
SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753 1

Fault-Tolerant Embedded Systems: Reliable Operation
in Harsh Environments Approaches

Ferreira Martins Carvalho1, Teusner Perscheid2*
1,2Polytechnic School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre,

Rio Grande do Sul 90619-900, Brazil

AbstrAct
Embedded systems are playing an increasingly important role in delivering
critical applications across industries ranging from aerospace and defense to
telecommunications to healthcare. These systems operate in harsh environ-
ments where failure carry severe consequences. Consequently, fault toler-
ance has become a critical necessity for embedded systems to guarantee un-
interrupted and steady operation under both hardware and software faults.
In this paper, we discuss different approaches and techniques to improve
the reliability and availability of fault tolerant embedded systems working
under hard operational conditions. In the following, we will study the basics
of fault tolerance, look at different fault tolerant architectures and discuss
the approaches of building robust embedded systems that can bear failures
and work properly.
How to cite this article: Carvalho FM, Perscheid T (2025). Fault-Tolerant
Embedded Systems: Reliable Operation in Harsh Environments Approaches.
SCCTS Journal of Embedded Systems Design and Applictions, Vol. 2, No. 2,
2025, 1-8

FAult tolerAnce in embedded systems
Fault tolerance means that a system will operate
correctly in the presence of faults or errors. For
embedded systems, without fault tolerance, system
reliability, availability, and safety will be higher at risk
in mission critical applications.

Before diving deeper into fault-tolerant approach-
es, it’s essential to understand some key concepts:
1. Fault: An abnormal or defective system component

that can cause a failure.
2. Error: The unexpected behavior of a system,

usually caused by a fault.
3. Failure: Failure of a system to meet its required

functions in a required manner, within the
accepted levels of time, and cost, verified by tests
on specific outputs.

4. Reliability: The likelihood that a system will
accomplish its desired result for a given time and
under stated circumstances.

5. Availability: An indication of the amount of time
a system is capable of performing its intended
functions and is operational.[1-4]

importAnce oF FAult tolerAnce in
embedded systems
In general, embedding electronic systems in
environments with limited or no human access is quite
common. In such scenarios, fault tolerance becomes
critical for several reasons:
Safety: In automotive systems, or medical devices
applications, failures may result in severe risk of
human life.
Continuous Operation: Many of these embedded
systems, for example in telecommunication or in
industrial control, have to be uninterrupted.
Cost Reduction: The use of fault tolerance can reduce
the maintenance or replacement frequency, greatly
reducing overall system cost.
Reliability in Harsh Environments: Aerospace and
defense applications often require embedded systems
which must endure extreme conditions while still
functioning.

Classification and Fault Models
To formulate effective fault tolerant strategies
there is need to understand the types of faults

Keywords:
Embedded Systems;
IoT (Internet of Things);
Real-time Operating Systems;
Microcontrollers;
Hardware-Software Co-Design

Corresponding Author Email:
percsd@ifsc.edu.br

DOI: 10.31838/ESA/02.02.01

Received : 01.12.24
Revised : 01.03.25
Accepted : 01.05.25

RESEARCH ARTICLE ECEJOURNALS.IN
SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753 Vol. 2, No. 2, 2025 (pp. 1-8)

Ferreira Martins Carvalho and Teusner Perscheid : Fault-Tolerant Embedded Systems:
Reliable Operation in Harsh Environments Approaches

 2 SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753

and how these faults can corrupt embedded
systems.

Types of Faults
Hardware Faults: Among them are defective physical
components (processors, memory, or I/O devices), and
malfunctions within the software system itself.

Software Faults: Errors in program code, logic or
design which can cause system failures.

Transient Faults: Cause: random one time faults like
electromagnetic interference.

Permanent Faults: Faunts that persist until repair or
replacement of faulty component.

Intermittent Faults: Faults that are often difficult
to reproduce, and often are found happening on a
sporadic basis.

