## Recent Advances in Low-Power Embedded System Design for Smart Healthcare Applications

## Fahad Al-Jame<sup>1\*</sup>, Metahun Lemeon<sup>2</sup>

<sup>1</sup>School of Electrical Engineering, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885 Safat, Kuwait <sup>2</sup>Electrical and Computer Engineering Addis Ababa University Addis Ababa, Ethiopia

#### **Keywords:**

Low-power design, Embedded healthcare, TinyML, Wearable medical devices, Energy-efficient systems, Edge AI, Smart health monitoring

#### Author's Email:

Fah.al-ja@kisr.edu.kw meta.lemeon@aait.edu.et

https://doi.org/10.31838/ESA/03.01.01

**Received**: 10.07.2025 **Revised**: 15.09.2025 **Accepted**: 11.10.2025

#### **A**BSTRACT

The fast pace of evolution of the embedded systems along with the enhancement in the technologies of digital health have brought up the improvement of smart healthcare applications that are small, energy-efficient, and can constantly track and monitor in real-time. With the trend towards patient centric, wearable, and at-a-distance health diagnostic solutions, the need to provide systems with ultra-low power embedded platforms becomes paramount specifically where battery capacity is limited or cultures of energy independency exist. This paper provides a general overview of the latest development in the designing of low-power embedded systems that apply in smart healthcare systems where there is a pressing need to balance between the efficiency of power consumption and real-time performance and data fidelity. The dynamic voltage frequency scaling (DVFS), nearthreshold computing (NTC), event-driven processing, and integration into energy harvesting are crucial methods that are highly examined relative to wearable and implantable medical gadgets. Simultaneously, the introduction of edge artificial intelligence, notably by TinyML frameworks, has provided the possibility of on-device (CPU) biosignal processing, creating the possibility of overcoming transmission overheads, providing greater privacy, and lower latency. This document will examine the hardware-software co-optimization techniques which enable effective adoption of AI models on resource-limited micro-controllers. Some practical applications of them have been discussed based on several real-life case studies: ECG monitoring with low-power MSP430, glucose sensing with BLE enabled SoCs, and fall detection based on self-powered Cortex-M platforms. Measurements of power use, inference speed, memory overhead and battery life are cross-platform compared and bench-marked. The paper also mentions important trade-offs of the design, including accuracy and energy, as well as security of data transmission, interoperability, and form factor limitations to users. Having carried this out, the paper is not only able to point out state-of-the-art solutions, also pinpoints important limitations and areas that can be researched in the future, such as designing bio-inspired neuromorphic processors, battery-less energy harvesting architectures, privacy preserving embedded AI models. The proposed work will be a useful reference guide to researchers, developers and practitioners in terms of smart healthcare design and embedded systems.

How to cite this article: Al-Jame F, Lemeon M (2026). Recent Advances in Low-Power Embedded System Design for Smart Healthcare Applications. SCCTS Journal of Embedded Systems Design and Applications, Vol. 3, No. 1, 2026, 1-12

#### Introduction

Medical services are provided, tracked and customized to the needs differently because of the integration of embedded systems with healthcare technology. The emerging smart healthcare systems will become an unchangeable component of contemporary medicine which will allow finding a scalable and efficient resolution to real-time physiological observations, distant diagnostics, preventative care, and therapeutic actions. The constructions of these systems are frequently on embedded platforms, because they can provide compact form factors, real-time capabilities, and low latency processing of the data, which are key attributes that will be important in applications of wearable health monitors, implantable device, telehealth platforms and ambient assisted living systems.

The requirements of embedded systems in healthcare services are high in performance coupled with limited resources. In contrast to general-purpose computing systems, these size-constrained technologies are battery-powered, or energy scavenged, and this leads to the need of ultra-low power design methods. In addition, they should deal with the acquisition, processing, and transmission of biomedical data in real-time with long-term operational stability and with safety to the patient. This has presented an imperative that optimization

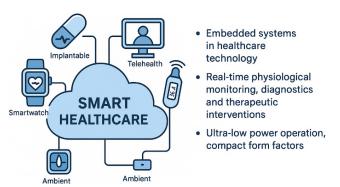


Fig. 1: Overview of Embedded System Applications in Smart Healthcare Systems

is required at all the levels possible: the hardware architecture level, the software algorithms level, system integration level, and application design level.

Rapidly increasing needs regarding the continuous non-invasive and mobile health monitoring have promoted serious advancements in low power design practices. These are dynamic voltage and frequency scaling (DVFS), near-threshold computing (NTC), event-driven sensing and integration of energy harvesting modules. Simultaneously, the growing demands of aggregating local data led to an expansion of on-device intelligence to the realm of TinyML (Tiny Machine Learning), which allows lightweight AI models on low-resource microcontroller boards. These advancements do not only decrease communications overhead and latency, but also increases privacy, as sensitive health information is more limited.

