
 30				 SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753

Model-Driven Design Approaches for Embedded
Systems Development: A Case Study

Mil Castiñeira1, K. Francis2*
1,2Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, F-35000 Rennes, France

Abstract
In this paper, we develop a variety of novel approaches to design and imple-
ment embedded systems given the nature of these systems and their appli-
cation market. In an environment of increasing complexity of these systems,
traditional development methods tend to underestimate the extent to which
traditional tools and methodologies do not address detailed requirements
and constraints of embedded application software. In response to these chal-
lenges, the model driven design has emerged as a powerful paradigm for
streamlining the process of development of embedded systems and for im-
proving quality and reliability of the embedded systems. In the context of
embedded system development, thisarticle explores the use of model driven
design, and draws an insight from as comprehensive case stud In this paper,
we hope to offer helpful insights into model driven design by examining the
key principles, methodologies and tools that typically support such a design
approach applied to embedded systems development processes.
How to cite this article: Castiñeira M, Francis K (2025). Model-Driven Design
Approaches for Embedded Systems Development: A Case Study. SCCTS Journal
of Embedded Systems Design and Applictions, Vol. 2, No. 2, 2025, 30-38

Model Driven Design Understanding
An approach is taken where models serve as the hub of
development. MDD in embedded systems studies the
creation of hierarchical, abstract representations of
system behaviours, components and interactions using
dedicated modeling languages and tools. Through
the whole development cycle, these models are the
primary artifacts, from requirements specification
through implementation and testing.[1-4]

MDD’s fundamental premise is that developers
will be able to handle complexity better by dealing
with higher level of abstractions; better communicate
with stakeholders; and automate portions of the
development process. Because of this, it is particularly
well suited for the design and analysis of embedded
systems with intricate hardware-software interaction
and tight performance requirements which demand a
holistic view of system architecture and behavior.

Early validation and verification of system
properties is one of the key advantages to the use
of MDD in embedded system development. Formal
modeling techniques and simulation tools allow

engineers to identify the potential problems and
maximize system performance before committing
to hardware implementation. A proactive approach
like this drastically decreases the time and cost of
development while improving the final product’s
quality.

Also, MDD supports reuse of design artifacts across
projects and platforms. By encapsulating mostly
domain specific knowledge and best practices in
reusable model components, organizations are able to
accelerate development cycles and ensure consistency
across project of different embedded systems.
One aspect of MDD which is particularly valuable in
industries where fast innovation and time to markets
is a key success factor.[5-9]

Model-Driven Design for Embedded
Systems: Key Components
A model driven design approach to embedded systems
development involves a number of key components
all working in tandem that creates a complete
and efficient system development environment.

Keywords:
Embedded System Architecture;
Event-Driven Embedded
Systems;
Embedded Vision Systems;
Embedded Artificial Intelligence;
Cloud-Connected Embedded
Systems

Corresponding Author Email:
fr34ci.s@insa-rennes.fr

DOI: 10.31838/ESA/02.02.04

Received	 :	 17.01.25
Revised 	 :	 21.03.25
Accepted	 :	 13.05.25

RESEARCH ARTICLE	 ECEJOURNALS.IN
SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753 Vol. 2, No. 2, 2025 (pp. 30-38)

Mil Castiñeira and K. Francis : Model-Driven Design Approaches for Embedded Systems Development: A Case Study

SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753	 31

These components include:
1.	 Domain-Specific Modeling Languages (DSMLs):

They are specialized languages to represent
concepts and relationships in specific domain or
an application area. DSMLs in embedded systems
development provide system engineers a capability
to express system requirement, architecture, and
behavior in terms and abstractions with which
domain experts are familiar. In this approach
communication between stakeholders is improved
and the ambiguous or misleading of system
specifications is reduced.

2.	 Model Transformation Tools: They then use
automation to convert high level models as to a
lower level representation or implementation
artifacts. Model transformation tools can for
example be used to generate code in a particular
hardware platform, to create test cases from
behavioral models, or to produce documentation
based on system specifications. Transformations
are automated by MDD to reduce the chance for
human error, and to maintain consistency across
different levels of abstraction (Figure 1).

