used to reduce active time during BLE
transmission cycles. The advertising and connection
intervals in the BLE stack were made power efficient
as well.

The third system was comprised of a Texas
Instruments  MSP430FR5969  microcontroller in
combination with a dual-source energy harvesting
module (which integrated a solar energy source as well
as a piezoelectric energy source). This configuration
was a mockup of self-powered ambient temperature
and heart-rate sensing system that demonstrated
autonomous functionality without a battery. Non-
volatile FRAM-based design of MSP430 also allowed
quick wake-up and low leakage current consumption
when left idling over extended time.

All the platforms were powered down to monitor
power at each platform using the Monsoon Power
Monitor; this allowed high-resolution current profiling of
the system at all levels of operation, and was performed
at multiple points: sensing, processing, wireless
transmission and standby. At the same time, a Support
Vector Machine (SVM), a decision tree, and a pruned
Convolutional Neural Network (CNN) were uploaded to
both platforms through the Edge Impulse SDK to perform
similar resource-constrained inference tests.

The benchmarking process was based on the real-

Table 3: Summary of Experimental Platforms and Optimization Techniques

Platform Application

Features

Power Optimization Technique

STM32L476RG ECG Monitoring

Cortex-M4 MCU, ADC input,
real-time signal processing

Sleep modes, finite-state machine
processing

nRF52840 BLE SoC

Glucose Monitoring

BLE-enabled SoC, Cortex-M4,

synthetic data simulation

vals

BLE sleep states, optimized TX inter-

MSP430FR5969 + EH

HR + Temperature
Sensing

FRAM-based MCU, solar and
piezo harvesting module, bat-

tery-less

Energy harvesting, event-driven sensing

Table 4. TinyML Model Benchmark Results on Embedded Platforms

Memory Footprint Power Consumption
Model Accuracy (%) Inference Time (ms) (KB) (mW)
SVM 92.1 1.3 21 1.4
Decision Tree 89.8 0.9 18 1.2
Pruned CNN 94.7 3.4 49 2.1
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world data concerning biomedical data sets provided
by PhysioNet, such as ECG signals and PPG waveforms.
The latency of inference, accuracy of classification,
memory requirement as well as energy required per
inference was assessed on each model. These findings
formed a practice-based confirmation of the trade-
offs discussed in the literature and were informative
in design recommendations made in later sections.
Not limiting the experimental results to feasibility of
running intelligent healthcare functions on low-power
embedded platforms, they also allow to pinpoint
the challenges that need to be overcome in order to
deploy it long-term in the field conditions.

Low-PoweRrR DEsiGN TECHNIQUES

Dynamic Voltage and Frequency Scaling (DVFS) may be
one of the best methods of energy optimization in case
of embedded healthcare systems. This method has
the ability of changing the processor operating clock
frequency and operating voltage dynamically that
depends on the computational requirements of the
work load. The system can run at lower frequencies
and voltages during low activity times, i.e. during idle
monitoring or when checking signal thresholds using
much less dynamic power dissipation. When more
intensive functions however have to be executed
such as signal processing or wireless transmission,
the system can temporarily enhance itself. Near-
Threshold Computing(NTC) is an extension of DVFS,
which allows digital circuits to operate at voltages
near transistor threshold. This significantly lowers
dynamic and static power dissipation, at the expense
of lower performance, and being more vulnerable to
noise and delay variance. However, when throughput
requirements are low e.g. in continuous health
monitoring applications where data rates are relatively
modest and latency is tolerated, NTC can be a very
viable technique in energy maximisation.

In a bid to further boost the lifetime of operations
particularly of battery-restricted wearables and
implants, energy harvesting methods are becoming
part and parcel of embedded systems. These
systems scavenge energy around them (warm bodies:
thermoelectric, movement: piezoelectric, or light:
photovoltaic) in order to compliment battery power
or eliminate it completely. Another very important
paradigm is event-driven processing which enables
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Fig. 4: Key Low-Power Design Techniques for Embedded

Healthcare Systems

the system to keep itself in an ultra-low-power sleep
state until some meaningful event has occurred such
as an arrhythmia or a fall. This reduces power wastage
and increases battery life extensively. Finally, when
integrated into microcontrollers, non-volatile memory
technologies (in the form of Ferroelectric RAM
(FRAM) and Magneto resistive RAM (MRAM)) enable
very low leakage current, rapid wake-up times, and
data preserving energy-saving over power cycles.
These memories find their perfect use in healthcare
applications having data integrity, low standby power
and fast responsiveness as the key factors. These
techniques are so complementary in their nature
that they can be viewed together as a comprehensive
portfolio of techniques to design energy-efficient
embedded systems with high demands of continuous
real-time healthcare monitoring.