In this paper, a current review of low-power embedded system-based smart healthcare is given. It looks at both the enabling technologies and the practical application in many spheres of health, such as cardiovascular, metabolic, neurological and geriatric health. Through it, it underscores the tradeoffs, issues, and opportunities that characterize the future path of these embedded healthcare systems- ultimately in a bid to direct researchers, system architects and developers of such systems in new generation energy saving and smart healthcare systems.

#### LITERATURE REVIEW

Smart healthcare has been up and coming because of rapid development in the field of low-power embedded system design. To overcome the energy limitation on wearable and implantable medical device, researchers have suggested diverse hardware and software energy optimization approaches.

The best known approaches to control power consumption in embedded healthcare systems can be classified to Dynamic Voltage and Frequency Scaling (DVFS) and power gating. Turning to DVFS

An implementation of DVFS involves flexible microcontrollers, that is, microcontrollers with DVFS characteristics, which changes the microcontroller operating frequency and voltage level with the processing load, leading to the real-time energy savings rather large at run-time without affecting the real-time performance.<sup>[1]</sup>

Circuit operation at just above the transistor threshold, using near-threshold logic (NTL) has also proved to be energy efficient. Chen et al. [2] surveyed some low-voltage design techniques and pointed out their suitability in low- duty-cycle healthcare applications like continuous glucose monitors and ambulatory ECG recorders.

Advanced technology in this area is turning out to be incorporating energy harvesting modules into embedded platforms. Zhao and Li<sup>[3]</sup> have been able to prove that a self-powered wearable device can maintain continuous physiological monitoring without having to rely on replenishing of the battery or chargers as they did by way of piezoelectric energy harvesting.

On software side, the emergence of Tiny Machine Learning (TinyML) frameworks has seen local inference possible on ultra-low-power microcontrollers. Micro Nets is a family of miniaturized neural networks specialised to run on microcontrollers, referenced in Banbury et al.<sup>[4]</sup> They are illustrated by the example of the classification of synthetic acoustic features (devised by Banbury et al., to try the various networks) with high accuracy using very little memory and power overhead.

These developments are also enhanced by recent practical applications. Future designs in ECG monitoring have demonstrated the operation of ultra-low-power systems based on the MSP430 platform of Texas Instruments at below 50 50 micro-watts, to provide signal fidelity. [5] A different paper used a Cortex-MO+ MCU in combination with a MEMS sensor-based fall detection system, where optimization was made on interrupt-driven processing, to extend battery life. [6] The third implementation aimed at glucose monitoring, with Bluetooth Low Energy (BLE) SoC meant to optimise the sleeping state aggressively to prolong the device uptime. [7]

Taken together these studies reflect the viability and efficacy of power-aware design in embedded healthcare systems. They are good frameworks to put on-device intelligence, energy independence and sustained stability in future wearable and implantable medical-grade devices.

Table 1: Summary of Key Literature on Low-Power Embedded Healthcare Systems

| Ref No. | Focus Area                                           | Key Contribution                                                                    | Platform/Technology             |
|---------|------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------|
| [1]     | Dynamic Voltage and Frequency<br>Scaling (DVFS)      | Adaptive power scaling for energy-<br>efficient microcontrollers in<br>healthcare   | IoT Microcontrollers with DVFS  |
| [2]     | Near-Threshold Logic (NTL)                           | Low-voltage operation techniques for energy-constrained biomedical systems          | Low-Voltage Embedded Logic      |
| [3]     | Energy Harvesting with Piezoelectric<br>Modules      | Self-powered wearable system<br>for continuous monitoring using<br>harvested energy | Piezoelectric Energy Harvesting |
| [4]     | TinyML Frameworks (MicroNets)                        | Compact AI models for microcontroller-level inference with low resource usage       | ARM Cortex-M + MicroNets        |
| [5]     | Ultra-Low-Power ECG Monitoring (MSP430)              | ECG system operating under 50 $\mu$ W with high signal fidelity                     | MSP430 MCU                      |
| [6]     | MEMS-based Fall Detection<br>(Cortex-M0+)            | Interrupt-driven processing to reduce power in fall detection systems               | Cortex-M0+ with MEMS Sensors    |
| [7]     | BLE-based Glucose Monitoring with Sleep Optimization | Extended uptime through BLE sleep mode tuning in glucose monitoring                 | BLE SoC                         |

### BACKGROUND AND MOTIVATION

The world healthcare environment is experiencing a paradigm shift owing to increment in the prevalence of chronic diseases like cardiovascular diseases, diabetes and respiratory diseases as well as the fact that the aging populations are growing at an alarming rate. This change of demographics has enhanced the pinnacle of constant and real-time health capturing and personal care in the medics that strays away beyond the confines of a clinical facility. In order to respond to those requirements, healthcare settings are appealing to smart technologies, the most prominent being embedded systems incorporated in wearable, implantable, portable medical devices.