Duration based fault classification
Transient Faults: These faults come and go in a short
period of time. Occasionally they are caused by external
factors, such as power fluctuations or radiation.
Intermittent Faults: However, these faults are in a
state of emerging, disappearing and reemerging over
time. Diagnosis can be tricky and such faults may be an
early harbinger of faults about to become permanent.
Permanent Faults: Until the faulty component is
repaired or replaced they remain. They can also be
caused by wear and tear, manufacturing defect or
severe damage.
These fault types and classifications are important
to understand in order to design appropriate fault
tolerant mechanisms for embedded systems.

Embedded System Fault Tolerant
Architectures
The main objective of fault tolerant architectures is
to achieve system reliability and availability presence
of faults. There are several architectural approaches
to take in utilized embedded systems to attain fault
tolerance.

Architectures based on Redundancy
One of the basic ideas in fault tolerant design is
redundancy, i.e. when you do not use all of your
components, but use extra components instead to
maintain functionality in case of failures.
Hardware Redundancy: This means replicating
essential hardware so backups are made, in case it
fails. Common approaches include:

Triple Modular Redundancy (TMR): Each module does
the same thing, all 3 modules are identical, and only
the majority of the modules are allowed to fuse a
signal into the output.

Dual Modular Redundancy (DMR): It uses 2 identical
modules that operate in parallel, and a comparator to
compare and detect difference.

Software Redundancy: In this case, we are talking
of using several software’s to do the same thing.
Techniques include:

N-Version Programming: A voting mechanism to select
the correct output among multiple independently
developed version of a software running concurrently.

Recovery Blocks: If the primary algorithm fails an
acceptance test then there are alternative algorithms
to do a function.

Time Redundancy: It is the repeated computations
for transient errors detecting and correcting.

Information Redundancy: This consists of augmenting
information in data to detect and correct errors, or
error correcting codes and checksums, for example.

Architectures for Fault-Tolerant Systems
Distributed Systems: By distributing system
functionality across multiple nodes, the system can
tolerate some of its nodes failing without stopping
operation.

Self-Checking Pairs: Each consist of two modules
running in parallel and their outputs are compared.
If a discrepancy is seen, the system will switch to a
backup pair or a safe state.

Watchdog Timers: They monitor system activity and
take a reset or recovery action if specified expected
events are not seen within a specified time frame.

Fault-Tolerant Networks: The redundant commu-
nication paths and protocols to guarantee reliable
data transfer in the situation where network faults
occur.[5-8]

FAult detection And diAgnosis
techniques
The implementation of fault tolerant strategies
on embedded systems depends on practical fault
detection and diagnosis. These techniques facilitate
fault identification as quickly and accurately as
possible for the administration of appropriate recovery
actions (Table 1).

Ferreira Martins Carvalho and Teusner Perscheid : Fault-Tolerant Embedded Systems:
Reliable Operation in Harsh Environments Approaches

SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753 3

Fault Detection Utilizing Hardware
Built-In Self-Test (BIST): Self testing integrated
circuits that detect faults while in operation or at
startup.

Watchdog Timers: Hardware timers that are used to
keep an eye on system activity and reset the system if
not refreshed from time to time by the software.

Error-Detecting Codes: Coding schemes, like parity
checks or cyclic redundancy checks (CRC), that can be
implemented in hardware to detect data errors.

Comparators: Redundant hardware circuits that
compare output from redundant modules in order to
detect discrepancies.

Fault Detection based on software
Assertion Checking: Putting runtime checks in the
code to check that during runtime that some conditions
are satisfied.
Control Flow Checking: Looking at the control
flow taken by the program during its execution and
monitoring something when it is different from what
we expected it to be.

Data Flow Analysis: To detect the anomalies, you
must analyze how data is used and changed through
out the program.

Exception Handling: Putting in place tactics to
intercept and pattern unexpected error or exception
occurrence while running a program.

