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AbstrAct 
Embedded systems are playing an increasingly important role in delivering 
critical applications across industries ranging from aerospace and defense to 
telecommunications to healthcare. These systems operate in harsh environ-
ments where failure carry severe consequences. Consequently, fault toler-
ance has become a critical necessity for embedded systems to guarantee un-
interrupted and steady operation under both hardware and software faults. 
In this paper, we discuss different approaches and techniques to improve 
the reliability and availability of fault tolerant embedded systems working 
under hard operational conditions. In the following, we will study the basics 
of fault tolerance, look at different fault tolerant architectures and discuss 
the approaches of building robust embedded systems that can bear failures 
and work properly.
How to cite this article: Carvalho FM, Perscheid T (2025). Fault-Tolerant 
Embedded Systems: Reliable Operation in Harsh Environments Approaches. 
SCCTS Journal of Embedded Systems Design and Applictions, Vol.  2, No. 2, 
2025, 1-8

FAult tolerAnce in embedded systems
Fault tolerance means that a system will operate 
correctly in the presence of faults or errors. For 
embedded systems, without fault tolerance, system 
reliability, availability, and safety will be higher at risk 
in mission critical applications.

Before diving deeper into fault-tolerant approach-
es, it’s essential to understand some key concepts:
1. Fault: An abnormal or defective system component 

that can cause a failure.
2. Error: The unexpected behavior of a system, 

usually caused by a fault.
3. Failure: Failure of a system to meet its required 

functions in a required manner, within the 
accepted levels of time, and cost, verified by tests 
on specific outputs.

4. Reliability: The likelihood that a system will 
accomplish its desired result for a given time and 
under stated circumstances.

5. Availability: An indication of the amount of time 
a system is capable of performing its intended 
functions and is operational.[1-4]

importAnce oF FAult tolerAnce in 
embedded systems
In general, embedding electronic systems in 
environments with limited or no human access is quite 
common. In such scenarios, fault tolerance becomes 
critical for several reasons:
Safety: In automotive systems, or medical devices 
applications, failures may result in severe risk of 
human life.
Continuous Operation: Many of these embedded 
systems, for example in telecommunication or in 
industrial control, have to be uninterrupted.
Cost Reduction: The use of fault tolerance can reduce 
the maintenance or replacement frequency, greatly 
reducing overall system cost.
Reliability in Harsh Environments: Aerospace and 
defense applications often require embedded systems 
which must endure extreme conditions while still 
functioning.

Classification and Fault Models
To formulate effective fault tolerant strategies 
there is need to understand the types of faults 
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and how these faults can corrupt embedded  
systems.

Types of Faults
Hardware Faults: Among them are defective physical 
components (processors, memory, or I/O devices), and 
malfunctions within the software system itself.

Software Faults: Errors in program code, logic or 
design which can cause system failures.

Transient Faults: Cause: random one time faults like 
electromagnetic interference.

Permanent Faults: Faunts that persist until repair or 
replacement of faulty component.

Intermittent Faults: Faults that are often difficult 
to reproduce, and often are found happening on a 
sporadic basis.

Duration based fault classification
Transient Faults: These faults come and go in a short 
period of time. Occasionally they are caused by external 
factors, such as power fluctuations or radiation.
Intermittent Faults: However, these faults are in a 
state of emerging, disappearing and reemerging over 
time. Diagnosis can be tricky and such faults may be an 
early harbinger of faults about to become permanent.
Permanent Faults: Until the faulty component is 
repaired or replaced they remain. They can also be 
caused by wear and tear, manufacturing defect or 
severe damage.
These fault types and classifications are important 
to understand in order to design appropriate fault 
tolerant mechanisms for embedded systems.

Embedded System Fault Tolerant 
Architectures
The main objective of fault tolerant architectures is 
to achieve system reliability and availability presence 
of faults. There are several architectural approaches 
to take in utilized embedded systems to attain fault 
tolerance.

Architectures based on Redundancy
One of the basic ideas in fault tolerant design is 
redundancy, i.e. when you do not use all of your 
components, but use extra components instead to 
maintain functionality in case of failures.
Hardware Redundancy: This means replicating 
essential hardware so backups are made, in case it 
fails. Common approaches include:

Triple Modular Redundancy (TMR): Each module does 
the same thing, all 3 modules are identical, and only 
the majority of the modules are allowed to fuse a 
signal into the output.

Dual Modular Redundancy (DMR): It uses 2 identical 
modules that operate in parallel, and a comparator to 
compare and detect difference.

Software Redundancy: In this case, we are talking 
of using several software’s to do the same thing. 
Techniques include:

N-Version Programming: A voting mechanism to select 
the correct output among multiple independently 
developed version of a software running concurrently.

Recovery Blocks: If the primary algorithm fails an 
acceptance test then there are alternative algorithms 
to do a function.