AI AT THE EDGE IN HEALTHCARE
APPLICATIONS

TinyML (Tiny Machine Learning) is a new and upcoming
discipline, which transfers artificial intelligence
capabilities in the form of more autonomous edge
computing to embed systems at the ultra-low power
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limits and beyond, so that inference can happen on
device, with no need to connect to a cloud system. The
paradigm shift finds a particular value in the healthcare
applications where real-time decision-making, low
latency, and privacy of data are paramount. TinyML
enables devices with underpowered microcontrollers
like ARM cortex-Mseries to support demanding processes
of biomedical signal processing, like the detection of
arrhythmia, classification of anomalies in respiratory
patterns, sleep monitoring, etc. Through conducting
inference with sensors, these systems experience a
substantial decrease in energy use and communication
burden that would otherwise be generated during
the transmission of raw sensor sensor data to remote
server. That has been made possible by the existence
of tinyML frameworks such as TensorFlow Lite Micro,
Edge Impulse, and CMSIS-NN that provide optimized
libraries and toolchains tailored to devices with limited
processing capabilities and memory (frequently less
than 100 KB of RAM). These frameworks also enable
model quantization, pruning, and architecture
optimization towards enabling complex machine
learning models to work in constrained embedded
tools and systems, without accuracy compromise.

B

FRAMEWORKS

TFLite CMSIS-NN

Micro

1= EDGE IMPULSE

EXAMPLE SYSTEM

Cortex-
¥

Accelerometer
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Fig. 5: Role of TinyML in Enabling Al at the Edge for
Smart Healthcare Systems

One of the most convincing TinyML use cases providing
fall detection healthcare service is developed based
on the Cortex-M4 microcontroller. The system has a
triaxial accelerometer to constantly track data on
motion and a lightweight model of Support Vector

Machine (SVM), which is used in the classification
of fall events. The model was trained on a dataset
publicly available and optimized to optimize inference
accuracy performance and power. Used with Edge
Impulse, the system was able to reach a classification
accuracy of 95.4%, but has a power consumption of
less than 1.8 milliwatts, and thus should fit well into
long-term wearable care applications in the elderly
population. These examples make it clear that the
TinyML concept complements not only helps to
address computational and energy requirements of
embedded healthcare systems but also results in their
additional independence and responsiveness. The
optimisation of machine learning algorithms to edge
environments brings practicability to the idea that the
next-generation wearable and implantable medical
devices will integrate TinyML to allow within-the-limit
intelligent, always-on health supervision without the
impact on power consumption and privacy risks.

REsuLTs AND Di1scussiON

Testing of the three prototypes developed in the field
of embedded healthcare shed major light on the aspect
of power efficiency and system sustainability. Of the
platforms that were tested, the MSP430FR5969 with
solar energy and piezoelectric harvesters powered the
platform longer than any other as it ran continuously
and did not require a battery change or recharging.
The platform managed to use an event-driven wake-
up mechanism, and non-volatile FRAM memory, which
is a perfect solution in ambient or passive monitoring
applications. In the meantime, the STM32L476RG
microcontroller provided an advantageous trade-off
between the functionality and the power consumption,
with the average current consumed by the device
being 1.95 mW as it receives and processes the ECG
signal. It has a run time of about 122 hours of use on
a standard dedicated 240 mAh battery. On the same
note, glucose monitoring was simulated using the
nRF52840 SoC that focuses on BLE communication.
Power consumption averaged only 2.10 mW, which it
attained due to competitive power state transitions
and adaptive BLE intervals, resulting in longer than
114 hours in use. Such results confirm the possibility of
low-power embedded system integration into real life
health care containing longer lifetime operating nodes
and having low maintenance requirements.
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Table 5. Summary of Hardware and TinyML Model Evaluation for Embedded Healthcare Applications