Fault Diagnosis Techniques
Signature Analysis: Find faults in the system by
comparing the system’s behavior against known good
signatures.

Fault Trees: Analysing possible failure modes and their
causes using logical diagrams.

Expert Systems: Using artificial intelligence tech-
niques to bolster diagnoses of faults by symptoms and
historical data.

Model-Based Diagnosis: Mathematical models of the
system are used to predict its behaviour and compare
it with observed behaviour to identify faults.

Fault Recovery and System
Reconfiguration
It’s the next critical step once a fault is detected and
diagnosed: Recover from the fault and reconfigure the
system so that functionality is restored. These fault
recovery and system reconfiguration strategies are
essential in a fault tolerant embedded system.[9-12]

FAult recovery techniques
Checkpoint and Rollback: Saving of system state
periodically and roll back to a known good state when
an incident event is encountered.

Forward Recovery: Race to correct the fault and try
to continue operation without rolling back, or use
(error correcting) codes to reproduce unreliable data.

Retry Mechanisms: In case of transient faults
repeating a failed operation.

Handling: Application of software routines to recover
from specific fault conditions.

System reconfiguration strategies
Dynamic Resource Allocation: Providing availability
of critical resources until component failures.

Table 1: Fault-Tolerant Techniques for Embedded Systems

Technique Purpose

Redundant
Components

Redundant components involve duplicating critical system components to ensure continued operation
in case of failure of one unit.

Error Detection
Codes

Error detection codes identify data transmission errors and trigger corrective actions to prevent data
corruption and system failures.

Watchdog Timers
Watchdog timers monitor system behavior and reset the system if it becomes unresponsive, ensuring
reliable operation in harsh conditions.

Self-Healing
Systems

Self-healing systems automatically detect faults and reconfigure themselves to restore normal
operation without requiring manual intervention.

Recovery
Algorithms

Recovery algorithms restore system functionality after a failure by rerouting operations or restarting
processes to minimize downtime.

ECC (Error
Correction Codes)

Error correction codes are used to detect and correct errors in data transmission or memory, ensuring
the integrity of information within the system.

Ferreira Martins Carvalho and Teusner Perscheid : Fault-Tolerant Embedded Systems:
Reliable Operation in Harsh Environments Approaches

 4 SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753

Graceful Degradation: Preventing system functionality
reduction to significant operations only when full
recovery from an event is not possible.

Hot Swapping: Doing so while the system does not
shut down.

Adaptive Fault Tolerance: Dynamically adjusting fault
tolerant mechanisms to current system condition and
fault history.

Software Fault Tolerance Techniques.
Embedded systems possess an equally important aspect
of redundant software. There exist techniques for
improving the reliability and robustness of embedded
software.

Defensive Programming
Input Validation: Checking in thoroughly and validating
all of its inputs to avoid unexpected behavior.

Error Handling: Using error detection and handling
mechanisms throughout the code.

Boundary Condition Checking: To make sure
everything stays in acceptable ranges and limits.

Resource Management: Manages system resources
such as memory and processing time to avoid them
hitting the resource failures.

Design Diversity
N-Version Programming: Dividing the critical software
components into multiple versions implemented with
different algorithms or languages of programming.

Recovery Blocks: Altetnataling facit functil kritiku
med kravteste som svar på.

Design Patterns for Fault Tolerance: Using software
design patterns which increase system reliability and
fault tolerance.

Runtime Monitoring and Self Checking
Assertions: Verification that certain program
conditions are met during runtime program execution.

Watchdog Processes: Monitoring the health
and activity of critical system components and
implementing software processes for that purpose.

Heartbeat Mechanisms: Regular status updates of how
system components are performing and in good health.
Runtime Verification: Detecting faults in the behavior
of system with reference to formal specifications or
models.[13-15]

FAult tolerAnt communicAtion in
embedded systems
Distributed embedded systems have to have reliable
communication. The fault tolerant communication
protocols and architecture provide techniques to
ensure correct data transmission in the presence of
network faults and network failures (Figure 1).