Time Redundancy: It is the repeated computations 
for transient errors detecting and correcting.

Information Redundancy: This consists of augmenting 
information in data to detect and correct errors, or 
error correcting codes and checksums, for example.

Architectures for Fault-Tolerant Systems
Distributed Systems: By distributing system 
functionality across multiple nodes, the system can 
tolerate some of its nodes failing without stopping 
operation.

Self-Checking Pairs: Each consist of two modules 
running in parallel and their outputs are compared. 
If a discrepancy is seen, the system will switch to a 
backup pair or a safe state.

Watchdog Timers: They monitor system activity and 
take a reset or recovery action if specified expected 
events are not seen within a specified time frame.

Fault-Tolerant Networks: The redundant commu-
nication paths and protocols to guarantee reliable 
data transfer in the situation where network faults  
occur.[5-8]

FAult detection And diAgnosis 
techniques
The implementation of fault tolerant strategies 
on embedded systems depends on practical fault 
detection and diagnosis. These techniques facilitate 
fault identification as quickly and accurately as 
possible for the administration of appropriate recovery 
actions (Table 1).
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Fault Detection Utilizing Hardware
Built-In Self-Test (BIST): Self testing integrated 
circuits that detect faults while in operation or at 
startup.

Watchdog Timers: Hardware timers that are used to 
keep an eye on system activity and reset the system if 
not refreshed from time to time by the software.

Error-Detecting Codes: Coding schemes, like parity 
checks or cyclic redundancy checks (CRC), that can be 
implemented in hardware to detect data errors.

Comparators: Redundant hardware circuits that 
compare output from redundant modules in order to 
detect discrepancies.

Fault Detection based on software
Assertion Checking: Putting runtime checks in the 
code to check that during runtime that some conditions 
are satisfied.
Control Flow Checking: Looking at the control 
flow taken by the program during its execution and 
monitoring something when it is different from what 
we expected it to be.

Data Flow Analysis: To detect the anomalies, you 
must analyze how data is used and changed through 
out the program.

Exception Handling: Putting in place tactics to 
intercept and pattern unexpected error or exception 
occurrence while running a program.

Fault Diagnosis Techniques
Signature Analysis: Find faults in the system by 
comparing the system’s behavior against known good 
signatures.

Fault Trees: Analysing possible failure modes and their 
causes using logical diagrams.

Expert Systems: Using artificial intelligence tech-
niques to bolster diagnoses of faults by symptoms and 
historical data.

Model-Based Diagnosis: Mathematical models of the 
system are used to predict its behaviour and compare 
it with observed behaviour to identify faults.

Fault Recovery and System 
Reconfiguration
It’s the next critical step once a fault is detected and 
diagnosed: Recover from the fault and reconfigure the 
system so that functionality is restored. These fault 
recovery and system reconfiguration strategies are 
essential in a fault tolerant embedded system.[9-12]

FAult recovery techniques
Checkpoint and Rollback: Saving of system state 
periodically and roll back to a known good state when 
an incident event is encountered.

Forward Recovery: Race to correct the fault and try 
to continue operation without rolling back, or use 
(error correcting) codes to reproduce unreliable data.

Retry Mechanisms: In case of transient faults 
repeating a failed operation.

Handling: Application of software routines to recover 
from specific fault conditions.

System reconfiguration strategies
Dynamic Resource Allocation: Providing availability 
of critical resources until component failures.

Table 1: Fault-Tolerant Techniques for Embedded Systems

Technique Purpose

Redundant 
Components

Redundant components involve duplicating critical system components to ensure continued operation 
in case of failure of one unit.

Error Detection 
Codes

Error detection codes identify data transmission errors and trigger corrective actions to prevent data 
corruption and system failures.

Watchdog Timers
Watchdog timers monitor system behavior and reset the system if it becomes unresponsive, ensuring 
reliable operation in harsh conditions.

Self-Healing 
Systems

Self-healing systems automatically detect faults and reconfigure themselves to restore normal 
operation without requiring manual intervention.

Recovery 
Algorithms

Recovery algorithms restore system functionality after a failure by rerouting operations or restarting 
processes to minimize downtime.

ECC (Error 
Correction Codes)

Error correction codes are used to detect and correct errors in data transmission or memory, ensuring 
the integrity of information within the system.
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Graceful Degradation: Preventing system functionality 
reduction to significant operations only when full 
recovery from an event is not possible.

Hot Swapping: Doing so while the system does not 
shut down.

Adaptive Fault Tolerance: Dynamically adjusting fault 
tolerant mechanisms to current system condition and 
fault history.

Software Fault Tolerance Techniques.
Embedded systems possess an equally important aspect 
of redundant software. There exist techniques for 
improving the reliability and robustness of embedded 
software.