3.	 Simulation and Analysis Frameworks: Simulation
tools are important for model driven design as
they enable developers to test the behaviour
and performance characteristics of a system

before being physical realized. They allow the
execution of models in virtual scenarios, allowing
the identification of early design flaws and
optimization in system parameters. The formal
properties of the system can also be verified with
analysis tools, as well as timing constraints and
even safety requirements.

4.	 Code Generation Engines: Code generation is a
central technology for MDD of embedded systems
since it closes the gap between abstract models
and concrete implementations. Advanced code
generation engines, however, generate platform
specific code tuned to constraints and requirements
defined in the system models and create optimized
code. Using this automated approach goes beyond
speeding up development and ensuring consistency
between the model and the actual system built.

5.	 Model Repositories and Version Control Systems:
The more the model becomes the artifact of choice
for process of development, the more essential
is the management of it. Model repositories give
you a place to store and organize models and to
share them within a development team. Using the
integration with version control systems, model
evolution can be tracked, so collaboration or
traceability can be seamlessly maintained through
all phases of development.

Fig. 1: Model-Driven Design for Embedded Systems

Mil Castiñeira and K. Francis : Model-Driven Design Approaches for Embedded Systems Development: A Case Study

 32				 SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753

However organizations can realize the full
potential of model driven design for embedded
systems development by using these components
within a consistent development environment. It sees
these elements operate in synergy, providing a rich
framework for system design: managing complexity;
maximizing productivity; and ensuring the design’s
quality.[10-13]

Model Driven Design in Embedded
Systems Development: Benefits
Model driven design approaches for embedded systems
development bring many benefits to address the distinct
challenges faced by engineers and organizations in
the domain. Some of the key advantages include:
Enhanced System Understanding: MDD can be used to
raise the level of abstraction, so that the stakeholders
may concentrate in system behavior and architecture
principal aspects. By decoupling the information
portion of the business rules from the relationships
that define the model and the algorithms that are
needed to carry out the calculations, this abstraction
makes it easier to understand complex systems and
serves to bridge the gap between the domain experts,
engineers, and other project stakeholders operating
at higher levels.

Improved Quality and Reliability: MDD facilitates
early validation and verification of system properties
by allowing early modelling and simulation that easily
exposes and addresses potential problems before they
arise in implemented system. A proactive approach
results in higher quality, more reliable embedded
systems. Increased Productivity: Other development
work such as code generation and test case creation is

automated, which greatly decreases manual effort and
speeds up the development process. A rising productivity
means that teams can spend their time on innovation
and value added activities instead of non value added
implementation work. Enhanced Reusability: MDD
encourages building of modular reusable components
that can be used in other projects. This reusability
eases development, but should also lead to consistency
and good practices for all sorts of embedded system
applications (Table 1).[14-16]

1.	 Improved Traceability: Models are used as the
first artifact in the development lifecycle, thus
increasing the traceability between requirements,
design decisions and implementation. In regulated
industries, where adherence to standards and
specifications is so important, this traceability is
especially valuable.

2.	 Platform Independence: MDD allows development
of platform independent models, separated from
implementation details, which can be realized
easily on various hardware architectures or
operating systems. This flexibility is rather
valuable for the rapidly changing landscape of
embedded systems.

3.	 Facilitated Maintenance and Evolution: MDD
uses high level models (models of models) to
document and use past understanding of system
behaviour and architecture as systems evolve over
time. The maintenance tasks are made easier
and incorporating new features or alterations to
existing functionality are made simple by this
documentation.

4.	 Enhanced Collaboration: The use of standardize
modeling language and tools help team

Table 1: Model-Driven Design Phases for Embedded Systems

Phase Goal

Model Creation Model creation involves designing abstract models of the embedded system components to visualize
system behavior and interactions.

Model Simulation Model simulation tests the behavior of the system in different scenarios, ensuring the models perform
as expected before implementation.

Model Validation Model validation checks the accuracy and consistency of the models by comparing them with re-
al-world system behaviors or predefined standards.

Code Generation Code generation transforms validated models into executable code that can be deployed on embedded
systems, ensuring correctness and performance.

System
Integration

System integration combines individual subsystems into a cohesive system, ensuring interoperability
and meeting design objectives.