Fig. 1: Fault Tolerant Communication in
Embedded Systems

Redundancy channels
Dual-Channel Communication: Transmitting data
over two independent channels such that failures of
one channel do not affect the other, and detect and
recover from channel failures.

Multi-Path Routing: Dynamically choosing
alternative paths on the fly in the event of a loss of
connectivity through the network (link failures).

Channel Bonding: To increase reliability or increase
bandwidth through combining multiple physical
channels into a single logical channel.

Network Protocols with Fault Tolerance
Time-Triggered Protocols: Schedules that use
predetermined communication protocols to ensure
deterministically and fault tolerant data transmission.

Reliable Multicast: A set of protocols which guarantee
reliable message delivery to a number of recipients in
the face of network faults.

Error-Correcting Codes: Coding schemes for detecting
and correcting errors in transmission without
retransmission.

Ferreira Martins Carvalho and Teusner Perscheid : Fault-Tolerant Embedded Systems:
Reliable Operation in Harsh Environments Approaches

SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753 5

Fault-Tolerant Middleware
Group Communication Systems: Reliable and ordered
message delivery middleware for groups of processes
or nodes.

Fault-Tolerant CORBA: Built in fault tolerance features
of Common Object Request Broker Architecture (CORBA).

Message-Oriented Middleware: Allows for a consistent
reliable mode of message queuing and delivery.

constrAint sAtisFAction in reAl-time
FAult tolerAnt embedded systems
Embedded systems have such real time requirements
most of whose operations have a importance equal
to their correctness, of which they have to occur in
sometimes very short periods. Fault tolerance with
real time constraints have certain unique challenges
that are well understood when integrated, and such
integration demands very specialized approaches.

Real-Time Fault Detection
Timing-Based Fault Detection: Tracking time
execution and detecting deviations from the expected
timing behaviour.
Deadline Monitoring: Mechanisms to implement in order
to detect the missed deadlines in the real time tasks.
Real-Time Error Detection Codes: Using error
detection schemes that can be computed and checked
with short turn around time.

Real-Time Fault Recovery
Time-Bounded Rollback: Understanding specific
techniques for rollback recovery with guarenteed
maximum recovery time bounds.

Real-Time Checkpointing: Checkpoining strategies
development that decreases overhead and provides
timely recovery.

Adaptive Fault Tolerance: Dynamic fault tolerant
mechanisms based on current system load and timing
constraints.

Fault Tolerance Scheduling
Fault-Tolerant Scheduling Algorithms: Scheduling
algorithms that take into account the actions of fault
recovery while still meeting real time deadlines.
Mixed-Criticality Systems: Scheduling strategies that
utilize a critical task priority while maintaining fault
tolerance to all system components.
Overload Management: Reaching techniques for tackling
temporary overloads due to fault recovery actions while
preserving the critical real time tasks (Table 2).

FAult tolerAnt embedded system
testing And veriFicAtion
Rigorous testing and verification process is needed
to verify the effectiveness of the fault tolerant
mechanisms in the embedded systems. These processes
validate the system’s’ ability to detect, diagnose, and
recover from faults for a variety of conditions.

Fault Injection Techniques
1. Hardware Fault Injection: Adding faults into

hardware components to see how systems respond.
2. Software Fault Injection: It is to modify software

or data to simulate different fault conditions.
3. Network Fault Injection: Testing fault-

tolerant network protocols by simulating failure
communication or error.

Table 2: System Characteristics for Fault-Tolerant Embedded Systems

Characteristic Importance

Robustness Robustness ensures that the system can withstand environmental stresses such as extreme
temperatures, humidity, and vibrations.

Reliability Reliability is crucial to ensure that the system consistently performs its intended function, even
under harsh or unpredictable conditions.

Scalability Scalability ensures that fault-tolerant embedded systems can be expanded or adapted to meet
growing demands or new requirements.