Defensive Programming
Input Validation: Checking in thoroughly and validating 
all of its inputs to avoid unexpected behavior.

Error Handling: Using error detection and handling 
mechanisms throughout the code.

Boundary Condition Checking: To make sure 
everything stays in acceptable ranges and limits.

Resource Management: Manages system resources 
such as memory and processing time to avoid them 
hitting the resource failures.

Design Diversity
N-Version Programming: Dividing the critical software 
components into multiple versions implemented with 
different algorithms or languages of programming.

Recovery Blocks: Altetnataling facit functil kritiku 
med kravteste som svar på.

Design Patterns for Fault Tolerance: Using software 
design patterns which increase system reliability and 
fault tolerance.

Runtime Monitoring and Self Checking
Assertions: Verification that certain program 
conditions are met during runtime program execution.

Watchdog Processes: Monitoring the health 
and activity of critical system components and 
implementing software processes for that purpose.

Heartbeat Mechanisms: Regular status updates of how 
system components are performing and in good health.
Runtime Verification: Detecting faults in the behavior 
of system with reference to formal specifications or 
models.[13-15]

FAult tolerAnt communicAtion in 
embedded systems
Distributed embedded systems have to have reliable 
communication. The fault tolerant communication 
protocols and architecture provide techniques to 
ensure correct data transmission in the presence of 
network faults and network failures (Figure 1).

Fig. 1: Fault Tolerant Communication in  
Embedded Systems

Redundancy channels
Dual-Channel Communication: Transmitting data 
over two independent channels such that failures of 
one channel do not affect the other, and detect and 
recover from channel failures.

Multi-Path Routing: Dynamically choosing 
alternative paths on the fly in the event of a loss of 
connectivity through the network (link failures).

Channel Bonding: To increase reliability or increase 
bandwidth through combining multiple physical 
channels into a single logical channel.

Network Protocols with Fault Tolerance
Time-Triggered Protocols: Schedules that use 
predetermined communication protocols to ensure 
deterministically and fault tolerant data transmission.

Reliable Multicast: A set of protocols which guarantee 
reliable message delivery to a number of recipients in 
the face of network faults.

Error-Correcting Codes: Coding schemes for detecting 
and correcting errors in transmission without 
retransmission.
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Fault-Tolerant Middleware
Group Communication Systems: Reliable and ordered 
message delivery middleware for groups of processes 
or nodes.

Fault-Tolerant CORBA: Built in fault tolerance features 
of Common Object Request Broker Architecture (CORBA).

Message-Oriented Middleware: Allows for a consistent 
reliable mode of message queuing and delivery.

constrAint sAtisFAction in reAl-time 
FAult tolerAnt embedded systems
Embedded systems have such real time requirements 
most of whose operations have a importance equal 
to their correctness, of which they have to occur in 
sometimes very short periods. Fault tolerance with 
real time constraints have certain unique challenges 
that are well understood when integrated, and such 
integration demands very specialized approaches.

Real-Time Fault Detection
Timing-Based Fault Detection: Tracking time 
execution and detecting deviations from the expected 
timing behaviour.
Deadline Monitoring: Mechanisms to implement in order 
to detect the missed deadlines in the real time tasks.
Real-Time Error Detection Codes: Using error 
detection schemes that can be computed and checked 
with short turn around time.

Real-Time Fault Recovery
Time-Bounded Rollback: Understanding specific 
techniques for rollback recovery with guarenteed 
maximum recovery time bounds.

Real-Time Checkpointing: Checkpoining strategies 
development that decreases overhead and provides 
timely recovery.

Adaptive Fault Tolerance: Dynamic fault tolerant 
mechanisms based on current system load and timing 
constraints.

Fault Tolerance Scheduling
Fault-Tolerant Scheduling Algorithms: Scheduling 
algorithms that take into account the actions of fault 
recovery while still meeting real time deadlines.
Mixed-Criticality Systems: Scheduling strategies that 
utilize a critical task priority while maintaining fault 
tolerance to all system components.
Overload Management: Reaching techniques for tackling 
temporary overloads due to fault recovery actions while 
preserving the critical real time tasks (Table 2).

FAult tolerAnt embedded system 
testing And veriFicAtion
Rigorous testing and verification process is needed 
to verify the effectiveness of the fault tolerant 
mechanisms in the embedded systems. These processes 
validate the system’s’ ability to detect, diagnose, and 
recover from faults for a variety of conditions.

Fault Injection Techniques
1. Hardware Fault Injection: Adding faults into 

hardware components to see how systems respond.
2. Software Fault Injection: It is to modify software 

or data to simulate different fault conditions.
3. Network Fault Injection: Testing fault-

tolerant network protocols by simulating failure 
communication or error.