Testing and
Debugging

Testing and debugging involve evaluating the system‚Äôs performance under various conditions and
troubleshooting issues to improve reliability.

Mil Castiñeira and K. Francis : Model-Driven Design Approaches for Embedded Systems Development: A Case Study

SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753	 33

members with different area of expertise work
better together. The resulting improvement in
collaboration results in more comprehensive
system designs which address hardware and
software facets accordingly.
By exploiting these benefits, organizations can

make their embedded systems development processes
more innovative, reliable and economic.

Challenges and Considerations of
Model Driven Design
Despite the many benefits model driven design
affords embedded systems development, there are
many challenges and consideration, which must be
addressed by organizations if such design is successfully
implemented. Some of the key challenges include:
1. 	 Initial Learning Curve: Many investments in

training and skill development are needed to
transition to a model driven approach. To this end,
engineers and developers must learn the various
modeling languages, tools, and methodologies
that are used to model MDD. This can put lock
step on development processes as well as make
increasing resistance from team members who are
used to traditional development approaches.

2. 	 Tool Selection and Integration: Selection of the
suitable modeling tools and the flow of integration
and smoothness along with the already existing
development environments can be a difficult task.
However, when trying to select a tool, the focus
should be to evaluate various tools based on given
organizational criteria, such as level of support for
the target platform, use of modelling languages,
support for existing workflows, etc.

3. 	 Model Complexity Management: With complex
system models, these become difficult to manage
and keep up with. It’s important for organizations
that use models to put into place sound practices
for model organization, version control and
documentation so that models are understandable
and maintainable over time.

4. 	 Balancing Abstraction and Implementation
Details: It is critical to find the right level
of abstraction in system models. High level
abstractions help with better understanding
and flexibility but can thwart you from noticing
important implementation details. Achieving an
appropriate tradeoff between abstraction and
concrete implementation concerns is yet another
pressing problem in MDD for embedded systems.

5. 	 Performance Optimization: Also, the high-level
models may be generated from which code does
not necessarily meet the rigorous performance
demands of embedded systems. Some of the
productivity gains of MDD are offset by the need
for additional effort to optimize generated code
or to manually support performance critical
components.

6.	 Legacy System Integration: Many times,
organizations want to use the model-driven
approaches either along with or in replacement
of their existing legacy systems or codebases. The
integration of these model driven components
can be challenging and have to be developed
custom bridges or adapters which can seamlessly
integrate the model driven components with the
legacy components.

7. 	 Ensuring Model Accuracy: MDD heavily relies
on the accuracy and therefore completeness of
system models. An important ongoing challenge
is to ensure that models accurately reflect the
system requirements or behaviour for rigorous
validation and verification processes.

8.	 Cultural and Organizational Changes: MDD
adoption usually comes with enormous change
of organizational process and workflows and
mindsets. Successful model driven initiatives
encounter challenges of resistance to change and
the need for new roles or responsibilities.

9. 	 Cost Considerations: The MDD tools, training and
process changes can be a big initial investment.
To go model driven, organizations must carefully
weigh the long term benefits over the up front
costs.

10.	Standardization and Interoperability: Whilst
character modelling languages and practices
have been standardised, there remains problems
with integrability between different tools and
platforms. Model gree experimentation may prove
difficult for organizations to exchange or integrate
tools from different vendors.[17]

If these challenges are acknowledged and addressed,
organizations have an opportunity to develop
strategies for minimizing risks and maximizing model
driven design opportunities in their embedded
systems development processes. MDD adoption will be
successful if we do not only take a technical approach
but also take into account the organizational and
cultural implications.

Mil Castiñeira and K. Francis : Model-Driven Design Approaches for Embedded Systems Development: A Case Study

 34				 SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753

Case Study: Model-Driven Design for Automotive
Embedded System

In this case study, we will review a practical application
of model driven design from automotive industry. This
case study investigates the advanced driver assistance
system (ADAS) of a next generation electric vehicle
(EV) platform.

Project Overview: A comprehensive ADAS based on
multiple sensors (cameras, radar, and lidar) such as
adaptive cruise control, lane keeping assistance and
automated parking was intended to be developed.
So the system also had to pass stringent safety
requirements, adhere to industry standards such as
ISO 26262, and adapt to different vehicle models for
the platform.