Real-Time Response Real-time response guarantees that the system can react instantly to changes in the environ-
ment, ensuring safety and operational continuity.

Autonomous Operation Autonomous operation allows the system to function independently, with minimal human inter-
vention, even when failures occur in the environment.

Resource Management Resource management ensures efficient use of limited resources (e.g., power, memory) while
maintaining fault tolerance and optimal system performance.

Ferreira Martins Carvalho and Teusner Perscheid : Fault-Tolerant Embedded Systems:
Reliable Operation in Harsh Environments Approaches

 6 SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753

Formal Verification Methods
4. Model Checking: To verify that the system meets

given fault tolerance properties using formal models.
5. Theorem Proving: Mathematical proof techniques

for the correctness of fault tolerant algorithms
and protocols.

6. Runtime Verification: Ensuring adherence of the
system execution to some fault tolerance specification.

Simulation and Emulation
7. Hardware-in-the-Loop Simulation: Testing of the

fault tolerant embedded systems in the simulated
environments using real hardware components.

8. Software-in-the-Loop Simulation: Fault tolerant
software components have been evaluated in
simulated system environment.

9. Fault-Tolerant System Emulators: Constructing
specialized emulators capable of dissecting
different fault scenarios and connecting to the
system response and emulation.

Case Studies: Fault Tolerant Embedded
Systems in Practice
Real world implementation of the fault tolerant
embedded systems gives us a view of the practical
challenges that might be experienced and the strategies
that are successful. In this section, case studies taken
from different domains with fault tolerance sensitivity
are presented.[16-18]

AerospAce systems
Flight Control Systems: Fault tolerant architectures
used for safe and reliable flight control in modern
aircraft are studied.

Satellite Systems: Fault tolerant design of long term
satellite operations in the harsh space environment.

Automotive Systems
Advanced Driver Assistance Systems (ADAS):
Investigating fault tolerant methods to be used in
automotive safety critical applications.

Electric Vehicle Battery Management: Study of fault
tolerant strategies of maintaining and safeguarding
high capacity battery systems.

Industrial Control Systems
Nuclear Power Plant Control: The study of fault
tolerant designs used in nuclear power plant control
systems to assure safe operation.

Process Control in Chemical Plants: The design of
fault tolerant architectures for safe and efficient
chemical processing operations.

Medical Devices
Implantable Medical Devices: Assignments studying
fault tolerant design in pacemakers and other
implantable medical devices for continued reliable
operational modes.

Critical Care Equipment: Faault tolerant approaches
in life support systems, and other critical medical
equipment.

FAult tolerAnt embedded systems :
Future trends
Fault tolerant embedded system will further evolve
with change in technology, having change in challenges.
The second part of this chapter explores emerging
trends and future directions in the field (Figure 2).

Fig. 2: Fault Tolerant Embedded Systems

Fault Tolerant Systems Using AI and
Machine Learning
Predictive Fault Detection: Machine learning
algorithms to predict potential fault before they
happen.

Adaptive Fault-Tolerant Systems: Building systems
that can learn and adapt the fault tolerant strategies
from experience.

AI-Assisted Fault Diagnosis: Applying artificial
intelligence techniques to enhance the accuracy and
faster fault diagnosis.

Edge Computing and Internet of Things
(IoT)
Distributed Fault Tolerance: Fault tolerant architecture
development for large scale distributed IoT systems.

Ferreira Martins Carvalho and Teusner Perscheid : Fault-Tolerant Embedded Systems:
Reliable Operation in Harsh Environments Approaches

SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753 7

Edge-Based Fault Recovery: Going through edge,
reducing latency as well as making system responsive
with fault recovery mechanisms.
Secure Fault-Tolerant IoT: To integrate security
management with fault tolerant designs of IoT devices
and networks.