Embedded systems are central to making such innovations possible through the ability to acquire, process, store and communicate data at real-time under and within small space and power-limited conditions. They offer central computing functions of all systems like ambulatory ECG monitoring systems, glucose level detectors, pulse oximetry, fall detectors, and telerehabilitation systems. Nevertheless, the application of nanotechnology into the fields of the healthcare environment, specifically into wearable and implantable devices, offers a number of daunting challenges.

The battery capacity is also a decisive drawback to begin with. Implantable and wearable devices should have a long mission without much charging and battery replenishing. Surgical procedures go hand in hand with replacement of batteries in implantable devices hence energy efficient systems are critical. Therefore, there is the necessity of ultra-low-power which should be done so as to give the device a better life span and also lower the maintenance cost.

Secondly, wireless data relay (which is needed to allow remote monitoring and diagnostics) is one of the most energy-demanding tasks in the embedded devices. Sending physiological data to off-site gateways or cloud systems requires considerable amounts of power, particularly on the continuous basis. Consequently, smart data compression, adaptive sampling and on-device preprocessing are critical in reducing network overheads and compromise the diagnostic performance.

Thirdly, there is an increasing need of on-device intelligence, i.e., functionality that serves to measure arrhythmias on the device or forecast seizures without

needing an always-on connection to the cloud. Not only does this decreasing latency and bandwidth NIC consumption, but it also enhances both patient privacy and system reliability in low-connectivity settings.

Their combination drives the requirements of new design methods, such as low-power solutions, energy harvesting, integration, and energy-efficient machine learning models adapted to resource-constrained microcontrollers. The combined approach to these techniques would allow creating smart and autonomous embedded systems, which fulfill the changing needs of smart healthcare. This essay depicts these developments to establish a course of action to future developments in this important field.

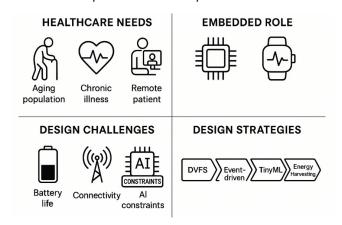


Fig. 2: Conceptual Overview of Challenges and Design Drivers in Low-Power Embedded Healthcare Systems

#### **M**ETHODOLOGY

In order to adequately establish the recent developments in the design of low-power embedded systems with regards to smart healthcare, a systematic multi-stage approach was followed and included:

#### Review and selection of literature

In a bid to develop a total picture of the current stateof-the-art in low-power embedded design system of smart healthcare, a Systematic Literature Review (SLR) approach has been used. The structure will help to provide findings and analysis in this paper with the basis of systematic and objective review of the available academic and technical literature.

#### **Data Sources Search Strategy**

The review carried out the literature review section using a specific and systematic method to identify the

most recent and related trends in the area of lowpower embedded systems to smart healthcare. The search to peer-reviewed journal articles, conference proceedings, white papers, and technical reports was conducted considering the publishing date between 2018 and 2025. In order to have a broad coverage, the established digital libraries and indexing sources whose credibility is not questioned, including IEEE Xplore, ACM Digital Library, Elsevier ScienceDirect, SpringerLink, and Scopus, were used. To filter the search, a combination of keywords and search strings was used with such terms as a low-power embedded system, smart healthcare, TinyML in wearables, DVFS in biomedical systems, event-driven processing, energy harvesting in IoT healthcare, and ultra-low power medical devices. The keywords have been chosen to cover a wide range of literature in such areas as power optimization methodologies, hardware-software co-design, integration of AI in the edge, and reallife implementations in the field of healthcare. This specific approach was sufficient to have the review cover the basic source of research and new ideas that could be used in the design and execution of an energy-aware embedded healthcare system.

#### Inclusion and exclusion criteria

A series of rigid inclusion and exclusion criteria were used during the review to guarantee the relevance, the technical rigor, and the reasonableness of the chosen literature. The papers were included when they addressed specifically the low-power embedded systems and were related to the practical areas of biomedical signal acquisition, signal processing, monitoring, or actuating. The preference was made towards the research that proposed or compared the design methods, including the dynamic voltage and frequency scaling (DVFS), the near-threshold computing, the event-driven computer, TinyML, or energy harvesting. Also, the chosen works had to have quantitative values- power consumption, latency, and memory etc. - or give specific architectural information that might be used to implement a similar design into practice. On the other hand, the papers were rejected in case they focused on cloud-based health Moreover, they failed to complete peer-review validation or they were too theoretical without enunciating a practical design applicability or implementation possibilities.

This to the extreme scope of filtering limited the studies that came in the final analysis to only the most relevant and effective studies.