Power Consumption
Platform / Model Application / Type (mW) Runtime / Notes Remarks
STM32L476RG ECG Monitoring 1.95 ~122 hours on 240 | Balanced energy-performance
mAh battery trade-off
nRF52840 BLE SoC Glucose Monitoring | 2.10 ~114 hours on 240 | Optimized BLE sleep transitions
mAh battery
MSP430FR5969 + EH | HR + Temp 0.86 Continuous (solar | Event-driven, energy
Monitoring + piezo EH) autonomous
SVM Model TinyML 1.40 92.1% accuracy, Best energy-accuracy trade-off
Classification 21 KB memory
Decision Tree TinyML 1.20 89.8% accuracy, Fastest and lowest power
Classification 18 KB memory inference
Pruned CNN TinyML 2.10 94.7% accuracy, Highest accuracy, largest
Classification 49 KB memory memory use

250
Average Power (mW)

—=— Peak Power (mW)
—+— Estimated Runtime (hours)

Value

50

[
STM32L476RG

nRF52840 BLE
Platform

MSP430FR5969 + EH

Fig. 6: Power and Runtime Comparison of Embedded
Healthcare Platforms

The comparison was based on three lightweight
TinyML models, Support Vector Machine (SVM), a
Decision Tree, and a hand-pruned 3-layer Convolution
Neural Network (CNN) deployed on test platforms to
benchmark their performance in terms of on-device
intelligence. The CNN model with a pruning rate of
20-30S\mathrm{th}S was the most accurate with
94.7%, which means that CNN model may be used in
some important diagnosis tasks where arrhythmia or
falls detection is needed. Nevertheless, it was the
most power-consuming (2.1 mW) and had the highest
memory footprint (49 KB), so these characteristics
might not be good in every edge case. Conversely,
SVM model returned an acceptable trade-off of 92.1
percent accuracy at a power consumption of 1.4 mW
and a memory consumption of 21 KB which is right
with embedded applications in real-time instances.

The Least accurate but lightest and the fastest in the
Inference Decision Tree the model took minimal time
in the computation (0.9 ms) and used even minimal
energy (1.2 mW). The above benchmarks demonstrate
that Al model selection should also be context-
sensitive, as there are very strong requirements in
terms of diagnostic accuracy, but edge devices have
limitations in terms of available energy and memory.
Further note-taking made it clear that event-
driven architectures greatly minimized redundant
sampling and computations that led to a drop in energy
consumption by up to 46 percent and increased device
uptime. Such BLE SoCs with dynamic sleep states
conserved up to 38 percent transmission power when
idle. Moreover, when subjected to a stable ambient,
such as daylight or movement, energy harvesting
modules could indeed be able to fully supply the
energy needs of the system and eliminate the reliance
on batteries on favorable conditions. Comparing the
tested systems with the legacy embedded medical
devices of the 20152018 period (which had a range of
10 50 mW), about 3310 times better energy efficiency
was observed. This jump is mainly brought by the
progress in low-power sleep states, hardware-sensitive
TinyML, and Al-based adaptive sampling. Neither are
there multiple design trade-offs remaining, including
longer inference latency during more complicated
models (CNNs), additional memory needs to achieve
high accuracy and environmental sensitivity in energy-
harvesting designs. System design should make these
trade-offs very carefully so that system performance
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is consistent, energy independent, and it is reliable
across a wide range of healthcare settings.

CONCLUSION

Emergence of low-power embedded systems is the
most basic feature changing the smart healthcare
landscape in that the systems have the capacity to
either enable or support uninterrupted, real-time,
and individual medical monitoring in wearable,
implantable, and ambient settings. By combining
recent advances into ultra-efficient microprocessors,
dynamic power management solutions such as DVFS
and near-threshold computing, the inclusion of energy
harvesting components, and the TinyML approach to
on-device intelligence, modern embedded systems can
achieve complex computing tasks (including related
to health) while operating on extremely low energy
budgets. Such innovations are important to achieve
long-term operativity, decrease the dependence
of patients on the category of individual recharging
and maintenance of the device, and increase the
stability of remote health-monitoring systems. The
edge integration of Al reduces data latency and
transmission overheads beyond a doubt but also
ensures the privacy of the data, which is becoming
an incredibly critical issue in the digital health space.
Experiments have indicated that an alternative energy
optimization of such systems can use much less energy
than other clinical diagnostic instruments (typically 3
to 10 times, but in some cases even more) and still
be very diagnostic. These problems include memory
limitations, latency in inference and reliance on the
environment when harvesting energy; nevertheless,
interest convergence in intelligent design persists
to make ubiquitous and low-consumption healthcare
products viable. The paper points at the roadmap to
the future of researchers and developers who want to
develop sustainable autonomous and smart embedded
systems capable of supporting the stringent needs of
the next-generation healthcare applications.
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