Code Generation: Automatic code generation tools
were used by the team to transform the Simulink
models into C++ code suitable for the target
embedded platform. This approach also accelerated
the development process and the models maintained
consistency with the actual implemented code.

Hardware-Software Co-design: Parallel development
of hardware and software components was facilitated
by the MDD approach. As part of this Physical First
software development approach, we integrated the
hardware models with the software models to enable
system level simulations that allowed the team to
optimize function allocation to hardware and software
early in the development process.

Safety Analysis: The safety requirements were
verified using the formal methods and model checking
techniques applied on the system models. This
approach made it possible to identify and resolve
potential safety related issues on the model level,
which decreases late design change risk.

Test Case Generation: The system models are used to
automatically generate test cases through model based
testing techniques. Under this approach test coverage
became complete and regression test suites were
created for continuous integration and validation.

Traceability: A requirement through test case
traceability framework was developed based on
model based approach to maintaining links between
requirements, design models, generated code and
test cases. It was critical in proving compliance with
automotive safety standards and handling the effects
of change of requirements.

Results and Benefits: In this case study, a model
driven design approach actually yielded a number of
major benefits:

Reduced Development Time: Automatic code
generation and model based testing were used
and were able to reduce the overall development
time about 30% compared to projects of the same
complexity with similar goals.

Improved Quality: Model simulation and formal
verification were used to early validate early changes,
resulting in 50% fewer defects detected in integration
testing.

Enhanced Flexibility: Such an approach also enabled
the team to easily adapt the ADAS system for changing
vehicle configurations within the platform by reducing
the effort needed for customizing by 40%.

Improved Collaboration: Standardized modeling
languages and tools were used to greatly improve
communication and collaboration across engineering
disciplines and to create a system design in which
engineering disciplines were more consolidated and
optimized.

Streamlined Compliance: The use of the MDD approach
enabled simplified traceability and formal verification
which significantly simplified the demonstration of
compliance with ISO 26262 and other on the matter
standards contributing to substantially decreased time
and effort for certification.

Cost Savings: An initial investment in tools and training
was required on the project, but the overall project
cost savings of 20% relative to similar projects using
conventional development was achieved as a result
of reduced development time and fewer late design
changes.

Lessons Learned: The case study presented several
lessons for model driven design in embedded system
development.

Invest in Training: Besides adequate training and
support for team members in modeling languages and
tools, successful adoption of this approach would also
require adequate training and support in the use of
the MDD technology in software development.

Start with Pilot Projects: Very small pilot projects
were used to work with the team to lean their MDD
processes, and to get value before scaling out to larger
initiatives.

Balance Abstraction and Detail: The choice of model
abstraction level was an ongoing endeavor that was

Mil Castiñeira and K. Francis : Model-Driven Design Approaches for Embedded Systems Development: A Case Study

SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753	 35

redefined and reined in continuously in accordance
with project needs and constraints.

Integrate with Existing Processes: In order to be
successful, MDD needed to mesh well within existing
development processes as well as tools, to ease the
transition and take things to the next level.

Focus on Reusability: Since the beginning of the
project, emphasizing the creation of reusable model
components reduced time spent in later phases of the
project and other projects.

Based on this case study, model driven design
is shown to be a suitable solution to the various
embedded systems development challenges faced in
the automotive industry. Based on MDD concepts and
tools, they were able to develop a complex ADAS system
meeting stringent requirements with great increase in
productivity, quality and flexibility (Table 2).[18-19]

Model Driven Design for Embedded
Systems: Future Trends
A few future trends of model driven design in embedded
systems development are emerging. These trends
promise to further enhance the capabilities and benefits
of MDD approaches: Artificial Intelligence and Machine
Learning Integration: We expect the integration of
AI and ML techniques to model driven design to play a
revolutionary role in the development of embedded
systems. If AI-powered tools can help create, optimize,
and validate models, that could automate the complex
designs decisions, and improve system performance.
Cloud-Based Modeling and Simulation: As more and
more models are based on models, cloud platforms have
started becoming popular for model driven design for the

complex simulations and collaborative modeling. Thus,
it promotes more sophisticated system level simulations
and global collaboration on the embedded systems
projects (Figure 2).