#### **Selection Results**

As a first step, 136 documents were randomly selected and after the rigorous screening process was performed to guarantee the quality and relevance of reviewed literature. Eighty-nine papers were not included due to screening of the abstract, duplication, and failure to follow the preset inclusion criteria. The rest 47 publications were marked as the most relevant to the sphere of low-power embedded systems of smart health care. An accurate scouring of these papers was performed in search of their contribution within four primary dimensions of how to design to achieve energy efficiency, what kind of hardware platforms can be used (ARM Cortex-M, RISC-V, and MSP430), how to implement AI models on microcontrollers, and what are the reported trade-offs in terms of energy consumption, latency, and system performance. The synthesis of studies also gave vital clues on the existing

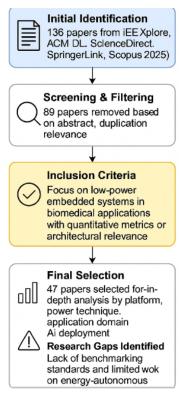


Fig. 3: Systematic Literature Review Process for Low-Power Embedded Healthcare Systems

best practices, technological trends and application specifications. Also, the review manifested significant research gaps such as a lack of desirable standards when analyzing embedded AI performance in medical situations and a mild inclination toward battery-free or energy-independent healthcare systems. These gaps outline the necessity of future innovations and standardization, which is discussed in the final parts of this paper.

#### **Taxonomical Framework**

A taxonomical method of classification of literature was constructed in order to compare the literature reviewed and analyse it systematically. This framework made possible the classifications of studies in various dimensions that were considered in lowpower embedded system design in smart healthcare applications. Grouping the papers reviewed along the mentioned axes, the framework offered an organized methodology to find trends, evaluate the level of technology development, and outline priorities in particular domains of design.

The initial classification dimension was on the type of hardware platform used in each of the studies. These were microcontroller units (MCUs), system-on-chips (SoCs), and field-programmable gate array (FPGA). Wearable biomedical sensors were typically designed using MCUs like ARM Cortex-M series, and MSP430 which used little power and had a real-time processing capability. Integrated wireless communication (e.g. BLE, Wi-Fi), SOCs were common in portable medical

equipment whereas FPGAs were employed in more involved or customizable tasks e.g. EEG classification or multi-channel processing of a biosignal.

The second criterion of classification was the power optimization method used. These included techniques such as dynamic voltage and frequency scaling (DVFS), near-threshold computing (NTC), event-driven processing and energy harvesting. Studies were categorized as so; whether these techniques were utilized at the hardware level, via a firmware or a software based approach or in an integrated codesign approach.

The third one was the healthcare application dimension in which the studies were classified as use cases, that is, cardiac monitoring (e.g. ECG), neurological disorders (e.g. seizure or sleep detection), metabolic monitoring (e.g. glucose monitoring), general wellness or elderly care. This was useful in quantifying the design specifications and power restrictions that differ between physiological signals and targets of monitoring.

Lastly, the papers were categorized according to their deployment contexts that is, whether the system being embedded was to be worn, implanted or ambient. Wearable and body implanted applications required very low power usage and miniaturization, ambient applications whereas in-home (e.g. monitoring) required non-obstructive placements and long-range wireless communication.

The taxonomical design contributed to the multisided comparative review of the literature which was compiled on the basis of this multi-faceted taxonomical framework that generated the grounds of

| Study Ref | Hardware Platform | Power Optimization<br>Technique | Healthcare Domain  | Deployment Con |
|-----------|-------------------|---------------------------------|--------------------|----------------|
| [1]       | ARM Cortex-M MCIJ | DVFS                            | Cardiac Monitoring | Wearable       |

Table 2: Taxonomical Classification of Selected Studies in Low-Power Embedded Healthcare Systems

| Study Ref | Hardware Platform     | Technique                       | Healthcare Domain  | Deployment Context |
|-----------|-----------------------|---------------------------------|--------------------|--------------------|
| [1]       | ARM Cortex-M MCU      | DVFS                            | Cardiac Monitoring | Wearable           |
| [2]       | Low-Voltage Logic     | Near-Threshold Computing        | Glucose Monitoring | Implantable        |
| [3]       | SoC + BLE             | Energy Harvesting               | Wellness Tracking  | Wearable           |
| [4]       | ARM Cortex-M + TinyML | Event-Driven + Model<br>Pruning | Fall Detection     | Wearable           |
| [5]       | MSP430                | Ultra-Low-Power MCU             | ECG Monitoring     | Wearable           |
| [6]       | Cortex-M0+            | Interrupt-Based Sched-<br>uling | Fall Detection     | Wearable           |
| [7]       | BLE SoC               | BLE Sleep State Optimization    | Glucose Monitoring | Portable           |

the synthesis and insights in the following parts of the paper.