Fault Tolerant Quantum Computing
Quantum Error Correction: Study of fault tolerant
techniques for quantum computing systems.
Hybrid Classical-Quantum Systems: Fault tolerant
architectures combining classical and qautum
computing eslements.
Fault-Tolerant Quantum Communication: Analysing
methods for tolerant communication in the face of
noise and error.

conclusion
Finally, fault tolerant embedded systems are
indispensable in guaranteeing the reliability and safety
of the critical applications of different industries. The
implementation of these systems with strong fault
detection, diagnosis and recovery mechanisms allows
them to still function in harsh environments as well
as in the event of hardware or software failures.
Operating beyond the limits of modern technology,
complex computing systems range from spacecraft
and industrial control applications to stock exchange
systems and manufacturing plants — all reliant on fault
tolerant, dependable computing resources.

reFerences:
1. Kwon, O., & Yoo, S. K. (2021). Interoperability reference

models for applications of artificial intelligence in medi-
cal imaging. Applied Sciences, 11(6), 2704.

2. Lee, S., Lee, T., Jin, G., & Hong, J. (2008). An implemen-
tation of wireless medical image transmission system on
mobile devices. Journal of Medical Systems, 32, 471-480.

3. Leidy, N. K., Beusterien, K., Sullivan, E., Richner, R.,
& Muni, N. I. (2006). Integrating the patient’s perspec-
tive into device evaluation trials. Value in Health, 9(6),
394-401.

4. Lee, H. G., Nam, S., & Chang, N. (2003, March). Cy-
cle-accurate energy measurement and high-level en-
ergy characterization of FPGAs. In Fourth International
Symposium on Quality Electronic Design, 2003. Proceed-
ings. (pp. 267-272). IEEE.

5. Li, F., Lin, Y., He, L., Chen, D., & Cong, J. (2005). Power
modeling and characteristics of field programmable gate
arrays. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 24(11), 1712-1724.

6. Vallabhuni, R. R., Yamini, G., Vinitha, T., & Reddy, S.
S. (2020, September). Performance analysis: D-Latch
modules designed using 18nm FinFET Technology. In 2020
International Conference on Smart Electronics and Com-
munication (ICOSEC) (pp. 1169-1174). IEEE.

7. Liang, H., Chen, Y. C., Luo, T., Zhang, W., Li, H., & He,
B. (2015, September). Hierarchical library based power
estimator for versatile FPGAs. In 2015 IEEE 9th Interna-
tional Symposium on Embedded Multicore/Many-core
Systems-on-Chip (pp. 25-32). IEEE.

8. Liang, H., Chen, Y. C., Luo, T., Zhang, W., Li, H., & He,
B. (2015, September). Hierarchical library based power
estimator for versatile FPGAs. In 2015 IEEE 9th Interna-
tional Symposium on Embedded Multicore/Many-core
Systems-on-Chip (pp. 25-32). IEEE.

9. Paul, M., & Petrov, P. (2010, June). I-cache configurabil-
ity for temperature reduction through replicated cache
partitioning. In 2010 IEEE 8th Symposium on Application
Specific Processors (SASP) (pp. 81-86). IEEE.

10. Sanchez, D., & Kozyrakis, C. (2012). Scalable and effi-
cient fine-grained cache partitioning with vantage. IEEE
Micro, 32(3), 26-37.

11. Suo, G., & Yang, X. J. (2009, August). Balancing paral-
lel applications on multi-core processors based on cache
partitioning. In 2009 IEEE International Symposium on
Parallel and Distributed Processing with Applications (pp.
190-195). IEEE.

12. Vallabhuni, R. R., Sravya, D. V. L., Shalini, M. S., & Ma-
heshwararao, G. U. (2020, July). Design of Comparator
using 18nm FinFET Technology for Analog to Digital Con-
verters. In 2020 7th International Conference on Smart
Structures and Systems (ICSSS) (pp. 1-6). IEEE.