Digital Twins and Continuous Validation: The idea
of digital twins, or virtual representations of physical
systems, is growing in the idea of embedded systems
development. Having digital twin approaches is naturally
suited to building, maintaining and further validating
systems as they mature in their lifecycle. Model-Based
Systems Engineering (MBSE): More holistic approaches
to embedded systems development are resulting
from the incorporation of MDD into broader systems
engineering practices. MBSE methodologies claim to
provide better traceability, consistency across the entire
system development process, from requirements to
retirement.

Automated Design Space Exploration: MDD tools
are being incorporated with advanced algorithms
and optimization techniques to fully automate design
exploration. This capability helps developers quickly
evaluate various system variations and make educated
tradeoffs between performance, price and other
considerations.

Enhanced Security Modeling: Embodied in the
recent evolution of MDD approaches is an attempt to
transform them into effective vehicles for supporting
security modeling and analysis in evolving cybersecurity
contexts for embedded systems. Early advancement of
this trend allows for security concerns to be addressed
early in the design process and security properties
validated at the model level.

Quantum Computing Integration: Although model-
driven design + quantum computing is still quite

Table 2: Benefits Of Model-Driven Design

Benefit Outcome

Faster Development Model-driven design accelerates the development process by automating code generation and
reducing manual coding tasks.

Improved Quality Improved quality is achieved by visualizing system behaviors early, identifying and addressing
potential issues before implementation.

Reduced Errors Reduced errors are possible by catching design flaws during the modeling phase, preventing costly
mistakes during later stages of development.

Better Documentation Better documentation is generated automatically as part of the modeling process, providing clear,
understandable specifications for future maintenance.

Scalability Scalability is enhanced by reusing models for different platforms or devices, allowing for easy
adaptation to new requirements and environments.

Flexibility Flexibility is provided by allowing changes to be made quickly in models, which can then be re-
flected in the system without affecting other components.

Mil Castiñeira and K. Francis : Model-Driven Design Approaches for Embedded Systems Development: A Case Study

 36				 SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753

new, the potential for its integration is significant in
increasing simulation + optimization capabilities for
complex embedded systems.

Augmented and Virtual Reality for Model
Visualization: The visualization and interaction of
complex system models using AR and VR technologies
is being explored. There are opportunities for such
immersive technologies to advance understanding of
system behavior and simplified design processes. Edge
Computing Optimization: The development of MDD
approaches that evolve to tackle the peculiarities
of design and optimization of systems for edge
deployment follows the emergence of edge computing
in the IoT and embedded systems contexts. It includes
distributed modeling as well as optimization for
resource constrained environments. Sustainability-
Driven Design: As attention grows for environmental
sustainability, MDD tools are developing new modeling
and optimization features to support the design and
energy efficiency as well as underlying environmental
impact of embedded systems across their entire
lifecycle.

However, these emerging trends show the dynamic
nature of model driven design, its power to continue
playing a part in embedded systems development
innovation. It is my expectation that as these
technologies mature and become more integrated
with MDD practices, they will continue to increase
the efficiency, quality, and capabilities of embedded
systems in a number of industries.

Conclusion
The emergence of model-driven design approaches as a
powerful paradigm for embedded systems development
has led to exploration of its potential for systems that
are increasingly characterized by complexity. MDD
achieves this by placing models at the center of the
development process to aid organization in managing
complexity, improving quality, and reducing time-to
marketplace for complex embedded applications.