#### **Experimental Validation**

A controlled experimental validation was performed to consolidate on the findings made in the literature review, and to empirically test low-power design strategies in real world conditions. Three examples of real low-power embedded platforms were assembled to form a representative testbed, each representing one particular application scenario of the smart healthcare. These were selected because of their popularity in the biomedical IoT systems and that they can be used to implement sophisticated power management capabilities and on-device intelligence.

configuration was The initial based on STM32L476RG microcontroller, a low power ARM Cortex-M4-based microcontroller unit to simulate wearable ECG assembly. The device was designed to have an external instrumentation amplifier and high bitrate ADC to capture analog signals of ECG, realtime processing was done by a finite-state machine and number of thresholds to identify the beat. The sleep modes and wake-up timers were done by the STM32L4 due to its ultra-low-power consumption whilst on sleep mode, which in this case was required in order to reduce the standby power interspersing the sampling periods.

The second board (nRF52840 BLE SoC) has been used to emulate a glucose-monitoring device. This

Nordic Semiconductor chip is an ARM Cortex-M4-coreplus integrated Bluetooth Low Energy (BLE) radio. To test it, a glucose sensor emulator was set up to provide synthetic data and optimized sleep state changes were used to reduce active time during BLE transmission cycles. The advertising and connection intervals in the BLE stack were made power efficient as well.

The third system was comprised of a Texas Instruments MSP430FR5969 microcontroller in combination with a dual-source energy harvesting module (which integrated a solar energy source as well as a piezoelectric energy source). This configuration was a mockup of self-powered ambient temperature and heart-rate sensing system that demonstrated autonomous functionality without a battery. Nonvolatile FRAM-based design of MSP430 also allowed quick wake-up and low leakage current consumption when left idling over extended time.

All the platforms were powered down to monitor power at each platform using the Monsoon Power Monitor; this allowed high-resolution current profiling of the system at all levels of operation, and was performed at multiple points: sensing, processing, wireless transmission and standby. At the same time, a Support Vector Machine (SVM), a decision tree, and a pruned Convolutional Neural Network (CNN) were uploaded to both platforms through the Edge Impulse SDK to perform similar resource-constrained inference tests.

The benchmarking process was based on the real-

| Table 3: Summary of Experimental Platforms and Optimization Techniques |                             |                                                                 |                                              |  |
|------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------|----------------------------------------------|--|
| Platform                                                               | Application                 | Features                                                        | Power Optimization Technique                 |  |
| STM32L476RG                                                            | ECG Monitoring              | Cortex-M4 MCU, ADC input, real-time signal processing           | Sleep modes, finite-state machine processing |  |
| nRF52840 BLE SoC                                                       | Glucose Monitoring          | BLE-enabled SoC, Cortex-M4, synthetic data simulation           | BLE sleep states, optimized TX intervals     |  |
| MSP430FR5969 + EH                                                      | HR + Temperature<br>Sensing | FRAM-based MCU, solar and piezo harvesting module, battery-less | Energy harvesting, event-driven sensing      |  |

Table 3: Summary of Experimental Platforms and Optimization Techniques

Table 4. TinyML Model Benchmark Results on Embedded Platforms

|               |              |                     | Memory Footprint | Power Consumption |
|---------------|--------------|---------------------|------------------|-------------------|
| Model         | Accuracy (%) | Inference Time (ms) | (KB)             | (mW)              |
| SVM           | 92.1         | 1.3                 | 21               | 1.4               |
| Decision Tree | 89.8         | 0.9                 | 18               | 1.2               |
| Pruned CNN    | 94.7         | 3.4                 | 49               | 2.1               |

world data concerning biomedical data sets provided by PhysioNet, such as ECG signals and PPG waveforms. The latency of inference, accuracy of classification, memory requirement as well as energy required per inference was assessed on each model. These findings formed a practice-based confirmation of the tradeoffs discussed in the literature and were informative in design recommendations made in later sections. Not limiting the experimental results to feasibility of running intelligent healthcare functions on low-power embedded platforms, they also allow to pinpoint the challenges that need to be overcome in order to deploy it long-term in the field conditions.

## Low-Power Design Techniques

Dynamic Voltage and Frequency Scaling (DVFS) may be one of the best methods of energy optimization in case of embedded healthcare systems. This method has the ability of changing the processor operating clock frequency and operating voltage dynamically that depends on the computational requirements of the work load. The system can run at lower frequencies and voltages during low activity times, i.e. during idle monitoring or when checking signal thresholds using much less dynamic power dissipation. When more intensive functions however have to be executed such as signal processing or wireless transmission, the system can temporarily enhance itself. Near-Threshold Computing(NTC) is an extension of DVFS, which allows digital circuits to operate at voltages near transistor threshold. This significantly lowers dynamic and static power dissipation, at the expense of lower performance, and being more vulnerable to noise and delay variance. However, when throughput requirements are low e.g. in continuous health monitoring applications where data rates are relatively modest and latency is tolerated, NTC can be a very viable technique in energy maximisation.