13. Ferreira Martins, H., Carvalho de Oliveira Junior, A., Dias
Canedo, E., Dias Kosloski, R. A., Ávila Paldês, R., & Costa
Oliveira, E. (2019). Design thinking: Challenges for soft-
ware requirements elicitation. Information, 10(12), 371.

14. Kuula, S., Haapasalo, H., & Kosonen, J. M. (2019). Three
phases of transforming a project-based IT company into
a lean and design-led digital service provider. IEEE soft-
ware, 37(2), 41-48.

15. Higuchi, M. M., & Nakano, D. N. (2017). Agile design:
A combined model based on design thinking and agile
methodologies for digital games projects. Revista de
Gestão e Projetos, 8(2), 109-126.

16. Vallabhuni, R. R., Sravana, J., Pittala, C. S., Divya, M.,
Rani, B. M. S., & Vijay, V. (2021). Universal shift register
designed at low supply voltages in 20 nm FinFET using mul-
tiplexer. In Intelligent Sustainable Systems: Proceedings of
ICISS 2021 (pp. 203-212). Singapore: Springer Singapore.

17. Bäck, T., Fogel, D. B., & Michalewicz, Z. (1997). Hand-
book of evolutionary computation. Release, 97(1), B1.

18. Bai, K., & Shrivastava, A. (2010, October). Heap data
management for limited local memory (llm) multi-core
processors. In Proceedings of the eighth IEEE/ACM/IFIP

Ferreira Martins Carvalho and Teusner Perscheid : Fault-Tolerant Embedded Systems:
Reliable Operation in Harsh Environments Approaches

 8 SCCTS Journal of Embedded Systems Design and Applications ISSN: 3048-8753

international conference on Hardware/software code-
sign and system synthesis (pp. 317-326).

19. Shaik, S. (2021). Wideband rectangular patch antenna
with DGS for 5G communications. National Journal of An-
tennas and Propagation, 3(1), 1–6.

20. Vardhan, K. V., & Musala, S. (2024). Thermometer Cod-
ing-Based Application-Specific Efficient Mod Adder for
Residue Number Systems. Journal of VLSI Circuits and
Systems, 6(2), 122–129. https://doi.org/10.31838/
jvcs/06.02.14

21. Pradeep, M., Abinya, R., Sathya Anandhi, S., & Sound-
arya, S. (2017). Dynamic smart alert service for women
safety system. International Journal of Communication
and Computer Technologies, 5(2), 58-66.

22. Prasath, C. A. (2023). The role of mobility models in
MANET routing protocols efficiency. National Journal of
RF Engineering and Wireless Communication, 1(1), 39-
48. https://doi.org/10.31838/RFMW/01.01.05

23. Abdullah, D. (2024). Design and implementation of se-
cure VLSI architectures for cryptographic applications.

Journal of Integrated VLSI, Embedded and Computing
Technologies, 1(1), 21-25. https://doi.org/10.31838/
JIVCT/01.01.05

24. Abdullah, D. (2024). Strategies for low-power design in
reconfigurable computing for IoT devices. SCCTS Transac-
tions on Reconfigurable Computing, 1(1), 21-25. https://
doi.org/10.31838/RCC/01.01.05

25. Surendar, A. (2024). Emerging trends in renewable en-
ergy technologies: An in-depth analysis. Innovative Re-
views in Engineering and Science, 1(1), 6-10. https://
doi.org/10.31838/INES/01.01.02

26. Prasath, C. A. (2024). Energy-efficient routing protocols
for IoT-enabled wireless sensor networks. Journal of
Wireless Sensor Networks and IoT, 1(1), 1-7. https://doi.
org/10.31838/WSNIOT/01.01.01.

27. Abdullah, D. (2024). Enhancing cybersecurity in elec-
tronic communication systems: New approaches and
technologies. Progress in Electronics and Communica-
tion Engineering, 1(1), 38–43. https://doi.org/10.31838/
PECE/01.01.07.