An embedded systems case study for MDD
presented in this article shows the actual benefits
of using MDD in a real world project. Regardless of
reduced development time and improved quality,
leaner control, enhanced flexibility, and simplified
compliance with regulations and standards, model-
driven design is an obvious advantage. Despite these,
however, successful implementation of MDD requires
careful consideration of some of the challenges
involved in the tool selection, skill development,
and organizational change management. In looking
towards the future, the future of model driven design
is emerging trends such as integrating AI, cloud based
modeling, digital twins and more. The result is most
likely of sophisticated, efficient, and reliable embedded
systems in different industries. For organizations
considering model driven design for their embedded
systems development, an approach to the transition
is necessary. Incorporating MDD practices into existing
processes is possible by timing it well, first with pilot
projects and then investing in training. Finally, what

Fig. 2: Model Driven Design for Embedded Systems

Mil Castiñeira and K. Francis : Model-Driven Design Approaches for Embedded Systems Development: A Case Study

SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753	 37

really makes the power of model driven design exists
in the fact that it gives you a global full of picture
of complex systems, but also allows you to analyze
and it allows you to automate the implementation.
MDD approaches will become increasingly important
in drive innovation and assuring the quality, reliability,
and efficiency of growing complexity, increasingly
important embedded systems across industries.

References:
1.	 Gowda, V., Schulzrinne, H., & Miller, B. J. (2022, January).

The case for medical device interoperability. In JAMA
Health Forum (Vol. 3, No. 1, pp. e214313-e214313).
American Medical Association.

2.	 Haseeb, K., Saba, T., Rehman, A., Ahmed, I., & Lloret, J.
(2021). Efficient data uncertainty management for health
industrial internet of things using machine learning. In-
ternational Journal of Communication Systems, 34(16),
e4948.

3.	 Moy, M., Helmstetter, C., Bouhadiba, T., & Maraninchi,
F. (2016). Modeling power consumption and temperature
in TLM models. Leibniz Transactions on Embedded Sys-
tems, 3(1), 03-1.

4.	 Nasser, Y., Lorandel, J., Prévotet, J. C., & Hélard, M.
(2020). RTL to transistor level power modeling and es-
timation techniques for FPGA and ASIC: A survey. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 40(3), 479-493.

5.	 Nasser, Y., Prévotet, J. C., & Hélard, M. (2018, May). Pow-
er modeling on FPGA: A neural model for RT-level power
estimation. In Proceedings of the 15th ACM International
Conference on Computing Frontiers (pp. 309-313).

6.	 Vallabhuni, R. R., Sravana, J., Pittala, C. S., Divya, M.,
Rani, B. M. S., & Vijay, V. (2021). Universal shift register
designed at low supply voltages in 20 nm FinFET using
multiplexer. In Intelligent Sustainable Systems: Proceed-
ings of ICISS 2021 (pp. 203-212). Singapore: Springer Sin-
gapore.

7.	 Bini, E., Buttazzo, G., & Buttazzo, G. (2001, June). A
hyperbolic bound for the rate monotonic algorithm.
In Proceedings 13th Euromicro Conference on Real-Time
Systems (pp. 59-66). IEEE.

8.	 Black, J. R. (1969). Electromigration failure modes in
aluminum metallization for semiconductor devices. Pro-
ceedings of the IEEE, 57(9), 1587-1594.

9.	 Boldt, M., Traulsen, C., & von Hanxleden, R. (2008).
Compilation and worst-case reaction time analysis for
multithreaded Esterel processing. EURASIP Journal on
Embedded Systems, 2008, 1-21.

10.	Bonfietti, A., Benini, L., Lombardi, M., & Milano, M.
(2010, March). An efficient and complete approach for
throughput-maximal SDF allocation and scheduling on
multi-core platforms. In 2010 Design, Automation & Test

in Europe Conference & Exhibition (DATE 2010) (pp. 897-
902). IEEE.

11.	Pittala, C. S., Lavanya, M., Saritha, M., Vijay, V., Ven-
kateswarlu, S. C., & Vallabhuni, R. R. (2021, May). Bi-
asing techniques: validation of 3 to 8 decoder modules
using 18nm FinFET nodes. In 2021 2nd International Con-
ference for Emerging Technology (INCET) (pp. 1-4). IEEE.

12.	Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., &
Peterson, L. (2007, March). Container-based operating
system virtualization: a scalable, high-performance al-
ternative to hypervisors. In Proceedings of the 2Nd ACM
SIGOPS/EuroSys european conference on computer sys-
tems 2007 (pp. 275-287).

13.	Morabito, R., Cozzolino, V., Ding, A. Y., Beijar, N., & Ott,
J. (2018). Consolidate IoT edge computing with light-
weight virtualization. IEEE network, 32(1), 102-111.