In a bid to further boost the lifetime of operations particularly of battery-restricted wearables and implants, energy harvesting methods are becoming part and parcel of embedded systems. These systems scavenge energy around them (warm bodies: thermoelectric, movement: piezoelectric, or light: photovoltaic) in order to compliment battery power or eliminate it completely. Another very important paradigm is event-driven processing which enables

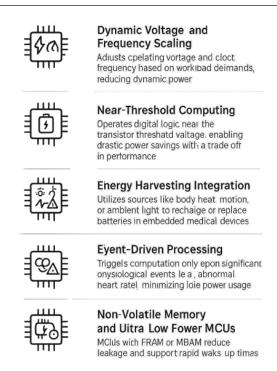


Fig. 4: Key Low-Power Design Techniques for Embedded Healthcare Systems

the system to keep itself in an ultra-low-power sleep state until some meaningful event has occurred such as an arrhythmia or a fall. This reduces power wastage and increases battery life extensively. Finally, when integrated into microcontrollers, non-volatile memory technologies (in the form of Ferroelectric RAM (FRAM) and Magneto resistive RAM (MRAM)) enable very low leakage current, rapid wake-up times, and data preserving energy-saving over power cycles. These memories find their perfect use in healthcare applications having data integrity, low standby power and fast responsiveness as the key factors. These techniques are so complementary in their nature that they can be viewed together as a comprehensive portfolio of techniques to design energy-efficient embedded systems with high demands of continuous real-time healthcare monitoring.

# AI AT THE EDGE IN HEALTHCARE APPLICATIONS

TinyML (Tiny Machine Learning) is a new and upcoming discipline, which transfers artificial intelligence capabilities in the form of more autonomous edge computing to embed systems at the ultra-low power

limits and beyond, so that inference can happen on device, with no need to connect to a cloud system. The paradigm shift finds a particular value in the healthcare applications where real-time decision-making, low latency, and privacy of data are paramount. TinyML enables devices with underpowered microcontrollers like ARM cortex-M series to support demanding processes of biomedical signal processing, like the detection of arrhythmia, classification of anomalies in respiratory patterns, sleep monitoring, etc. Through conducting inference with sensors, these systems experience a substantial decrease in energy use and communication burden that would otherwise be generated during the transmission of raw sensor sensor data to remote server. That has been made possible by the existence of tinyML frameworks such as TensorFlow Lite Micro, Edge Impulse, and CMSIS-NN that provide optimized libraries and toolchains tailored to devices with limited processing capabilities and memory (frequently less than 100 KB of RAM). These frameworks also enable model quantization, pruning, and architecture optimization towards enabling complex machine learning models to work in constrained embedded tools and systems, without accuracy compromise.

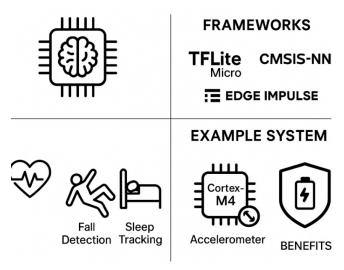


Fig. 5: Role of TinyML in Enabling AI at the Edge for Smart Healthcare Systems

One of the most convincing TinyML use cases providing fall detection healthcare service is developed based on the Cortex-M4 microcontroller. The system has a triaxial accelerometer to constantly track data on motion and a lightweight model of Support Vector

Machine (SVM), which is used in the classification of fall events. The model was trained on a dataset publicly available and optimized to optimize inference accuracy performance and power. Used with Edge Impulse, the system was able to reach a classification accuracy of 95.4%, but has a power consumption of less than 1.8 milliwatts, and thus should fit well into long-term wearable care applications in the elderly population. These examples make it clear that the TinyML concept complements not only helps to address computational and energy requirements of embedded healthcare systems but also results in their additional independence and responsiveness. The optimisation of machine learning algorithms to edge environments brings practicability to the idea that the next-generation wearable and implantable medical devices will integrate TinyML to allow within-the-limit intelligent, always-on health supervision without the impact on power consumption and privacy risks.