Table 2: System Characteristics for Fault-Tolerant Embedded Systems

Characteristic Importance

Robustness Robustness ensures that the system can withstand environmental stresses such as extreme 
temperatures, humidity, and vibrations.

Reliability Reliability is crucial to ensure that the system consistently performs its intended function, even 
under harsh or unpredictable conditions.

Scalability Scalability ensures that fault-tolerant embedded systems can be expanded or adapted to meet 
growing demands or new requirements.

Real-Time Response Real-time response guarantees that the system can react instantly to changes in the environ-
ment, ensuring safety and operational continuity.

Autonomous Operation Autonomous operation allows the system to function independently, with minimal human inter-
vention, even when failures occur in the environment.

Resource Management Resource management ensures efficient use of limited resources (e.g., power, memory) while 
maintaining fault tolerance and optimal system performance.
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Formal Verification Methods
4. Model Checking: To verify that the system meets 

given fault tolerance properties using formal models.
5. Theorem Proving: Mathematical proof techniques 

for the correctness of fault tolerant algorithms 
and protocols.

6. Runtime Verification: Ensuring adherence of the 
system execution to some fault tolerance specification.

Simulation and Emulation
7. Hardware-in-the-Loop Simulation: Testing of the 

fault tolerant embedded systems in the simulated 
environments using real hardware components.

8. Software-in-the-Loop Simulation: Fault tolerant 
software components have been evaluated in 
simulated system environment.

9. Fault-Tolerant System Emulators: Constructing 
specialized emulators capable of dissecting 
different fault scenarios and connecting to the 
system response and emulation.

Case Studies: Fault Tolerant Embedded 
Systems in Practice
Real world implementation of the fault tolerant 
embedded systems gives us a view of the practical 
challenges that might be experienced and the strategies 
that are successful. In this section, case studies taken 
from different domains with fault tolerance sensitivity 
are presented.[16-18]

AerospAce systems
Flight Control Systems: Fault tolerant architectures 
used for safe and reliable flight control in modern 
aircraft are studied.

Satellite Systems: Fault tolerant design of long term 
satellite operations in the harsh space environment.

Automotive Systems
Advanced Driver Assistance Systems (ADAS): 
Investigating fault tolerant methods to be used in 
automotive safety critical applications.

Electric Vehicle Battery Management: Study of fault 
tolerant strategies of maintaining and safeguarding 
high capacity battery systems.

Industrial Control Systems
Nuclear Power Plant Control: The study of fault 
tolerant designs used in nuclear power plant control 
systems to assure safe operation.

Process Control in Chemical Plants: The design of 
fault tolerant architectures for safe and efficient 
chemical processing operations.

Medical Devices
Implantable Medical Devices: Assignments studying 
fault tolerant design in pacemakers and other 
implantable medical devices for continued reliable 
operational modes.

Critical Care Equipment: Faault tolerant approaches 
in life support systems, and other critical medical 
equipment.

FAult tolerAnt embedded systems : 
Future trends
Fault tolerant embedded system will further evolve 
with change in technology, having change in challenges. 
The second part of this chapter explores emerging 
trends and future directions in the field (Figure 2).

Fig. 2: Fault Tolerant Embedded Systems

Fault Tolerant Systems Using AI and 
Machine Learning
Predictive Fault Detection: Machine learning 
algorithms to predict potential fault before they 
happen.

Adaptive Fault-Tolerant Systems: Building systems 
that can learn and adapt the fault tolerant strategies 
from experience.

AI-Assisted Fault Diagnosis: Applying artificial 
intelligence techniques to enhance the accuracy and 
faster fault diagnosis.

Edge Computing and Internet of Things 
(IoT)
Distributed Fault Tolerance: Fault tolerant architecture 
development for large scale distributed IoT systems.
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Edge-Based Fault Recovery: Going through edge, 
reducing latency as well as making system responsive 
with fault recovery mechanisms.
Secure Fault-Tolerant IoT: To integrate security 
management with fault tolerant designs of IoT devices 
and networks.

Fault Tolerant Quantum Computing
Quantum Error Correction: Study of fault tolerant 
techniques for quantum computing systems.
Hybrid Classical-Quantum Systems: Fault tolerant 
architectures combining classical and qautum 
computing eslements.
Fault-Tolerant Quantum Communication: Analysing 
methods for tolerant communication in the face of 
noise and error.

conclusion
Finally, fault tolerant embedded systems are 
indispensable in guaranteeing the reliability and safety 
of the critical applications of different industries. The 
implementation of these systems with strong fault 
detection, diagnosis and recovery mechanisms allows 
them to still function in harsh environments as well 
as in the event of hardware or software failures. 
Operating beyond the limits of modern technology, 
complex computing systems range from spacecraft 
and industrial control applications to stock exchange 
systems and manufacturing plants — all reliant on fault 
tolerant, dependable computing resources.
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