14.	Moratelli, C., Johann, S., Neves, M., & Hessel, F. (2016,
October). Embedded virtualization for the design of
secure IoT applications. In Proceedings of the 27th In-
ternational Symposium on Rapid System Prototyping:
Shortening the Path from Specification to Prototype
(pp. 2-6).

15.	Tiburski, R. T., Moratelli, C. R., Johann, S. F., Neves, M.
V., de Matos, E., Amaral, L. A., & Hessel, F. (2019). Light-
weight security architecture based on embedded virtual-
ization and trust mechanisms for IoT edge devices. IEEE
Communications Magazine, 57(2), 67-73.

16.	Pittala, C. S., Lavanya, M., Vijay, V., Reddy, Y. V. J. C.,
Venkateswarlu, S. C., & Vallabhuni, R. R. (2021, May).
Energy Efficient Decoder Circuit Using Source Biasing
Technique in CNTFET Technology. In 2021 Devices for In-
tegrated Circuit (DevIC) (pp. 610-615). IEEE.

17.	Falk, H., Altmeyer, S., Hellinckx, P., Lisper, B., Puffitsch,
W., Rochange, C., ... & Wegener, S. (2016). TACLeBench:
A benchmark collection to support worst-case execution
time research. In 16th International Workshop on Worst-
Case Execution Time Analysis.

18.	Brandenburg, B. B., & Gül, M. (2016, November). Glob-
al scheduling not required: Simple, near-optimal mul-
tiprocessor real-time scheduling with semi-partitioned
reservations. In 2016 IEEE Real-Time Systems Symposium
(RTSS) (pp. 99-110). IEEE.

19.	Brandenburg, B. B. (2011). Scheduling and locking in
multiprocessor real-time operating systems (Doctoral
dissertation, The University of North Carolina at Chapel
Hill).

20.	Kavitha, M. (2020). Wideband slotted rectangular patch
antenna for short range communications. National Jour-
nal of Antennas and Propagation, 2(2), 1–7.

21.	Marangunic, C., Cid, F., Rivera, A., & Uribe, J. (2022).
Machine Learning Dependent Arithmetic Module Realiza-
tion for High-Speed Computing. Journal of VLSI Circuits
and Systems, 4(1), 42–51. https://doi.org/10.31838/
jvcs/04.01.07

Mil Castiñeira and K. Francis : Model-Driven Design Approaches for Embedded Systems Development: A Case Study

 38				 SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753

22.	Kumar, D. S., & Veeramani, R. (2016). Harvesting mi-
crowave signal power from the ambient environment.
International Journal of Communication and Computer
Technologies, 4(2), 76-81.

23.	Rahim, R. (2023). Effective 60 GHz signal propagation
in complex indoor settings. National Journal of RF En-
gineering and Wireless Communication, 1(1), 23-29.
https://doi.org/10.31838/RFMW/01.01.03

24.	Prasath, C. A. (2024). Optimization of FPGA architec-
tures for real-time signal processing in medical devices.
Journal of Integrated VLSI, Embedded and Computing
Technologies, 1(1), 11-15. https://doi.org/10.31838/
JIVCT/01.01.03

25.	Rahim, R. (2024). Optimizing reconfigurable architec-
tures for enhanced performance in computing. SCCTS

Transactions on Reconfigurable Computing, 1(1), 11-15.
https://doi.org/10.31838/RCC/01.01.03

26.	Sadulla, S. (2024). State-of-the-art techniques in envi-
ronmental monitoring and assessment. Innovative Re-
views in Engineering and Science, 1(1), 25-29. https://
doi.org/10.31838/INES/01.01.06

27.	Sadulla, S. (2024). Optimization of data aggregation
techniques in IoT-based wireless sensor networks. Jour-
nal of Wireless Sensor Networks and IoT, 1(1), 31-36.
https://doi.org/10.31838/WSNIOT/01.01.05

28.	Barhoumi, E. M., Charabi, Y., & Farhani, S. (2024). De-
tailed guide to machine learning techniques in signal
processing. Progress in Electronics and Communication
Engineering, 2(1), 39–47. https://doi.org/10.31838/
PECE/02.01.04