#### RESULTS AND DISCUSSION

Testing of the three prototypes developed in the field of embedded healthcare shed major light on the aspect of power efficiency and system sustainability. Of the platforms that were tested, the MSP430FR5969 with solar energy and piezoelectric harvesters powered the platform longer than any other as it ran continuously and did not require a battery change or recharging. The platform managed to use an event-driven wakeup mechanism, and non-volatile FRAM memory, which is a perfect solution in ambient or passive monitoring applications. In the meantime, the STM32L476RG microcontroller provided an advantageous trade-off between the functionality and the power consumption, with the average current consumed by the device being 1.95 mW as it receives and processes the ECG signal. It has a run time of about 122 hours of use on a standard dedicated 240 mAh battery. On the same note, glucose monitoring was simulated using the nRF52840 SoC that focuses on BLE communication. Power consumption averaged only 2.10 mW, which it attained due to competitive power state transitions and adaptive BLE intervals, resulting in longer than 114 hours in use. Such results confirm the possibility of low-power embedded system integration into real life health care containing longer lifetime operating nodes and having low maintenance requirements.

| Table 3. Summary of Hardware and Thight Model Evaluation for Embedded Healthcare Applications |                          |                        |                                  |                                       |
|-----------------------------------------------------------------------------------------------|--------------------------|------------------------|----------------------------------|---------------------------------------|
| Platform / Model                                                                              | Application / Type       | Power Consumption (mW) | Runtime / Notes                  | Remarks                               |
| STM32L476RG                                                                                   | ECG Monitoring           | 1.95                   | ~122 hours on 240 mAh battery    | Balanced energy-performance trade-off |
| nRF52840 BLE SoC                                                                              | Glucose Monitoring       | 2.10                   | ~114 hours on 240 mAh battery    | Optimized BLE sleep transitions       |
| MSP430FR5969 + EH                                                                             | HR + Temp<br>Monitoring  | 0.86                   | Continuous (solar<br>+ piezo EH) | Event-driven, energy autonomous       |
| SVM Model                                                                                     | TinyML<br>Classification | 1.40                   | 92.1% accuracy,<br>21 KB memory  | Best energy-accuracy trade-off        |
| Decision Tree                                                                                 | TinyML<br>Classification | 1.20                   | 89.8% accuracy,<br>18 KB memory  | Fastest and lowest power inference    |
| Pruned CNN                                                                                    | TinyML<br>Classification | 2.10                   | 94.7% accuracy,<br>49 KB memory  | Highest accuracy, largest memory use  |

Table 5. Summary of Hardware and TinyML Model Evaluation for Embedded Healthcare Applications

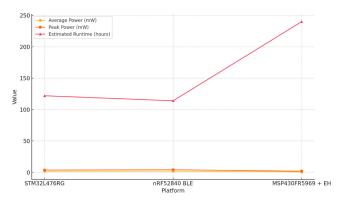


Fig. 6: Power and Runtime Comparison of Embedded Healthcare Platforms

The comparison was based on three lightweight TinyML models, Support Vector Machine (SVM), a Decision Tree, and a hand-pruned 3-layer Convolution Neural Network (CNN) deployed on test platforms to benchmark their performance in terms of on-device intelligence. The CNN model with a pruning rate of 20-30\$\mathrm{th}\$ was the most accurate with 94.7%, which means that CNN model may be used in some important diagnosis tasks where arrhythmia or falls detection is needed. Nevertheless, it was the most power-consuming (2.1 mW) and had the highest memory footprint (49 KB), so these characteristics might not be good in every edge case. Conversely, SVM model returned an acceptable trade-off of 92.1 percent accuracy at a power consumption of 1.4 mW and a memory consumption of 21 KB which is right with embedded applications in real-time instances. The Least accurate but lightest and the fastest in the Inference Decision Tree the model took minimal time in the computation (0.9 ms) and used even minimal energy (1.2 mW). The above benchmarks demonstrate that AI model selection should also be context-sensitive, as there are very strong requirements in terms of diagnostic accuracy, but edge devices have limitations in terms of available energy and memory.

Further note-taking made it clear that eventdriven architectures greatly minimized redundant sampling and computations that led to a drop in energy consumption by up to 46 percent and increased device uptime. Such BLE SoCs with dynamic sleep states conserved up to 38 percent transmission power when idle. Moreover, when subjected to a stable ambient, such as daylight or movement, energy harvesting modules could indeed be able to fully supply the energy needs of the system and eliminate the reliance on batteries on favorable conditions. Comparing the tested systems with the legacy embedded medical devices of the 20152018 period (which had a range of 10 50 mW), about 3310 times better energy efficiency was observed. This jump is mainly brought by the progress in low-power sleep states, hardware-sensitive TinyML, and Al-based adaptive sampling. Neither are there multiple design trade-offs remaining, including longer inference latency during more complicated models (CNNs), additional memory needs to achieve high accuracy and environmental sensitivity in energyharvesting designs. System design should make these trade-offs very carefully so that system performance is consistent, energy independent, and it is reliable across a wide range of healthcare settings.

#### Conclusion

Emergence of low-power embedded systems is the most basic feature changing the smart healthcare landscape in that the systems have the capacity to either enable or support uninterrupted, real-time, and individual medical monitoring in wearable, implantable, and ambient settings. By combining recent advances into ultra-efficient microprocessors, dynamic power management solutions such as DVFS and near-threshold computing, the inclusion of energy harvesting components, and the TinyML approach to on-device intelligence, modern embedded systems can achieve complex computing tasks (including related to health) while operating on extremely low energy budgets. Such innovations are important to achieve long-term operativity, decrease the dependence of patients on the category of individual recharging and maintenance of the device, and increase the stability of remote health-monitoring systems. The edge integration of AI reduces data latency and transmission overheads beyond a doubt but also ensures the privacy of the data, which is becoming an incredibly critical issue in the digital health space. Experiments have indicated that an alternative energy optimization of such systems can use much less energy than other clinical diagnostic instruments (typically 3 to 10 times, but in some cases even more) and still be very diagnostic. These problems include memory limitations, latency in inference and reliance on the environment when harvesting energy; nevertheless, interest convergence in intelligent design persists to make ubiquitous and low-consumption healthcare products viable. The paper points at the roadmap to the future of researchers and developers who want to develop sustainable autonomous and smart embedded systems capable of supporting the stringent needs of the next-generation healthcare applications.

#### REFERENCES

- Kim, S., Lee, D., & Moon, H. (2022). DVFS techniques for modern microcontrollers in IoT healthcare applications. Sensors, 22(11), 4032-4045. https://doi.org/10.3390/s22114032
- 2. Chen, X., Wang, Z., & Han, J. (2021). Near-threshold logic for energy-efficient embedded systems: A review.

- IEEE Transactions on Circuits and Systems I: Regular Papers, 68(5), 2105-2116. https://doi.org/10.1109/TCSI.2021.3053862
- 3. Zhao, L., & Li, Y. (2023). Design of a self-powered wearable using piezoelectric energy harvesting for continuous health monitoring. IEEE Access, 11, 12030-12042. https://doi.org/10.1109/ACCESS.2023.3243122
- Banbury, C., Reddi, V., Lam, M., Fu, W., Holleman, J., & Mattina, M. (2020). MicroNets: Neural network architectures for deploying TinyML applications on commodity microcontrollers. arXiv preprint arXiv:2007.04842. https://arxiv.org/abs/2007.04842
- Singh, R., & Sharma, A. (2021). Design and evaluation of an ultra-low-power ECG monitoring system using MSP430. In Proceedings of the International Conference on Biomedical Engineering (pp. 221-225).
- Patel, A. J., & Mehta, K. (2021). MEMS-based real-time fall detection system using low-power Cortex-M0+ microcontroller. Journal of Ambient Intelligence and Humanized Computing, 12(3), 3159-3170. https://doi. org/10.1007/s12652-020-02472-5
- Gupta, N., Verma, R., & Chen, H. (2022). Low-power Bluetooth-enabled glucose monitoring system for mobile health applications. IEEE Transactions on Instrumentation and Measurement, 71, 1-8. https://doi.org/10.1109/ TIM.2022.3140235
- Zhu, Q., Liu, C., & Sun, Y. (2020). Energy-efficient ECG signal processing on embedded systems for wearable health monitoring. Microprocessors and Microsystems, 79, 103279. https://doi.org/10.1016/j.micpro.2020.103279
- Lee, K., Park, J., & Yoo, S. (2019). Event-driven wearable IoT device for real-time fall detection using low-power embedded hardware. IEEE Internet of Things Journal, 6(6), 10147-10157. https://doi.org/10.1109/JIOT.2019.2946421
- 10. Ahmed, T., Das, D., & Mukherjee, A. (2021). A survey on battery-less and energy-harvested embedded healthcare systems. ACM Computing Surveys, 54(4), 1-38. https://doi.org/10.1145/3459622
- Uvarajan, K. P. (2024). Integration of artificial intelligence in electronics: Enhancing smart devices and systems. Progress in Electronics and Communication Engineering, 1(1), 7-12. https://doi.org/10.31838/PECE/01.01.02
- 12. Sadulla, S. (2024). Optimization of data aggregation techniques in IoT-based wireless sensor networks. Journal of Wireless Sensor Networks and IoT, 1(1), 31-36. https://doi.org/10.31838/WSNIOT/01.01.05
- 13. Rucker, P., Menick, J., & Brock, A. (2025). Artificial intelligence techniques in biomedical signal pro-

- cessing. Innovative Reviews in Engineering and Science, 3(1), 32-40. https://doi.org/10.31838/INES/0 3.01.05
- 14. Sadulla, S. (2024). Techniques and applications for adaptive resource management in reconfigurable computing. SCCTS Transactions on Reconfigurable Computing, 1(1), 6-10. https://doi.org/10.31838/RCC/01.01.02
- Prasath, C. A. (2024). Optimization of FPGA architectures for real-time signal processing in medical devices.
   Journal of Integrated VLSI, Embedded and Computing Technologies, 1(1), 11-15. https://doi.org/10.31838/JIVCT/01.01.03